IRF IRG4PSH71UD

PD - 91686
IRG4PSH71UD
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
• UltraFast switching speed optimized for operating
frequencies 8 to 40kHz in hard switching, 200kHz
in resonant mode soft switching
• Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency
(minimum switching and conduction losses) than
prior generations
• Industry-benchmark Super-247 package with
higher power handling capability compared to
same footprint TO-247
• Creepage distance increased to 5.35mm
UltraFast Copack IGBT
C
VCES = 1200V
VCE(on) typ. = 2.52V
G
@VGE = 15V, IC = 50A
E
n-channel
Benefits
• Generation 4 IGBT's offer highest efficiencies
available
• Maximum power density, twice the power
handling of the TO-247, less space than TO-264
• IGBTs optimized for specific application conditions
• Cost and space saving in designs that require
multiple, paralleled IGBTs
• HEXFREDTM antiparallel Diode minimizes
switching losses and EMI
SUPER - 247
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
IF @ Tc = 100°C
IFM
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulse Collector Current
Clamped Inductive Load current
Gate-to-Emitter Voltage
Diode Continuous Forward Current
Diode Maximum Forward Current
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Storage Temperature Range, for 10 sec.
c
d
Max.
Units
1200
99
50
200
200
±20
70
200
350
140
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
Thermal / Mechanical Characteristics
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case- IGBT
Junction-to-Case- Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Recommended Clip Force
Weight
Min.
Typ.
Max.
Units
–––
–––
–––
–––
20 (2.0)
–––
–––
–––
0.24
–––
0.36
0.36
–––
38
°C/W
6 (0.21)
–––
N (kgf)
g (oz.)
1
5/24/04
IRG4PSH71UD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
e
Collector-to-Emitter Breakdown Voltage
V(BR)CES
1200 —
—
V VGE = 0V, IC = 250µA
V(BR)ECS
Emitter-to-Collector Breakdown Voltage
19
—
—
V VGE = 0V, IC = 1.0A
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
— 0.78 — V/°C VGE = 0V, IC = 1mA
IC = 70A
VGE = 15V
— 2.52 2.70
V
IC = 140A
VCE(on)
See Fig.2, 5
Collector-to-Emitter Saturation Voltage
— 3.17 —
IC = 70A, TJ = 150°C
— 2.68 —
VCE = VGE, IC = 250µA
VGE(th)
Gate Threshold Voltage
3.0
—
6.0
∆VGE(th)/∆TJ Threshold Voltage temp. coefficient
—
-9.2
— mV/°C VCE = VGE, IC = 1.0mA
48
72
—
S VCE = 100V, IC = 70A
gfe
Forward Transconductance
ICES
Zero Gate Voltage Collector Current
—
—
500 µA VGE = 0V, VCE = 1200V
VGE = 0V, VCE = 10V
—
—
2.0
VGE = 0V, VCE = 1200V, TJ = 150°C
—
— 5000
VFM
Diode Forward Voltage Drop
— 2.92 3.9
V IF = 70A See Fig.13
IF = 70A, TJ = 150°C
— 2.88 3.7
IGES
Gate-to-Emitter Leakage Current
—
— ±100 nA VGE = ±20V
f
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
IC = 70A
See Fig.8
nC VCC = 400V
VGE = 15V
IC = 70A, VCC = 960V
ns VGE = 15V, RG = 5.0Ω
Energy losses include "tail"
See Fig. 9, 10, 11, 14
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
