IRF IRF1607PBF

PD -95487
IRF1607PbF
AUTOMOTIVE MOSFET
Typical Applications
O
O
O
O
42 Volts Automotive Electrical Systems
Electrical Power Steering (EPS)
Integrated Starter Alternator
Lead-Free
HEXFET® Power MOSFET
D
VDSS = 75V
Benefits
O
O
O
O
O
O
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Automotive [Q101] Qualified
RDS(on) = 0.0075Ω
G
ID = 142A†
S
Description
Specifically designed for Automotive applications, this
Stripe Planar design of HEXFET® Power MOSFETs
utilizes the lastest processing techniques to achieve
extremely low on-resistance per silicon area. Additional
features of this HEXFET power MOSFET are a 175°C
junction operating temperature, fast switching speed
and improved repetitive avalanche rating. These benefits
combine to make this design an extremely efficient and
reliable device for use in Automotive applications and a
wide variety of other applications.
TO-220AB
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy‡
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
Max.
Units
142†
100†
570
380
2.5
± 20
1250
See Fig.12a, 12b, 15, 16
5.2
-55 to + 175
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
www.irf.com
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Typ.
Max.
Units
–––
0.50
–––
0.40
–––
62
°C/W
1
06/30/04
IRF1607PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
75
–––
–––
2.0
79
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
IDSS
Drain-to-Source Leakage Current
LD
Internal Drain Inductance
–––
LS
Internal Source Inductance
–––
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance …
–––
–––
–––
–––
–––
–––
V(BR)DSS
∆V(BR)DSS/∆TJ
IGSS
Typ. Max. Units
Conditions
––– –––
V
VGS = 0V, ID = 250µA
0.086 ––– V/°C Reference to 25°C, ID = 1mA
0.00580.0075 Ω
VGS = 10V, ID = 85A „
––– 4.0
V
VDS = 10V, ID = 250µA
––– –––
S
VDS = 25V, ID = 85A
––– 20
VDS = 75V, VGS = 0V
µA
––– 250
VDS = 60V, VGS = 0V, TJ = 150°C
––– 200
VGS = 20V
nA
––– -200
VGS = -20V
210 320
ID = 85A
45
68
nC
VDS = 60V
73 110
VGS = 10V
22 –––
VDD = 38V
130 –––
ID = 85A
ns
84 –––
RG = 1.8Ω
86 –––
VGS = 10V „
D
Between lead,
4.5 –––
6mm (0.25in.)
nH
G
from package
7.5 –––
and center of die contact
S
7750 –––
VGS = 0V
1230 –––
pF
VDS = 25V
310 –––
ƒ = 1.0MHz, See Fig. 5
5770 –––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
790 –––
VGS = 0V, VDS = 60V, ƒ = 1.0MHz
1420 –––
VGS = 0V, VDS = 0V to 60V
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 142†
showing the
A
G
integral reverse
––– ––– 570
S
p-n junction diode.
––– ––– 1.3
V
TJ = 25°C, IS = 85A, VGS = 0V „
––– 130 200
ns
TJ = 25°C, IF = 85A
––– 690 1040 nC di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
… Coss eff. is a fixed capacitance that gives the same charging time
max. junction temperature. (See fig. 11).
as Coss while VDS is rising from 0 to 80% VDSS .
‚ Starting TJ = 25°C, L = 0.21mH
† Calculated continuous current based on maximum allowable
RG = 25Ω, IAS = 85A, VGS=10V (See Figure 12).
junction temperature. Package limitation current is 75A.
ƒ ISD ≤ 85A, di/dt ≤ 310A/µs, VDD ≤ V(BR)DSS,
‡ Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
TJ ≤ 175°C
avalanche performance.
„ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF1607PbF
1000
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
100
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
I D , Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
1000
10
4.5V
100
4.5V
10
20µs PULSE WIDTH
Tj = 25°C
1
0.1
1
10
1
0.1
100
Fig 1. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
3.0
TJ = 175 ° C
100
TJ = 25 ° C
V DS = 25V
20µs PULSE WIDTH
5.0
6.0
7.0
8.0
9.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
10
100
Fig 2. Typical Output Characteristics
1000
1
4.0
1
VDS , Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
10
20µs PULSE WIDTH
TJ = 175 ° C
10.0
ID = 142A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20 0
VGS = 10V
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF1607PbF
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
10000
C, Capacitance(pF)
Ciss
Coss = Cds + Cgd
8000
6000
Coss
4000
2000
VGS , Gate-to-Source Voltage (V)
20
12000
ID = 85A
V DS = 60V
V DS = 37V
V DS = 15V
16
12
8
4
Crss
FOR TEST CIRCUIT
SEE FIGURE 13
0
0
0
1
10
100
200
300
400
Q G, Total Gate Charge (nC)
100
VDS, Drain-to-Source Voltage (V)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
10000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
TJ = 175 ° C
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000
100
1000
100
10
TJ = 25 ° C
1
0.1
0.2
V GS = 0 V
0.6
1.0
1.4
1.8
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
2.2
100µsec
1msec
10
Tc = 25°C
Tj = 175°C
Single Pulse
1
1
10msec
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF1607PbF
160
RD
VDS
LIMITED BY PACKAGE
ID , Drain Current (A)
VGS
120
D.U.T.
RG
+
-VDD
10V
80
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 10a. Switching Time Test Circuit
40
VDS
90%
0
25
50
75
100
125
150
175
TC , Case Temperature ( ° C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.1
0.01
0.20
0.10
0.05
0.02
0.01
PDM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.001
0.00001
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF1607PbF
EAS , Single Pulse Avalanche Energy (mJ)
3000
15V
TOP
2500
DRIVER
L
VDS
BOTTOM
ID
35A
60A
85A
2000
D.U.T
RG
+
V
- DD
IAS
20V
VGS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
1500
1000
500
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature ( °C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGD
5.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
VGS(th) Gate threshold Voltage (V)
QGS
4.0
ID = 250µA
3.0
2.0
1.0
-75 -50 -25
VGS
0
25
50
75 100 125 150 175 200
T J , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage Vs. Temperature
www.irf.com
IRF1607PbF
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
100
0.05
0.10
10
1
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
1400
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 85A
1200
1000
800
600
400
200
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
T jmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
175
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·t av
7
IRF1607PbF
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T*
ƒ
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
‚
-
-
„
+

RG
• dv/dt controlled by RG
• ISD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
VGS
*
+
-
VDD
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive
P.W.
Period
D=
P.W.
Period
[VGS=10V ] ***
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
[VDD]
Forward Drop
Inductor Curent
Ripple ≤ 5%
[ ISD]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
Fig 17. For N-channel HEXFET® power MOSFETs
8
www.irf.com
IRF1607PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
3.78 (.149)
3.54 (.139)
-A-
-B4.69 (.185)
4.20 (.165)
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
LEAD ASSIGNMENTS
IGBTs, CoPACK
1 - GATE
2 - DRAIN
1- GATE
1- GATE
3 - SOURCE 2- COLLECTOR
2- DRAIN
3- EMITTER
3- SOURCE
4 - DRAIN
HEXFET
3
4- DRAIN
14.09 (.555)
13.47 (.530)
4- COLLECTOR
4.06 (.160)
3.55 (.140)
3X
1.40 (.055)
3X
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMP L E : T HIS IS AN IR F 1010
L OT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T HE AS S E MB L Y L INE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INT E R NAT IONAL
RE CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
PART NU MB E R
DAT E CODE
YE AR 7 = 1997
WEE K 19
L INE C
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 06/04
www.irf.com
9