IRF IRG4IBC30FD

PD- 91751A
IRG4IBC30FD
Fast CoPack IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
•
•
•
•
Very Low 1.59V votage drop
2.5kV, 60s insulation voltage …
4.8 mm creapage distance to heatsink
Fast: Optimized for medium operating
frequencies ( 1-5 kHz in hard switching, >20
kHz in resonant mode).
• IGBT co-packaged with HEXFREDTM ultrafast,
ultrasoft recovery antiparallel diodes
• Tighter parameter distribution
• Industry standard Isolated TO-220 FullpakTM
outline
VCES = 600V
VCE(on) typ. = 1.59V
G
@VGE = 15V, IC = 17A
E
n-ch an nel
Benefits
• Simplified assembly
• Highest efficiency and power density
• HEXFREDTM antiparallel Diode minimizes
switching losses and EMI
TO-220 FULLPAK
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
Visol
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
RMS Isolation Voltage, Terminal to Case…
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600
20.3
11
120
120
8.5
120
2500
± 20
45
18
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
–––
–––
–––
2.0 (0.07)
2.8
4.1
65
–––
Units
°C/W
g (oz)
1
3/26/99
IRG4IBC30FD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Collector-to-Emitter Breakdown Voltageƒ
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
VCE(on)
Collector-to-Emitter Saturation Voltage
V(BR)CES
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Min.
600
–––
–––
–––
–––
Gate Threshold Voltage
3.0
Temperature Coeff. of Threshold Voltage –––
Forward Transconductance
„
6.1
Zero Gate Voltage Collector Current
–––
–––
Diode Forward Voltage Drop
–––
–––
Gate-to-Emitter Leakage Current
–––
Typ.
–––
0.69
1.59
1.99
1.70
–––
-11
10
–––
–––
1.4
1.3
–––
Max. Units
Conditions
–––
V
VGE = 0V, IC = 250µA
––– V/°C VGE = 0V, I C = 1.0mA
1.8
IC = 17A
VGE = 15V
–––
V
IC = 31A
See Fig. 2, 5
–––
IC = 17A, TJ = 150°C
6.0
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 250µA
–––
S
VCE = 100V, IC = 17A
250
µA
VGE = 0V, VCE = 600V
2500
VGE = 0V, VCE = 600V, TJ = 150°C
1.7
V
IC = 12A
See Fig. 13
1.6
IC = 12A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
t rr
I rr
Q rr
di(rec)M/dt
2
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Diode Peak Reverse Recovery Current –––
–––
Diode Reverse Recovery Charge
–––
–––
Diode Peak Rate of Fall of Recovery
–––
During tb
–––
Typ.
51
7.9
19
42
26
230
160
0.63
1.39
2.02
42
27
310
310
3.2
7.5
1100
74
14
42
80
3.5
5.6
80
220
180
120
Max. Units
Conditions
77
IC = 17A
12
nC VCC = 400V
See Fig. 8
28
VGE = 15V
–––
TJ = 25°C
–––
ns
IC = 17A, VCC = 480V
350
VGE = 15V, RG = 23Ω
230
Energy losses include "tail" and
–––
diode reverse recovery.
–––
mJ See Fig. 9, 10, 11, 18
3.9
–––
TJ = 150°C, See Fig. 9, 10, 11, 18
–––
ns
IC = 17A, VCC = 480V
–––
VGE = 15V, RG = 23Ω
–––
Energy losses include "tail" and
–––
mJ diode reverse recovery.
–––
nH Measured 5mm from package
–––
VGE = 0V
–––
pF
VCC = 30V
See Fig. 7
–––
ƒ = 1.0MHz
60
ns
TJ = 25°C See Fig.
120
TJ = 125°C
14
IF = 12A
6.0
A
TJ = 25°C See Fig.
10
TJ = 125°C
15
VR = 200V
180
nC TJ = 25°C See Fig.
600
TJ = 125°C
16
di/dt 200A/µs
––– A/µs TJ = 25°C See Fig.