ETS
LE
Cies
Coes
Cres
trr
Total Gate Charge (turn-on)
Gate-to-Emitter Charge (turn-on)
Gate-to-Collector Charge (turn-on)
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
380 570
61
24
130 200
46
—
77
—
250 350
220 330
8.8
—
9.4
—
18.2 19.7
43
—
78
—
330
—
480
—
26
—
13
—
6640 —
420
—
60
—
110 170
Irr
Diode Peak Reverse Recovery Current
—
—
180
6.0
270
9.0
A
Qrr
Diode Reverse Recovery Charge
—
—
8.9
350
13
530
nC TJ=25°C
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
—
—
—
TJ=125°C
870 1300
150 230 A/µs TJ=25°C
TJ=125°C
130 200
2
mJ
ns
TJ = 150°C, See Fig. 9, 10, 11, 14
IC = 70A, VCC = 960V
VGE = 15V, RG = 5.0Ω
Energy losses include "tail"
mJ
nH Measured 5mm from package
VGE = 0V
See Fig.7
pF VCC = 30V,
f = 1.0MHz
See Fig
ns TJ=25°C
TJ=125°C
14
TJ=25°C
See Fig
TJ=125°C
IF = 70A
15
VR = 200V
See Fig
16
di/dt = 200A/µs
See Fig
17
www.irf.com
IRG4PSH71UD
40
Duty cycle : 50%
Tj = 125°C
Tsink = 90°C
Gate drive as specified
Turn-on losses include
effects of
reverse recovery
Power Dissipation = 58W
Load Current ( A )
30
20
Square wave:
60% of rated
voltage
10
Ideal diodes
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
1000.0
IC, Collector-to-Emitter Current (A)
IC , Collector-to Emitter Current (A)
1000
100.0
100
T J = 150°C
10
T J = 25°C
1
VGE= 15V
< 60µs PULSE WIDTH
1
2
3
4
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
10.0
T J = 25°C
1.0
VCC = 50V
< 60µs PULSE WIDTH
0.1
0.1
0
T J = 150°C
5
4
6
8
10
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PSH71UD
4.0
100
VCE , Collector-to Emitter Voltage (V)
Maximum DC Collector Current (A)
V GE = 15V
80
60
40
20
VGE = 15V
380µs PULSE WIDTH
IC = 140A
3.5
3.0
IC = 70A
2.5
IC = 35A
2.0
1.5
0
25
50
75
100
125
-60 -40 -20
150
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
T J , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Collector-to-Emitter Voltage vs.
Junction Temperature
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.01
0.20
0.10
0.05
0.02
0.01
τJ
0.001
0.0001
SINGLE PULSE
( THERMAL RESPONSE )
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τC
τ
τ2
Ri (°C/W) τi (sec)
0.253
0.009159
0.1057
0.038041
Ci= τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1E-005
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PSH71UD
VGE = 0V,
f = 1 MHZ
C ies = C ge + Cgc , C ce
C res = C gc
C, Capacitance (pF)
12000
20
C oes = C ce + C gc
10000
Cies
8000
6000
Coes
4000
Cres
2000
VCC = 400V
IC = 70A
SHORTED
VGE, Gate-to-Emitter Voltage (V)
14000
0
16
12
8
4
0
1
10
100
1000
0
100
VCE, Collector-to-Emitter Voltage (V)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
300
400
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
1000
22
RG = 5.0Ω
VGE = 15V
VCC = 960V
VCC = 960V
VGE = 15V
Total Switching Losses (mJ)
T J = 25°C
Switching Losses (mJ)
200
QG, Total Gate Charge (nC)
I C = 70A
20
18
100
I C = 140A
I C = 70A
10
I C = 35A
1
16
0
10
20
30
RG, Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs.
