INFINEON SAF-XC836-2FRI

XC835/836
8-Bit Single-Chip Microcontroller
Data Sheet
V1.2 2011-03
Microcontrollers
Edition 2011-03
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2011 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
XC835/836
8-Bit Single-Chip Microcontroller
Data Sheet
V1.2 2011-03
Microcontrollers
XC835/836
XC835/836 Data Sheet
Revision History: V1.2 2011-03
Previous Versions: V 1.1
Page
Subjects (major changes since last revision)
Page 3,
Page 46,
Page 49
TSSOP-28-9 package for Automotive has been updated to TSSOP-28-12.
We Listen to Your Comments
Is there any information in this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
Data Sheet
V1.2, 2011-03
XC835/836
Table of Contents
Table of Contents
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
JTAG ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Chip Identification Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3
3.1
3.1.1
3.1.2
3.1.3
3.2
3.2.1
3.2.2
3.2.3
3.2.3.1
3.2.3.2
3.2.4
3.2.5
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.5.1
3.3.5.2
3.3.6
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply Threshold Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADC Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Out of Range Comparator Characteristics . . . . . . . . . . . . . . . . . . . . .
Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Rise/Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oscillator Timing and Wake-up Timing . . . . . . . . . . . . . . . . . . . . . . . . .
On-Chip Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Master Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22
22
22
23
24
25
25
28
29
32
32
33
35
38
38
39
40
41
43
43
44
45
4
4.1
4.2
4.3
Package and Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
46
46
47
50
Data Sheet
1
V1.2, 2011-03
XC835/836
Summary of Features
1
Summary of Features
The XC835/836 has the following features:
• High-performance XC800 Core
– compatible with standard 8051 processor
– two clocks per machine cycle architecture (for memory access without wait state)
– two data pointers
• On-chip memory
– 8 Kbytes of Boot ROM, Library ROM and User routines
– 256 bytes of RAM
– 256 bytes of XRAM
– 4/8 Kbytes of Flash (includes memory protection strategy)
• I/O port supply at 2.5 V - 5.5 V and core logic supply at 2.5 V (generated by
embedded voltage regulator)
8/4K Bytes
Flash
On-Chip Debug Support
IIC
Boot ROM
8K Bytes
UART
SSC
Port 0
8-bit Digital I/O
Capture/Compare Unit
16-bit
Port 1
6-bit Digital I/O
Compare Unit
16-bit
Port 2
8-bit Digital/
Analog Input
ADC
10-bit
8-channel
Port 3
3-bit Digital I/O
XC800 Core
XRAM
256 Bytes
RAM
256 Bytes
MDU
Figure 1
•
•
•
LED and Touch Sense Controller
CORDIC
Timer 0
16-bit
Timer 1
16-bit
Timer 2
16-bit
Real-Time
Clock
Watchdog
Timer
XC835/836 Functional Units
Power-on reset generation
Brownout detection for IO supply and core logic supply
48 MHz on-chip OSC for clock generation
– Loss-of-Clock detection
(more features on next page)
Data Sheet
1
V1.2, 2011-03
XC835/836
Summary of Features
Features: (continued)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Power saving modes
– idle mode
– power-down mode with wake-up capability via real-time clock event
– clock gating control to each peripheral
Programmable 16-bit Watchdog Timer (WDT) running on independent oscillator with
programmable window feature for refresh operation and warning prior to overflow
Three general purpose I/O ports
– 4 high current I/O
– 2 high sink I/O
– Up to 25 pins as digital I/O
– Up to 8 pins as digital/analog input
Up to 8 channels, 10-bit A/D Converter
– support up to 7 differential input channel
– results filtering by data reduction or digital low-pass filter, for up to 13-bit results
Up to 8 channels, Out of range comparator
Three 16-bit timers
– Timer 0 and Timer 1 (T0 and T1)
– Timer 2 (T2)
Real-time clock with 32.768 kHz crystal pad
16-bit Vector Computer for Field-Oriented Control (FOC)
– Multiplication/Division Unit (MDU) for arithmetic calculation
– CORDIC Unit for trigonometric calculation
Capture and Compare unit for PWM signal generation (CCU6)
A full-duplex or half-duplex serial interface (UART)
Synchronous serial channel (SSC)
Inter-IC (IIC) serial interface
LED and Touch-sense Controller (LEDTSCU)
Software libraries to support fixed-point control and EEPROM emulation
On-chip debug support via single pin DAP interface (SPD)
Packages:
– PG-DSO-24
– PG-TSSOP-28
Temperature range TA:
– SAF (-40 to 85 °C)
Data Sheet
2
V1.2, 2011-03
XC835/836
Summary of Features
XC835/836 Variant Devices
The XC835/836 product family features devices with different configurations, program
memory sizes, packages options and temperature profiles, to offer cost-effective
solutions for different application requirements.
