IRF IRFU3607PBF

PD - 97312
IRFR3607PbF
IRFU3607PbF
Applications
l High Efficiency Synchronous Rectification in
SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET
D
G
Benefits
l Improved Gate, Avalanche and Dynamic
dv/dt Ruggedness
l Fully Characterized Capacitance and
Avalanche SOA
l Enhanced body diode dV/dt and dI/dt
Capability
S
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
ID (Package Limited)
75V
7.34mΩ
9.0mΩ
80Ac
56A
D
S
S
D
G
G
D-Pak
I-Pak
IRFR3607PbF IRFU3607PbF
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
Parameter
Max.
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
80c
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
56c
Units
A
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
56
IDM
Pulsed Drain Current d
310
PD @TC = 25°C
Maximum Power Dissipation
140
W
Linear Derating Factor
0.96
VGS
Gate-to-Source Voltage
± 20
W/°C
V
dv/dt
TJ
Peak Diode Recovery f
27
Operating Junction and
-55 to + 175
TSTG
Storage Temperature Range
V/ns
°C
300
Soldering Temperature, for 10 seconds
(1.6mm from case)
Avalanche Characteristics
EAS (Thermally limited)
Single Pulse Avalanche Energy e
120
mJ
IAR
Avalanche Currentd
46
A
EAR
Repetitive Avalanche Energy g
14
mJ
Thermal Resistance
Symbol
RθJC
RθJA
RθJA
www.irf.com
Parameter
Typ.
Max.
Units
Junction-to-Case k
–––
1.045
°C/W
Junction-to-Ambient j
–––
–––
50
110
Junction-to-Ambient (PCB Mount) jk
1
03/04/08
IRFR/U3607PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min. Typ. Max. Units
75
–––
–––
2.0
–––
–––
–––
–––
––– –––
0.096 –––
7.34 9.0
–––
4.0
–––
20
––– 250
––– 100
––– -100
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 5mAd
mΩ VGS = 10V, ID = 46A g
V VDS = VGS, ID = 100µA
µA VDS = 75V, VGS = 0V
VDS = 60V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
gfs
Qg
Qgs
Qgd
Qsync
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
170
–––
–––
–––
–––
–––
56
13
16
40
–––
84
–––
–––
–––
RG(int)
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Internal Gate Resistance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
0.55
16
110
43
96
3070
280
130
380
610
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Effective Output Capacitance (Energy Related)j
–––
Effective Output Capacitance (Time Related)h
S
nC
Conditions
VDS = 50V, ID = 46A
ID = 46A
VDS = 38V
VGS = 10V g
ID = 46A, VDS =0V, VGS = 10V
Ω
ns
pF
VDD = 49V
ID = 46A
RG = 6.8Ω
VGS = 10V g
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 60V j
VGS = 0V, VDS = 0V to 60V h
Diode Characteristics
Symbol
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
–––
80c
ISM
(Body Diode)
Pulsed Source Current
–––
–––
310
VSD
trr
(Body Diode)d
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 56A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements.
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.12mH
RG = 25Ω, IAS = 46A, VGS =10V. Part not recommended for use
above this value.
2
A
Conditions
MOSFET symbol
showing the
integral reverse
D
G
p-n junction diode.
TJ = 25°C, IS = 46A, VGS = 0V g
TJ = 25°C
VR = 64V,
TJ = 125°C
IF = 46A
di/dt = 100A/µs g
TJ = 25°C
S
––– –––
1.3
V
–––
33
50
ns
–––
39
59
–––
32
48
nC
TJ = 125°C
–––
47
71
–––
1.9
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
„ ISD ≤ 46A, di/dt ≤ 1920A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
… Pulse width ≤ 400µs; duty cycle ≤ 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C.