Gate Resistance
www.irf.com
40
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J, Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PSH71UD
1000
70
VGE = 20V
TJ = 125°
RG = 5.0Ω
Total Switching Losses (mJ)
60
IC, Collector-to-Emitter Current (A)
TJ = 150°C
VGE = 15V
VCC = 960V
50
40
30
20
10
100
SAFE OPERATING AREA
10
1
0
20
40
60
80
100
120
140
160
1
10
100
1000
10000
VCE, Collector-to-Emitter Voltage (V)
IC, Collector Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Instantaneous Forward Current - I F ( A )
1000
100
10
T J = 150°C
T J = 25°C
1
0.1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Forward Voltage Drop - V F ( V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PSH71UD
400
100
IF = 140A
IF = 70A
IF = 35A
80
IRRM - (A)
trr - (ns)
300
200
60
IF = 140A
IF = 70A
IF = 35A
40
100
VR = 200V
TJ = 125°C
20
VR = 200V
TJ = 125°C
TJ = 25°C
TJ = 25°C
0
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
dif / dt - (A / µs)
Fig. 15 - Typical Recovery Current vs. dif/dt
12000
10000
IF = 140A
1700
IF = 70A
IF = 35A
IF = 140A
IF = 70A
di(rec)M/dt - (A)
Qrr - (nC)
8000
6000
1300
IF = 35A
900
4000
500
2000
VR = 200V
T J = 125°C
VR = 200V
T J = 125°C
T J = 25°C
0
T J = 25°C
100
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4PSH71UD
Same type
device as
D.U.T.
90%
80%
of Vce
10%
Vge
430µF
VC
D.U.T.
90%
td(off)
10%
IC 5%
tf
tr
t d(on)
t=5µs
Eon
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Eoff
Ets= (Eon +Eoff )
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Ic
Qrr =
DUT VOLTAGE
AND CURRENT
Vce
10% Ic
90% Ic
tr
td(on)
Ipk
Vpk
10% Irr
Vcc
Irr
Ic
DIODE RECOVERY
WAVEFORMS
5% Vce
t1
t2
Eon = Vce ie dt
t1
∫
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
+Vg
tx
10% Vcc
Vcc
trr
id dt
tx
t4
Erec = Vd id dt
t3
∫
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4PSH71UD
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
0 - 480V
480V
4 X IC @25°C
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4PSH71UD
Super-247™ (TO-274AA) Package Outline
0.13 [.005]
16.10 [.632]
15.10 [.595]
2X R 3.00 [.118]
2.00 [.079]
5.50 [.216]
4.50 [.178]
A
0.25 [.010]
B A
13.90 [.547]
13.30 [.524]
2.15 [.084]
1.45 [.058]
1.30 [.051]
0.70 [.028]
4
20.80 [.818]
19.80 [.780]
16.10 [.633]
15.50 [.611]
4
C
1
2
3
B
14.80 [.582]
13.80 [.544]
5.45 [.215]
2X
Ø 1.60 [.063]
MAX.
4.25 [.167]
3.85 [.152]
3X
1.60 [.062]
1.45 [.058]
0.25 [.010]
B A
3X
E
E
1.30 [.051]
1.10 [.044]
2.35 [.092]
1.65 [.065]
S ECT ION E-E
NOT ES:
1. DIMENS IONING AND T OLERANCING PER AS ME Y14.5M-1994.
2. DIMENSIONS ARE SHOWN IN MILLIMET ERS [INCHES ]
3. CONT ROLLING DIMENS ION: MILLIMET ER
4. OUT LINE CONFORMS T O JEDEC OUT LINE T O-274AA
LEAD AS SIGNMENT S
MOSFET
1 - GAT E
2 - DRAIN
3 - S OURCE
4 - DRAIN
Super-247™ (TO-274AA) Part Marking Information
EXAMPLE: THIS IS AN IRFPS37N50A WITH
ASSEMBLY LOT CODE A8B9
INTERNATIONAL RECTIFIER
LOGO
IGBT
1 - GAT E
2 - COLLECT OR
3 - EMIT T ER
4 - COLLECT OR
PART NUMBER
IRFPS37N50A
A8B9
0020
ASSEMBLY LOT CODE
TOP
DATE CODE
(YYWW)
YY = YEAR
WW = WEEK
Super TO-247™ package is not recommended for Surface Mount Application.
Notes:
 Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚ VCC=80%(VCES), VGE=20V, L=10µH, RG= 5.0 Ω (figure 13a)
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs, single shot.
… Repetitive rating; pulse width limited by maximumjunction temperature.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.5/04
10
www.irf.com