The list of XC835/836 device configurations are summarized in Table 1. The type of
packages available are DSO-24 for XC835 and TSSOP-28 for XC836.
Table 1
Device Configuration
Device Name
MDU and CORDIC Module
LEDTSCU Module
XC835/836
No
No
XC835/836M
Yes
No
XC835/836T
No
Yes
XC835/836MT
Yes
Yes
Table 2 shows the device sales type available, based on above device.
Table 2
Device Profile
Sales Type
Device Program TempType
Memory erature
(Kbytes) Profile
(°C)
Package
Type
Quality
Profile
SAF-XC835MT-2FGI
Flash
8
-40 to 85
PG-DSO-24-1
Industrial
SAF-XC836-2FRI
Flash
8
-40 to 85
PG-TSSOP-28-1
Industrial
SAF-XC836T-2FRI
Flash
8
-40 to 85
PG-TSSOP-28-1
Industrial
SAF-XC836M-2FRI
Flash
8
-40 to 85
PG-TSSOP-28-1
Industrial
SAF-XC836M-1FRI
Flash
4
-40 to 85
PG-TSSOP-28-1
Industrial
SAF-XC836MT-2FRI
Flash
8
-40 to 85
PG-TSSOP-28-1
Industrial
SAF-XC836MT-2FRA Flash
8
-40 to 85
PG-TSSOP-28-12 Automotive
SAF-XC836MT-1FRA Flash
4
-40 to 85
PG-TSSOP-28-12 Automotive
SAK-XC836MT-2FRA Flash
8
-40 to 125 PG-TSSOP-28-12 Automotive
SAK-XC836MT-1FRA Flash
4
-40 to 125 PG-TSSOP-28-12 Automotive
As this document refers to all the derivatives, some description may not apply to a
specific product. For simplicity, all versions are referred to by the term XC835/836
throughout this document.
Data Sheet
3
V1.2, 2011-03
XC835/836
Summary of Features
Ordering Information
The ordering code for Infineon Technologies microcontrollers provides an exact
reference to the required product. This ordering code identifies:
•
•
The derivative itself, i.e. its function set, the temperature range, and the supply
voltage
The package and the type of delivery
For the available ordering codes for the XC835/836, please refer to your responsible
sales representative or your local distributor.
Data Sheet
4
V1.2, 2011-03
XC835/836
General Device Information
2
General Device Information
Chapter 2 contains the block diagram, pin configurations, definitions and functions of the
XC835/836.
2.1
Block Diagram
The block diagram of the XC835/836 is shown in Figure 2.
XC800 Core
256-byte RAM
+
64-byte monitor
RAM
T0 & T1
UART
Port 0
Internal Bus
P0.0 - P0.7
Port 1
8-Kbyte
Boot ROM 1)
P1.0 - P1.5
Port 2
XC83x
P2.0 – P2.7
Vector Computer
VDDP
256-byte XRAM
VSSP
VSSC
4/8-Kbyte
Flash
CORDIC
MDU
RTC
IIC
WDT
SSC
Timer 2
CCU6
ADC
48 MHz
On-chip OSC
OCDS
75 KHz
On-chip OSC
EVR
Port 3
XTAL
Clock Generator
P3.0 - P3.2
SCU
LED and Touch
Sense Controller
1) Includes 1-Kbyte monitor ROM
Figure 2
Data Sheet
XC835/836 Block Diagram
5
V1.2, 2011-03
XC835/836
General Device Information
2.2
Logic Symbol
The logic symbol of the XC835/836 is shown in Figure 3.
