IRF IRF4905LPBF

PD - 97034
IRF4905SPbF
IRF4905LPbF
HEXFET® Power MOSFET
Features
O
O
O
O
O
O
O
Advanced Process Technology
Ultra Low On-Resistance
150°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Some Parameters Are Differrent from
IRF4905S
Lead-Free
D
VDSS = -55V
RDS(on) = 20mΩ
G
ID = -42A
S
Description
D
Features of this design are a 150°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features
combine to make this design an extremely efficient
and reliable device for use in a wide variety of other
applications.
D
G
D
S
G
D2Pak
IRF4905SPbF
Absolute Maximum Ratings
G
D
S
Gate
Drain
Source
Parameter
Max.
-70
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
-44
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)
-42
Pulsed Drain Current
c
Linear Derating Factor
Gate-to-Source Voltage
EAS (Thermally limited) Single Pulse Avalanche Energy
d
EAS (Tested )
Single Pulse Avalanche Energy Tested Value
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
TJ
Operating Junction and
TSTG
Storage Temperature Range
c
h
g
Mounting Torque, 6-32 or M3 screw
Thermal Resistance
170
W
1.3
W/°C
± 20
V
140
mJ
790
See Fig.12a, 12b, 15, 16
A
-55 to + 150
°C
300 (1.6mm from case )
y
i
Junction-to-Case
RθJA
Junction-to-Ambient (PCB Mount, steady state)
y
10 lbf in (1.1N m)
Parameter
RθJC
www.irf.com
A
mJ
Soldering Temperature, for 10 seconds
j
Units
-280
PD @TC = 25°C Power Dissipation
VGS
S
TO-262
IRF4905LPbF
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
IDM
D
ij
Typ.
Max.
–––
0.75
–––
40
Units
1
8/5/05
IRF4905S/L
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
VGS = 0V, ID = -250µA
V(BR)DSS
Drain-to-Source Breakdown Voltage
-55
–––
–––
∆V(BR)DSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
-0.054
–––
V/°C Reference to 25°C, ID = -1mA
RDS(on)
Static Drain-to-Source On-Resistance
–––
–––
20
mΩ
VGS = -10V, ID = -42A
VGS(th)
Gate Threshold Voltage
-2.0
–––
-4.0
V
VDS = VGS, ID = -250µA
gfs
Forward Transconductance
19
–––
–––
S
VDS = -25V, ID = -42A
IDSS
Drain-to-Source Leakage Current
–––
–––
-25
µA
VDS = -55V, VGS = 0V
–––
–––
-200
–––
–––
100
IGSS
Gate-to-Source Forward Leakage
V
e
VDS = -44V, VGS = 0V, TJ = 125°C
nA
VGS = -20V
Gate-to-Source Reverse Leakage
–––
–––
-100
VGS = 20V
Qg
Total Gate Charge
–––
120
180
ID = -42A
Qgs
Gate-to-Source Charge
–––
32
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
53
–––
td(on)
Turn-On Delay Time
–––
20
–––
VDD = -28V
tr
Rise Time
–––
99
–––
ID = -42A
td(off)
Turn-Off Delay Time
–––
51
–––
tf
Fall Time
–––
64
–––
LS
Internal Source Inductance
–––
7.5
–––
Ciss
Input Capacitance
–––
3500
–––
Coss
Output Capacitance
–––
1250
–––
Crss
Reverse Transfer Capacitance
–––
450
–––
Coss
Output Capacitance
–––
4620
–––
Coss
Output Capacitance
–––
940
–––
VGS = 0V, VDS = -44V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to -44V
nC
VDS = -44V
e
VGS = -10V
ns
RG = 2.6 Ω
e
VGS = -10V
nH
Between lead,
and center of die contact
Coss eff.
Effective Output Capacitance
–––
1530
VGS = 0V
VDS = -25V
pF
ƒ = 1.0MHz
VGS = 0V, VDS = -1.0V, ƒ = 1.0MHz
f
Source-Drain Ratings and Characteristics
Parameter
IS
Continuous Source Current
Min. Typ. Max. Units
–––
–––
-42
–––
–––
-280
–––
-1.3
(Body Diode)
ISM
Pulsed Source Current
c
A
showing the
integral reverse
p-n junction diode.
