IRF IRLIB9343

PD - 95852
DIGITAL AUDIO MOSFET
IRLIB9343
Features
Advanced Process Technology
l Key Parameters Optimized for Class-D Audio
Amplifier Applications
l Low RDSON for Improved Efficiency
l Low Qg and Qsw for Better THD and Improved
Efficiency
l Low Qrr for Better THD and Lower EMI
l 175°C Operating Junction Temperature for
Ruggedness
l Repetitive Avalanche Capability for Robustness and
Reliability
l
Key Parameters
VDS
RDS(ON) typ. @ VGS = -10V
RDS(ON) typ. @ VGS = -4.5V
Qg typ.
TJ max
-55
93
150
31
175
V
m:
m:
nC
°C
D
G
S
TO-220 Full-Pak
Description
This Digital Audio HEXFET® is specifically designed for Class-D audio amplifier applications. This MosFET utilizes the latest
processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery
and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD
and EMI. Additional features of this MosFET are 175°C operating junction temperature and repetitive avalanche capability.
These features combine to make this MosFET a highly efficient, robust and reliable device for Class-D audio amplifier
applications.
Absolute Maximum Ratings
Parameter
Max.
Units
V
VDS
Drain-to-Source Voltage
-55
VGS
Gate-to-Source Voltage
Continuous Drain Current, VGS @ -10V
±20
ID @ TC = 25°C
ID @ TC = 100°C
-14
Continuous Drain Current, VGS @ -10V
Pulsed Drain Current
-10
IDM
PD @TC = 25°C
Power Dissipation
33
PD @TC = 100°C
Power Dissipation
20
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
c
A
-60
W
0.26
-40 to + 175
W/°C
°C
10 (1.1)
lbf in (N m)
Mounting Torque, 6-32 or M3 screw
y
y
Thermal Resistance
f
RθJC
Junction-to-Case
RθJA
Junction-to-Ambient
Parameter
f
Typ.
Max.
Units
–––
3.84
°C/W
–––
65
Notes  through … are on page 7
www.irf.com
1
4/1/04
IRLIB9343
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
-55
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
-52
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
93
105
–––
150
170
VGS(th)
Gate Threshold Voltage
-1.0
–––
–––
V
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-3.7
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
µA
–––
V
Conditions
VGS = 0V, ID = -250µA
mV/°C Reference to 25°C, ID = -1mA
mΩ VGS = -10V, ID = -3.4A e
VGS = -4.5V, ID = -2.7A e
VDS = VGS, ID = -250µA
–––
–––
-2.0
–––
–––
-25
Gate-to-Source Forward Leakage
–––
–––
-100
Gate-to-Source Reverse Leakage
–––
–––
100
gfs
Forward Transconductance
5.3
–––
–––
Qg
Total Gate Charge
–––
31
47
Qgs
Pre-Vth Gate-to-Source Charge
–––
7.1
–––
VDS = -44V
VGS = -10V
Qgd
Gate-to-Drain Charge
–––
8.5
–––
ID = -14A
Qgodr
Gate Charge Overdrive
–––
15
–––
See Fig. 6 and 19
td(on)
Turn-On Delay Time
–––
9.5
–––
VDD = -28V, VGS = -10Ve
tr
Rise Time
–––
24
–––
td(off)
Turn-Off Delay Time
–––
21
–––
tf
Fall Time
–––
9.5
–––
Ciss
Input Capacitance
–––
660
–––
Coss
Output Capacitance
–––
160
–––
Crss
Coss
Reverse Transfer Capacitance
Effective Output Capacitance
–––
–––
72
280
–––
–––
ƒ = 1.0MHz,
See Fig.5
VGS = 0V, VDS = 0V to -44V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
LS
Internal Source Inductance
–––
7.5
–––
IGSS
VDS = -55V, VGS = 0V
VDS = -55V, VGS = 0V, TJ = 125°C
nA
VGS = -20V
S
VDS = -25V, ID = -14A
VGS = 20V
ID = -14A
ns
RG = 2.5Ω
VGS = 0V
pF
nH
VDS = -50V
6mm (0.25in.)
from package
and center of die contact
Avalanche Characteristics
Typ.
Max.
Units
EAS
Single Pulse Avalanche Energyd
Parameter
–––
190
mJ
IAR
Avalanche Currentg
See Fig. 14, 15, 17a, 17b
EAR
Repetitive Avalanche Energy g
A
mJ
Diode Characteristics
Parameter
IS @ TC = 25°C Continuous Source Current
Min.
Typ. Max. Units
–––
–––
-14
MOSFET symbol
ISM
(Body Diode)
Pulsed Source Current
–––
–––
-60
VSD
(Body Diode)c
Diode Forward Voltage
–––
–––
-1.2
trr
Reverse Recovery Time
–––
57
86
ns
Qrr
Reverse Recovery Charge
–––
120
180
nC
2
Conditions
A
V
showing the
integral reverse
D
G
p-n junction diode.
