IRF IRLI3615

PD - 94390
IRLI3615
HEXFET® Power MOSFET
l
l
l
l
l
l
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Fully Avalanche Rated
D
VDSS = 150V
RDS(on) = 0.085 Ω
G
ID = 14A…
S
Description
Fifth Generation HEXFETs from International Rectifier utilize advanced
processing techniques to achieve extremely low on-resistance per silicon area.
This benefit, combined with the fast switching speed and ruggedized device
design that HEXFET Power MOSFETs are well known for, provides the
designer with an extremely efficient and reliable device for use in a wide variety
of applications.
The TO-220 Fullpak eliminates the need for additional insulating hardware in
commercial-industrial applications. The moulding compound used provides a
high isolation capability and a low thermal resistance between the tab and
external heatsink. This isolation is equivalent to using a 100 micron mica barrier
with standard TO-220 product. The Fullpak is mounted to a heatsink using a
single clip or by a single screw fixing.
TO-220 FULLPAK
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 srew
Max.
Units
14 …
9.8
56
45
0.30
±16
340
8.4
4.5
5.0
-55 to + 175
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθJA
www.irf.com
Junction-to-Case
Junction-to-Ambient
Typ.
Max.
Units
–––
–––
3.3
65
°C/W
1
01/30/02
IRLI3615
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
∆V(BR)DSS/∆TJ
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
gfs
Gate Threshold Voltage
Forward Transconductance
IDSS
Drain-to-Source Leakage Current
V(BR)DSS
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
LD
Internal Drain Inductance
LS
Internal Source Inductance
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
IGSS
Min. Typ. Max. Units
Conditions
150 ––– –––
V
VGS = 0V, ID = 250µA
––– 0.18 ––– V/°C Reference to 25°C, ID = 1mA
––– ––– 0.085
VGS = 10V, ID = 8.4A „
––– ––– 0.095
Ω
VGS = 5.0V, ID = 8.4A „
1.0
––– 2.0
V
VDS = VGS, ID = 250µA
14
––– –––
S
VDS = 50V, ID = 8.4A
––– –––
25
VDS = 150V, VGS = 0V
µA
––– ––– 250
VDS = 120V, VGS = 0V, TJ = 150°C
––– ––– 100
VGS = 16V
nA
––– ––– -100
VGS = -16V
––– ––– 140
ID = 8.4A
––– ––– 9.5
nC
VDS = 120V
––– ––– 53
VGS = 10V, See Fig. 6 and 13 „
–––
8.3 –––
VDD = 75V
–––
20 –––
ID = 8.4A
ns
––– 110 –––
RG = 6.2Ω, VGS = 10V
–––
53 –––
RD = 8.9Ω, See Fig. 10 „
Between lead,
–––
4.5
–––
6mm (0.25in.)
nH
from package
––– 7.5 –––
G
and center of die contact
––– 1600 –––
VGS = 0V
––– 290 –––
pF
VDS = 25V
––– 150 –––
ƒ = 1.0MHz, See Fig. 5
D
S
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Q rr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 14…
showing the
A
G
integral reverse
––– –––
56
S
p-n junction diode.
––– ––– 1.3
V
TJ = 25°C, IS = 8.4A, VGS = 0V „
––– 180 270
ns
TJ = 25°C, IF = 8.4A
––– 1130 1700 nC di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
‚ Starting TJ = 25°C, L = 9.5mH
RG = 25Ω, I AS = 8.4A. (See Figure 12)
ƒ ISD ≤ 8.4A, di/dt ≤ 510A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C.
2
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
… Caculated continuous current based on maximum allowable
junction temperature; for recommended current-handling of the
package refer to Design Tip # 93-4.