www.irf.com
IRFR/U3607PbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
BOTTOM
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
100
4.5V
10
4.5V
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
10
1
0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
100
3.0
100
T J = 175°C
10
T J = 25°C
1
VDS = 25V
≤60µs PULSE WIDTH
0.1
ID = 80A
VGS = 10V
2.5
(Normalized)
RDS(on) , Drain-to-Source On Resistance
ID, Drain-to-Source Current (A)
10
Fig 2. Typical Output Characteristics
1000
2.0
1.5
1.0
0.5
2
3
4
5
6
7
8
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS , Gate-to-Source Voltage (V)
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
12.0
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
VGS , Gate-to-Source Voltage (V)
ID= 46A
Coss = Cds + Cgd
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
10000
Ciss
Coss
1000
Crss
10.0
VDS= 24V
VDS= 15V
8.0
6.0
4.0
2.0
0.0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
10
20
30
40
50
60
Q G , Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFR/U3607PbF
1000
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
T J = 175°C
10
T J = 25°C
1
100µsec
100
1msec
10msec
10
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.0
0.5
1.0
1.5
1
2.0
Limited By Package
ID, Drain Current (A)
60
50
40
30
20
10
0
50
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
80
25
100
Id = 5mA
95
90
85
80
75
70
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 10. Drain-to-Source Breakdown Voltage
Fig 9. Maximum Drain Current vs. Case Temperature
1.20
EAS , Single Pulse Avalanche Energy (mJ)
500
1.00
0.80
Energy (µJ)
100
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
70
10
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
0.60
0.40
0.20
0.00
ID
5.6A
11A
BOTTOM 46A
450
TOP
400
350
300
250
200
150
100
50
0
-10
0
10
20
30
40
50
60
70
80
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
DC
1
0.1
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFR/U3607PbF
Thermal Response ( Z thJC ) °C/W
10.00
1.00
D = 0.50
0.20
0.10
0.05
0.10
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τC
τ
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
0.01
0.01109
0.000003
0.26925
0.000130
0.49731
0.001301
0.26766
0.008693
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.00
1E-006
τi (sec)
Ri (°C/W)
R4
R4
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
Avalanche Current (A)
100
0.01
10
0.05
0.10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τj = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
150
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 46A
125
100
75
50
25
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFR/U3607PbF
20
IF = 31A
V R = 64V
4.0
TJ = 25°C
TJ = 125°C
15
3.5
3.0
IRR (A)
VGS(th) , Gate Threshold Voltage (V)
4.5
ID = 100µA
2.5
10
ID = 250µA
2.0
ID = 1.0mA
5
ID = 1.0A
1.5
1.0
0
-75 -50 -25 0
25 50 75 100 125 150 175 200
0
200
T J , Temperature ( °C )
600
800
1000
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
560
20
IF = 46A
V R = 64V
IF = 31A
V R = 64V
480
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
400
Q RR (A)
15
IRR (A)
400
diF /dt (A/µs)
10
320
240
160
5
80
0
0
0
200
400
600
800
0
1000
200
400
600
800
1000
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
560
IF = 46A
V R = 64V
480
TJ = 25°C
TJ = 125°C
Q RR (A)
400
320
240
160
80
0
0
200
400
600
800
1000
diF /dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFR/U3607PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
A
0.01Ω
I AS
Fig 21a. Unclamped Inductive Test Circuit
LD
Fig 21b. Unclamped Inductive Waveforms
VDS
VDS
90%
+
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
td(on)
Fig 22a. Switching Time Test Circuit
tr
td(off)
tf
Fig 22b. Switching Time Waveforms
Id
Vds
Vgs
L
VCC
DUT
0
Vgs(th)
1K
Qgs1 Qgs2
Fig 23a. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 23b. Gate Charge Waveform
7
IRFR/U3607PbF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
(;$03/(
7+,6,6$1,5)5
3$57180%(5
:,7+$66(0%/<
,17(51$7,21$/
/27&2'(
,5)5
$
5(&7,),(5
$66(0%/('21::
/2*2
,17+($66(0%/</,1($
'$7(&2'(
<($5
:((.
/,1($
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
$66(0%/<
LQGLFDWHV/HDG)UHH
/27&2'(
3LQDVVHPEO\OLQHSRVLWLRQLQGLFDWHV
/HDG)UHHTXDOLILFDWLRQWRWKHFRQVXPHUOHYHO
3$57180%(5
25
,17(51$7,21$/
5(&7,),(5
,5)5
'$7(&2'(
3
'(6,*1$7(6/($')5((
3
'(6,*1$7(6/($')5((
/2*2
352'8&7237,21$/
352'8&748$/,),('727+(
$66(0%/<
&21680(5/(9(/237,21$/
/27&2'(
<($5
:((.
$
$66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRFR/U3607PbF
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
(;$03/( 7+,6,6$1,5)8
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1($
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)8
$
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1($
25
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)8
$66(0%/<
/27&2'(
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRFR/U3607PbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
10
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 03/08
www.irf.com