IRF IRFP4004PBF

PD - 97323
IRFP4004PbF
Applications
l High Efficiency Synchronous Rectification in
SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET
D
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
S
ID (Package Limited)
G
Benefits
l Improved Gate, Avalanche and Dynamic
dv/dt Ruggedness
l Fully Characterized Capacitance and
Avalanche SOA
l Enhanced body diode dV/dt and dI/dt
Capability
40V
1.35mΩ
1.70mΩ
350Ac
195A
D
D
S
G
TO-247AC
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
Parameter
Max.
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
350c
250c
Units
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
195
IDM
Pulsed Drain Current d
1390
PD @TC = 25°C
Maximum Power Dissipation
380
W
Linear Derating Factor
2.5
VGS
Gate-to-Source Voltage
± 20
W/°C
V
dv/dt
TJ
Peak Diode Recovery f
2.0
Operating Junction and
-55 to + 175
TSTG
Storage Temperature Range
A
V/ns
°C
300
Soldering Temperature, for 10 seconds
(1.6mm from case)
10lbxin (1.1Nxm)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
EAS (Thermally limited)
Single Pulse Avalanche Energy e
IAR
Avalanche Currentd
EAR
Repetitive Avalanche Energy g
290
mJ
See Fig. 14, 15, 22a, 22b
A
mJ
Thermal Resistance
Typ.
Max.
RθJC
Symbol
Junction-to-Case k
–––
0.40
RθCS
RθJA
Case-to-Sink, Flat Greased Surface
0.24
–––
–––
40
www.irf.com
Parameter
Junction-to-Ambient jk
Units
°C/W
1
06/05/08
IRFP4004PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min. Typ. Max. Units
40
–––
–––
2.0
–––
–––
–––
–––
––– –––
0.035 –––
1.35 1.70
–––
4.0
–––
20
––– 250
––– 200
––– -200
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 5mAd
mΩ VGS = 10V, ID = 195A g
V VDS = VGS, ID = 250µA
µA VDS = 40V, VGS = 0V
VDS = 40V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
gfs
Qg
Qgs
Qgd
Qsync
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
290
–––
–––
–––
–––
–––
220
59
75
145
–––
330
–––
–––
–––
S
nC
RG(int)
td(on)
Internal Gate Resistance
Turn-On Delay Time
–––
6.8
59
–––
–––
Ω
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
370
160
190
8920
2360
930
2860
3110
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Effective Output Capacitance (Energy Related)i –––
–––
Effective Output Capacitance (Time Related)h
Conditions
VDS = 10V, ID = 195A
ID = 195A
VDS = 20V
VGS = 10V g
ID = 195A, VDS =0V, VGS = 10V
ns
pF
VDD = 20V
ID = 195A
RG = 2.7Ω
VGS = 10V g
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 32V i
VGS = 0V, VDS = 0V to 32V h
Diode Characteristics
Symbol
Parameter
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
trr
(Body Diode)di
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 195A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements. Refer to App Notes (AN-1140).
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.015mH
RG = 25Ω, IAS = 195A, VGS =10V. Part not recommended for use
above this value.
2
Min. Typ. Max. Units
–––
–––
–––
–––
350c
1390
A
Conditions
MOSFET symbol
showing the
integral reverse
D
G
p-n junction diode.
TJ = 25°C, IS = 195A, VGS = 0V g
TJ = 25°C
VR = 20V,
TJ = 125°C
IF = 195A
di/dt = 100A/µs g
TJ = 25°C
S
––– –––
1.3
V
–––
83
130
ns
–––
78
120
––– 190 290
nC
TJ = 125°C
––– 210 320
–––
4.0
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
„ ISD ≤ 195A, di/dt ≤ 690A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
… Pulse width ≤ 400µs; duty cycle ≤ 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C.