www.irf.com
IRLI3615
100
100
VGS
15V
10V
7.0V
5.5V
4.5V
4.0V
3.5V
BOTTOM 2.7V
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
10
2.7V
20µs PULSE WIDTH
T = 25 C
°
J
1
0.1
1
10
10
2.7V
100
TJ = 25 ° C
TJ = 175 ° C
10
V DS = 50V
20µs PULSE WIDTH
6.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
7.0
R DS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
3.5
5.0
10
100
Fig 2. Typical Output Characteristics
100
4.0
°
J
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
3.0
20µs PULSE WIDTH
T = 175 C
1
0.1
VDS , Drain-to-Source Voltage (V)
1
2.0
VGS
15V
10V
7.0V
5.5V
4.5V
4.0V
3.5V
BOTTOM 2.7V
TOP
TOP
ID = 14A
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRLI3615
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
C, Capacitance(pF)
10000
Ciss
1000
Coss
Crss
100
20
VGS , Gate-to-Source Voltage (V)
100000
10
ID = 8.4A
VDS = 120V
VDS = 75V
VDS = 30V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
1
10
100
0
1000
20
40
60
80
100
120
140
QG , Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
100
10
TJ = 175 ° C
1
TJ = 25 ° C
0.1
0.2
V GS = 0 V
0.4
0.6
0.8
1.0
1.2
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
1.4
100µs
10
1ms
1
10ms
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRLI3615
14
RD
VDS
VGS
12
D.U.T.
I D , Drain Current (A)
RG
+
-VDD
10
10V
8
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
6
Fig 10a. Switching Time Test Circuit
4
VDS
2
90%
0
25
50
75
100
125
150
175
TC , Case Temperature ( ° C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
PDM
0.1
0.02
0.01
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRLI3615
1 5V
L
VDS
D .U .T
RG
IA S
20V
D R IV E R
+
V
- DD
0 .0 1 Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
A
EAS , Single Pulse Avalanche Energy (mJ)
1000
TOP
800
BOTTOM
ID
3.4A
5.9A
8.4A
600
400
200
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature ( °C)
V (B R )D SS
tp
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
IAS
Current Regulator
Same Type as D.U.T.
Fig 12b. Unclamped Inductive Waveforms
50KΩ
QG
12V
.2µF
.3µF
10 V
QGS
+
V
- DS
VGS
VG
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
6
D.U.T.
QGD
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
www.irf.com
IRLI3615
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

•
•
•
•
RG
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
Period
D=
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFETS
www.irf.com
7
IRLI3615
Package Outline
TO-220 Fullpak Outline
Dimensions are shown in millimeters (inches)
1 0 .6 0 (.4 1 7 )
1 0 .4 0 (.4 0 9 )
ø
3 .4 0 (.1 3 3 )
3 .1 0 (.1 2 3 )
4 .8 0 (.1 8 9 )
4 .6 0 (.1 8 1 )
-A 3 .7 0 (.1 4 5 )
3 .2 0 (.1 2 6 )
1 6 .0 0 (.6 3 0 )
1 5 .8 0 (.6 2 2 )
2 .8 0 (.1 1 0 )
2 .6 0 (.1 0 2 )
L E A D A S S IG N M E N T S
1 - G A TE
2 - D R A IN
3 - S O U RC E
7 .10 (.2 8 0 )
6 .70 (.2 6 3 )
1 .1 5 (.0 4 5 )
M IN.
N O TE S :
1 D IM E N S IO N ING & T O L E R A N C ING
P E R A N S I Y 1 4 .5 M , 1 9 8 2
1
2
3
2 C O N T R O L L IN G D IM E N S ION : IN C H .
3.3 0 (.1 30 )
3.1 0 (.1 22 )
-B -
1 3 .7 0 (.5 4 0 )
1 3 .5 0 (.5 3 0 )
C
A
3X
1 .4 0 (.0 5 5)
1 .0 5 (.0 4 2)
0 .9 0 (.0 35 )
3 X 0 .7 0 (.0 28 )
0 .2 5 (.0 1 0 )
3X
M
A M
0.4 8 (.0 1 9 )
0.4 4 (.0 1 7 )
2 .8 5 (.1 1 2 )
2 .6 5 (.1 0 4 )
B
2 .5 4 (.1 0 0 )
2X
D
B
M IN IM U M C R E E P A G E
D IS T A NC E B E TW E E N
A -B -C -D = 4.8 0 (.1 8 9 )
Part Marking Information
TO-220 Fullpak
EXAMPLE: T HIS IS AN IRFI840G
WIT H ASSEMBLY
LOT CODE 3432
ASSEMBLED ON WW 24 1999
IN T HE ASSEMBLY LINE "K"
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
IRFI840G
924K
34
ASSEMBLY
LOT CODE
32
DAT E CODE
YEAR 9 = 1999
WEEK 24
LINE K
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.01/02
8
www.irf.com