TJ = 25°C, IS = -14A, VGS = 0V e
S
TJ = 25°C, IF = -14A
di/dt = 100A/µs e
www.irf.com
IRLIB9343
100
100
10
BOTTOM
TOP
-I D, Drain-to-Source Current (A)
-I D, Drain-to-Source Current (A)
TOP
VGS
-15V
-12V
-10V
-8.0V
-5.5V
-4.5V
-3.0V
-2.5V
1
-2.5V
≤ 60µs PULSE WIDTH
Tj = 25°C
10
BOTTOM
1
-2.5V
≤ 60µs PULSE WIDTH
Tj = 175°C
0.1
0.1
0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
100.0
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
-I D, Drain-to-Source Current (Α)
1
-VDS, Drain-to-Source Voltage (V)
-VDS, Drain-to-Source Voltage (V)
T J = 25°C
T J = 175°C
10.0
1.0
VDS = -25V
≤ 60µs PULSE WIDTH
0.1
0.0
5.0
10.0
15.0
ID = -14A
VGS = -10V
1.5
1.0
0.5
-60 -40 -20
-V GS, Gate-to-Source Voltage (V)
10000
20 40 60 80 100 120 140 160 180
Fig 4. Normalized On-Resistance vs. Temperature
20
-VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
1000
Ciss
Coss
Crss
100
0
T J , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
-15V
-12V
-10V
-8.0V
-5.5V
-4.5V
-3.0V
-2.5V
ID= -14A
16
VDS= -44V
VDS= -28V
VDS= -11V
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 19
0
10
1
10
100
-V DS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
10
20
30
40
50
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRLIB9343
1000
-I D, Drain-to-Source Current (A)
-I SD, Reverse Drain Current (A)
100.0
T J = 175°C
10.0
T J = 25°C
1.0
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100µsec
10
VGS = 0V
10msec
1
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
1
2.0
10
100
1000
-V DS , Drain-toSource Voltage (V)
-V SD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
16
-VGS(th) Gate threshold Voltage (V)
2.5
12
-I D , Drain Current (A)
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
8
4
2.0
ID = -250µA
1.5
0
25
50
75
100
125
150
1.0
175
-75
-50 -25
T J , Junction Temperature (°C)
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs. Case Temperature
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
R1
R1
0.05
0.1
τJ
0.02
0.01
τJ
τ1
R2
R2
τ2
τ1
τ2
R3
R3
τ3
τC
τ
τ3
Ci= τi/Ri
Ci τi/Ri
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Ri (°C/W) τi (sec)
0.8737 0.000799
0.877
0.068578
2.089
2.593
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
1000
600
EAS, Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance ( mΩ)
IRLIB9343
ID = -14A
500
400
300
200
T J = 125°C
100
T J = 25°C
0
ID
-5.0A
-5.6A
BOTTOM -10A
TOP
800
600
400
200
0
4.0
6.0
8.0
10.0
25
-V GS, Gate-to-Source Voltage (V)
50
75
100
125
150
175
Starting T J, Junction Temperature (°C)
Fig 12. On-Resistance Vs. Gate Voltage
Fig 13. Maximum Avalanche Energy Vs. Drain Current
-Avalanche Current (A)
1000
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
Duty Cycle = Single Pulse
100
0.01
10
0.05
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
200
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = -10A
160
120
80
40
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 17a, 17b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
5
IRLIB9343
D.U.T
Driver Gate Drive
+
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
InductorInductor
Curent
Current
ISD
Ripple ≤ 5%
*
Reverse Polarity of D.U.T for P-Channel
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for P-Channel
HEXFET® Power MOSFETs
L
VDS
VDS
D.U.T
RG
-V
-20V
GS
VDD
A
IAS
tp
VGS
DRIVER
D.U.T.
RG
0.01Ω
RD
-
VDD
+
-10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
15V
Fig 17a. Unclamped Inductive Test Circuit
Fig 18a. Switching Time Test Circuit
I AS
td(on)
tr
t d(off)
tf
VGS
10%
90%
tp
VDS
V(BR)DSS
Fig 17b. Unclamped Inductive Waveforms
Fig 18b. Switching Time Waveforms
Id
Vds
Vgs
L
DUT
0
1K
VCC
Vgs(th)
Qgs1 Qgs2
Fig 19a. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 19b Gate Charge Waveform
www.irf.com
IRLIB9343
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
10.60 (.417)
10.40 (.409)
3.40 (.133)
3.10 (.123)
ø
4.80 (.189)
4.60 (.181)
2.80 (.110)
2.60 (.102)
-A3.70 (.145)
3.20 (.126)
16.00 (.630)
15.80 (.622)
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
7.10 (.280)
6.70 (.263)
1.15 (.045)
MIN.
NOTES:
1 DIMENSIONING & TOLERANCING
PER ANSI Y14.5M, 1982
1
2
3
2 CONTROLLING DIMENSION: INCH.
3.30 (.130)
3.10 (.122)
-B-
13.70 (.540)
13.50 (.530)
C
A
3X
1.40 (.055)
1.05 (.042)
3X
0.90 (.035)
0.70 (.028)
0.25 (.010)
3X
M A M
0.48 (.019)
0.44 (.017)
2.85 (.112)
2.65 (.104)
B
2.54 (.100)
2X
D
B
MINIMUM CREEPAGE
DISTANCE BETWEEN
A-B-C-D = 4.80 (.189)
TO-220 Full-Pak Part Marking Information
Notes : T his part marking information applies to all devices produced before 02/26/2001
and currently for parts manufactured in GB.
EXAMPLE: T HIS IS AN IRFI840G
WIT H AS S EMBLY
LOT CODE E401
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
IRFI840G
E401
9245
DAT E CODE
(YYWW)
YY = YEAR
WW = WEEK
AS S EMBLY
LOT CODE
Notes : This part marking information applies to devices produced after 02/26/2001 in
location other than GB.
EXAMPLE: T HIS IS AN IRFI840G
WIT H ASS EMBLY
LOT CODE 3432
AS S EMBLED ON WW 24 1999
IN T HE AS SEMBLY LINE "K"
INT ERNAT IONAL
RECT IFIER
LOGO
AS SEMBLY
LOT CODE
PART NUMBER
IRFI840G
924K
34
32
DAT E CODE
YEAR 9 = 1999
WEEK 24
LINE K
TO-220 FullPak packages are not recommended for Surface Mount Application.
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 3.89mH,
RG = 25Ω, IAS = -10A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
… Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.4/04
www.irf.com
7