(Body Diode)
VSD
Diode Forward Voltage
–––
trr
Reverse Recovery Time
–––
61
Qrr
Reverse Recovery Charge
–––
150
ton
Forward Turn-On Time
2
Conditions
MOSFET symbol
e
V
TJ = 25°C, IS = -42A, VGS = 0V
92
ns
TJ = 25°C, IF = -42A, VDD = -28V
220
nC
di/dt = -100A/µs
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRF4905S/L
1000
1000
100
BOTTOM
TOP
-ID, Drain-to-Source Current (A)
-ID, Drain-to-Source Current (A)
TOP
VGS
-15V
-10V
-8.0V
-7.0V
-6.0V
-5.5V
-5.0V
-4.5V
10
-4.5V
≤ 60µs PULSE WIDTH
Tj = 25°C
100
BOTTOM
10
-4.5V
≤ 60µs PULSE WIDTH
Tj = 150°C
1
1
0.1
1
10
100
1000
0.1
1
10
100
-VDS , Drain-to-Source Voltage (V)
-VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.0
1000
40
Gfs, Forward Transconductance (S)
TJ = 25°C
-ID, Drain-to-Source Current(Α)
VGS
-15V
-10V
-8.0V
-7.0V
-6.0V
-5.5V
-5.0V
-4.5V
TJ = 150°C
100.0
10.0
1.0
VDS = -25V
≤ 60µs PULSE WIDTH
TJ = 25°C
30
TJ = 150°C
20
10
VDS = -10V
380µs PULSE WIDTH
0.1
3
4
5
6
7
8
9
10
11 12
13
-VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
14
0
0
20
40
60
80
-ID, Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
Vs. Drain Current
3
IRF4905S/L
7000
-VGS, Gate-to-Source Voltage (V)
6000
C, Capacitance (pF)
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
5000
Ciss
4000
3000
Coss
2000
1000
Crss
ID= -42A
12
8
4
0
0
1
10
0
100
1000.0
1000
-ID, Drain-to-Source Current (A)
-ISD , Reverse Drain Current (A)
80
120
160
200
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100.0
TJ = 150°C
10.0
TJ = 25°C
1.0
40
QG Total Gate Charge (nC)
-VDS , Drain-to-Source Voltage (V)
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100
1msec
100µsec
10msec
LIMITED BY PACKAGE
10
DC
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
1
0.1
0.0
0.4
0.8
1.2
1.6
-VSD , Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
VDS = -44V
VDS= -28V
VDS= -11V
16
2.0
0
1
10
100
-VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF4905S/L
80
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.0
-ID , Drain Current (A)
LIMITED BY PACKAGE
60
40
20
0
25
50
75
100
125
ID = -42A
VGS = -10V
1.5
1.0
0.5
150
-60 -40 -20
TC , Case Temperature (°C)
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
Vs. Temperature
Fig 9. Maximum Drain Current Vs.
Case Temperature
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τ2
Ci= τi/Ri
Ci τi/Ri
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.1165 0.000068
0.3734
0.002347
0.2608
0.014811
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF4905S/L
L
VDS
RG
-20V
IAS
VDD
A
DRIVER
0.01Ω
tp
15V
Fig 12a. Unclamped Inductive Test Circuit
I AS
EAS, Single Pulse Avalanche Energy (mJ)
600
D.U.T
ID
-17A
-30A
BOTTOM -42A
TOP
500
400
300
200
100
0
25
50
75
100
125
150
Starting TJ, Junction Temperature (°C)
tp
V(BR)DSS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10V
3.6
QGD
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+VDS
-VGS(th) Gate threshold Voltage (V)
QGS
3.2
ID = -250µA
2.8
2.4
2.0
-75
VGS
-50
-25
0
25
50
75
100
125
150
TJ , Temperature ( °C )
-3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage Vs. Temperature
www.irf.com
IRF4905S/L
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
0.05
10
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
160
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = -42A
120
80
40
0
25
50
75
100
125
Starting TJ , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
150
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRF4905S/L
D.U.T**
Driver Gate Drive
ƒ
+
‚
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
**
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
D=
Period
P.W.
+
Reverse Polarity of D.U.T for P-Channel
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for P-Channel
HEXFET® Power MOSFETs
RD
VDS
VGS
D.U.T.
RG
-
+
VDD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
td(on)
tr
t d(off)
tf
VGS
10%
90%
VDS
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRF4905S/L
D2Pak Package Outline (Dimensions are shown in millimeters (inches))
D2Pak Part Marking Information
T HIS IS AN IRF530S WIT H
LOT CODE 8024
AS S EMBLED ON WW 02, 2000
IN T HE AS S EMBLY LINE "L"
Note: "P" in assembly line
position indicates "Lead-Free"
OR
INT ERNAT IONAL
RECT IFIER
LOGO
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
AS S EMBLY
LOT CODE
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
www.irf.com
PART NUMBER
F530S
PART NUMBER
F530S
DAT E CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
YEAR 0 = 2000
WEEK 02
A = AS S EMBLY S IT E CODE
9
IRF4905S/L
TO-262 Package Outline (Dimensions are shown in millimeters (inches))
IGBT
1- GATE
2- COLLECTOR
3- EMITTER
4- COLLECTOR
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
AS SEMBLED ON WW 19, 1997
IN T HE AS SEMBLY LINE "C"
Note: "P" in ass embly line
pos ition indicates "Lead-Free"
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
OR
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
10
PART NUMBER
DAT E CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
YEAR 7 = 1997
WEEK 19
A = AS SEMBLY SIT E CODE
www.irf.com
IRF4905S/L
D2Pak Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
3
4
Notes:
… Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
max. junction temperature. (See fig. 11).
avalanche performance.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.16mH † This value determined from sample failure population. 100%
RG = 25Ω, IAS = -42A, VGS =-10V. Part not
tested to this value in production.
recommended for use above this value.
‡ This is applied to D2Pak, when mounted on 1" square PCB (FRƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
4 or G-10 Material). For recommended footprint and soldering
„ Coss eff. is a fixed capacitance that gives the
techniques refer to application note #AN-994.
same charging time as Coss while VDS is rising
ˆ Rθ is measured at TJ approximately 90°C
from 0 to 80% VDSS .
 Repetitive rating; pulse width limited by
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 08/05
www.irf.com
11