–––
TJ = 125°C
17
www.irf.com
IRG4IBC30FD
16
LOAD CURRENT (A)
F o r b o th :
D u ty c y c le : 5 0 %
TJ = 1 2 5 ° C
T sink = 9 0 ° C
G a te d riv e a s s p e c ifie d
P o w e r D is s ip a tio n = 13 W
12
S q u a re w a v e :
6 0% of rate d
volta ge
8
I
4
Id e a l d io d e s
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = I RMS of fundamental)
1000
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
1000
TJ = 25°C
100
T J = 150°C
10
V G E = 15V
20µs PULSE WIDTH
1
1
A
10
VC E , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
100
TJ = 150°C
T J = 25°C
10
V C C = 50V
5µs PULSE WIDTH A
1
5
6
7
8
9
10
11
12
13
VG E , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4IBC30FD
25
V C E , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current(A)
2.5
20
15
10
5
V G E = 15V
80µs PULSE WIDTH
I C = 34A
2.0
I C = 17A
1.5
I C = 8.5A
0
25
50
75
100
125
150
Fig. 4 - Maximum Collector Current vs. Case
Temperature
A
1.0
-60
TC , Case Temperature ( °C)
-40
-20
0
20
40
60
80
100 120 140 160
T J , Junction Temperature (°C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
0.00001
P DM
0.02
t1
0.01
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4IBC30FD
2000
20
C, Capacitance (pF)
SHORTED
Coes = Cce + Cgc
1600
C ies
1200
800
C oes
400
C res
A
0
1
VC E = 400V
I C = 17A
f = 1 MHz
Cies = Cge + Cgc + Cce
Cres = Cce
V G E , Gate-to-Emitter Voltage (V)
VGE = 0V
10
16
12
8
4
A
0
100
0
10
V C E , Collector-to-Emitter Voltage (V)
2.10
2.00
1.90
A
1.80
20
40
R G, Gate Resistance (
60
Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
50
60
10
= 480V
= 15V
= 25°C
= 17A
0
40
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Total Switchig Losses (mJ)
Total Switchig Losses (mJ)
VC C
VG E
TJ
IC
30
Q g , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
2.20
20
80
I C = 34A
I C = 17A
1
0.1
I C = 8.5A
R G = 23 Ω
V G E = 15V
V C C = 480V
-60
-40
-20
0
A
20
40
60
80
100
120
140
160
TJ , Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4IBC30FD
=
=
=
=
1000
23 Ω
150°C
480V
15V
I C , C ollecto r-to -Em itter Cu rrent (A)
RG
TJ
V CC
V GE
6.0
4.0
2.0
A
0.0
0
10
20
30
VGGE E= 2 0V
T J = 12 5 °C
100
S A FE O P E R A TIN G A R E A
10
1
40
1
10
100
1000
V C E , Collecto r-to-E m itter V oltage (V )
I C , Collector-to-Emitter Current (A)
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
100
In s ta n ta n e o u s F o rw a rd C u rre n t - I F (A )
Total Switchig Losses (mJ)
8.0
TJ = 1 50 °C
TJ = 1 25 °C
10
TJ = 25 °C
1
0.4
0.8
1.2
1.6
2.0
2.4
F o rw a rd V o lta g e D ro p - V F M (V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4IBC30FD
100
160
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
120
I IR R M - (A )
t rr - (ns)
I F = 24 A
I F = 1 2A
80
I F = 6 .0 A
I F = 24 A
I F = 12 A
10
I F = 6.0 A
40
0
100
d i f /d t - (A /µ s)
1
100
1000
1000
d i f /d t - (A /µ s )
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
600
10000
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
d i(re c )M /d t - (A /µ s)
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
Q R R - (n C )
400
I F = 2 4A
I F = 1 2A
200
1000
IF = 6.0 A
I F = 12 A
100
I F = 2 4A
I F = 6.0 A
0
100
d i f /d t - (A /µ s)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
1000
10
100
1000
d i f /d t - (A /µ s)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4IBC30FD
Same ty pe
device as
D .U.T.
90%
10%
Vge
430µF
80%
of Vce
VC
D .U .T.
90%
t d(off)
10%
IC 5%
tf
tr
t d(on)
t=5µs
Eon
Fig. 18a - Test Circuit for Measurement of
Eoff
E ts = (Eon +Eoff )
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T .
1 0 % +V g
trr
Q rr =
Ic
∫
trr
id d t
tx
+Vg
tx
10% Vcc
1 0 % Irr
V cc
D UT VO LTAG E
AN D CU RRE NT
Vce
V pk
Irr
Vcc
1 0 % Ic
Ip k
9 0 % Ic
Ic
D IO D E R E C O V E R Y
W A V E FO R M S
tr
td (o n )
5% Vce
t1
∫
t2
E o n = V ce ie d t
t1
t2
E re c =
D IO D E R E V E R S E
REC OVERY ENER GY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
t4
V d id d t
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4IBC30FD
V g G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
480V
4 X IC @25°C
0 - 480V
50V
6000µ F
100 V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4IBC30FD
Notes:
 Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚ VCC=80%(VCES), VGE=20V, L=10µH, RG = 23Ω (figure 19)
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs, single shot.
… t = 60s, f = 60Hz
Case Outline — TO-220 FULLPAK
1 0 .6 0 (.4 1 7 )
1 0 .4 0 (.4 0 9 )
ø
3 .4 0 (.1 3 3 )
3 .1 0 (.1 2 3 )
4 .8 0 (.1 8 9 )
4 .6 0 (.1 8 1 )
-A 3 .7 0 (.1 4 5 )
3 .2 0 (.1 2 6 )
1 6 .0 0 (.6 3 0 )
1 5 .8 0 (.6 2 2 )
2 .8 0 (.1 10 )
2 .6 0 (.1 02 )
L E A D A S S IG N M E N T S
LEAD ASSIGMENTS
1 - GATE
1- GATE
2 - D R A IN
2- COLLECTOR
3 - S OU R CE
3- EMITTER
7 .10 (.2 8 0 )
6 .70 (.2 6 3 )
1 .1 5 (.0 4 5 )
M IN .
NOTES:
1 D IM E N S IO N IN G & T O L E R A N C IN G
P E R A N S I Y 1 4 .5 M , 1 9 8 2
1
2
3
2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 .3 0 (.1 3 0 )
3 .1 0 (.1 2 2 )
-B -
1 3 .7 0 (.5 4 0 )
1 3 .5 0 (.5 3 0 )
C
A
1 .4 0 (.0 5 5 )
3X
1 .0 5 (.0 4 2 )
0 .9 0 (.0 3 5 )
3 X 0 .7 0 (.0 2 8 )
0 .2 5 (.0 1 0)
2 .5 4 (.1 0 0 )
2X
3X
M
A M
B
0 .4 8 (.0 1 9 )
0 .4 4 (.0 1 7 )
2 .8 5 (.1 1 2 )
2 .6 5 (.1 0 4 )
D
B
M IN IM U M C R E E P A G E
D IS T A N C E B E T W E E N
A -B -C -D = 4 .8 0 (.1 89 )
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936
http://www.irf.com/
Data and specifications subject to change without notice. 3/99
10
www.irf.com