www.irf.com
IRFP4004PbF
1000
1000
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
BOTTOM
100
100
4.5V
4.5V
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
10
10
0.1
1
0.1
10
Fig 1. Typical Output Characteristics
2.0
T J = 175°C
100
T J = 25°C
10
VDS = 10V
≤60µs PULSE WIDTH
1.0
ID = 195A
VGS = 10V
1.5
(Normalized)
RDS(on) , Drain-to-Source On Resistance
ID, Drain-to-Source Current (A)
10
Fig 2. Typical Output Characteristics
1000
1.0
0.5
3
4
5
6
7
8
-60 -40 -20 0 20 40 60 80 100120140160180
VGS , Gate-to-Source Voltage (V)
T J , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
100000
12.0
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
VGS , Gate-to-Source Voltage (V)
ID= 195A
Coss = Cds + Cgd
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Ciss
10000
Coss
Crss
1000
100
10.0
VDS= 32V
VDS= 24V
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
50
100
150
200
250
Q G , Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFP4004PbF
10000
T J = 175°C
1000
100
10
OPERATION IN THIS AREA
LIMITED BY R DS(on)
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 25°C
1
100µsec
100
1msec
10msec
10
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
1
0.1
0.0
0.4
0.8
1.2
1.6
1
2.0
ID, Drain Current (A)
Limited By Package
250
200
150
100
50
0
50
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
350
25
52
Id = 5.0mA
50
48
46
44
42
40
-60 -40 -20 0 20 40 60 80 100120140160180
T C , Case Temperature (°C)
T J , Temperature ( °C )
Fig 10. Drain-to-Source Breakdown Voltage
Fig 9. Maximum Drain Current vs. Case Temperature
2.5
EAS , Single Pulse Avalanche Energy (mJ)
1200
ID
36A
73A
BOTTOM 195A
TOP
1000
2.0
1.5
Energy (µJ)
100
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
300
10
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
1.0
0.5
0.0
800
600
400
200
0
-5
0
5
10
15
20
25
30
35
40
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
DC
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFP4004PbF
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.1
0.20
0.10
τJ
0.05
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τC
τ
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
1E-005
τi (sec)
0.0123
0.000011
0.0585
0.000055
0.1693
0.000917
0.1601
0.008784
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
Ri (°C/W)
R4
R4
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
0.01
100
0.05
0.10
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τj = 25°C and
Tstart = 150°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
300
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 195A
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFP4004PbF
12
IF = 78A
V R = 34V
4.5
10
TJ = 25°C
TJ = 125°C
4.0
3.5
3.0
IRR (A)
VGS(th) , Gate threshold Voltage (V)
5.0
ID = 250µA
ID = 1.0mA
2.5
8
6
ID = 1.0A
2.0
4
1.5
1.0
2
-75 -50 -25 0
25 50 75 100 125 150 175 200
0
200
T J , Temperature ( °C )
600
800
1000
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
14
350
12
IF = 117A
V R = 34V
10
TJ = 25°C
TJ = 125°C
Q RR (A)
IRR (A)
400
diF /dt (A/µs)
8
300
IF = 78A
V R = 34V
250
TJ = 25°C
TJ = 125°C
200
6
150
4
100
2
50
0
100
200
300
400
500
600
0
200
diF /dt (A/µs)
400
600
800
1000
diF /dt (A/µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
Q RR (A)
400
350
IF = 117A
V R = 34V
300
TJ = 25°C
TJ = 125°C
250
200
150
100
0
100
200
300
400
500
600
diF /dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFP4004PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
A
0.01Ω
I AS
Fig 21a. Unclamped Inductive Test Circuit
LD
Fig 21b. Unclamped Inductive Waveforms
VDS
VDS
90%
+
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
td(on)
Fig 22a. Switching Time Test Circuit
tr
td(off)
tf
Fig 22b. Switching Time Waveforms
Id
Vds
Vgs
L
VCC
DUT
0
Vgs(th)
1K
Qgs1 Qgs2
Fig 23a. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 23b. Gate Charge Waveform
7
IRFP4004PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)3(
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 06/08
8
www.irf.com