VDDP VDDC VSSP
VDDP VDDC VSSP
Port 0 8-Bit
Port 0 8-Bit
Port 1 6-Bit
Port 1 6-Bit
XC836
Figure 3
Data Sheet
XC835
Port 2 8-Bit
Port 2 4-Bit
Port 3 3-Bit
Port 3 3-Bit
XC835/836 Logic Symbol
6
V1.2, 2011-03
XC835/836
General Device Information
2.3
Pin Configuration
The pin configuration of the XC835 in Figure 4.
P3.2/SPD_0/RXD_3/SDA_2/MTSR_5/
MRST_5/EXINT0_6/T2EX_7/TXD_3
P0.7/SCL_3/LINE7/TSIN7/TXD_5/COUT63_0/
COL3_1/COLA_3
1
24
P3.0/XTAL4/SCL_2/SCK_1/EXINT2_1/COL6
2
23
P3.1/XTAL3/RXD_4/RTCCLK/MTSR_4/
MRST_4/EXINT0_5/COLA_0/EXF2_1
P2.3/CCPOS0_2/CTRAP_2/T2_2/EXINT3/AN3
3
22
P0.3/CC60_1/SDA_1/CTRAP_0/LINE3/TSIN 3
P2.2/CCPOS2_1/T12HR_3/T13HR_3/SCK_3/
T1_1/EXINT2_0/AN2
4
21
P0.2/T1_0/CC62_1/SCL_1/CCPOS2_0/LINE2/TSIN2
P2.1/CCPOS1_1/RXD_5/MTSR_6/T0_1/EXINT1_1/AN1
5
20
P2.0/CCPOS0_1/T12HR_2/T13HR_2/T2EX_3/
T2_1/EXINT0_3/AN0
P0.6/SPD_1/RXD_1/SDA_0/MTSR_1/MRST_0/EXINT0_1/
T2EX_0/LINE6/TSIN6/TXD_0/COL2_1/COLA_2
P0.5/RXD_0/MTSR_0/MRST_1/EXINT0_0/LINE5/TSIN5/
COUT62_1/TXD_4/COL1_1/EXF2_3
P0.4/T2EX_1/SCL_0/SCK_0/EXINT1_0/CTRAP_1/
LINE4/TSIN 4/EXF2_0/COL0_1/COL3_2/COLA_4
6
XC835
19
P0.1/T0_0/CC61_1/MTSR_3/MRST_2/T13HR_0/
CCPOS1_0/LINE1/TSIN1
P0.0/T2_0/T13HR_1/MTSR_2/MRST_3/T12HR_0/
CCPOS0_0/LINE0/TSIN0/COUT61_1
7
18
P1.5/CC62_0/COL5/COLA_1
8
17
P1.4/EXINT5/COL4/COUT62_0/COUT63_2
9
16
VDDC
VDDP
10
15
VSSP
P1.3/CC61_0/COL3_0/CC61_0/EXF2_2
11
14
P1.0/SPD_2/RXD_2/T2EX_2/EXINT0_2/COL0_0/
COUT60_0/TXD_1
P1.2/EXINT4/COL2_0/COUT61_0/COUT63_1
12
13
P1.1/CC60_0/COL1_0/TXD_2
Figure 4
Data Sheet
XC835 Pin Configuration, PG-DSO-24 Package (top view)
7
V1.2, 2011-03
XC835/836
General Device Information
The pin configuration of the XC836 in Figure 5.
P0.7/SCL_3/LINE7/TSIN7/TXD_5/COUT63_0/
COL3_1/COLA_3
P3.2/SPD_0/RXD_3/SDA_2/MTSR_5/MRST_5/
EXINT0_6/T2EX_7/TXD_3
P2.7/RXD_6/T2EX_6/MTSR_7/EXINT0_4/AN7
1
28
P2.6/SCK_2/EXINT6/AN6
2
27
P2.5/T12HR_7/T13HR_7/AN5
3
26
P3.0/XTAL4/SCL_2/SCK_1/EXINT2_1/COL6
P2.4/T12HR_5/T13HR_5/T2_3/AN4
4
25
P3.1/XTAL3/RXD_4/RTCCLK/MTSR_4/
MRST_4/EXINT0_5/COLA_0/EXF2_1
P2.3/CCPOS0_2/CTRAP_2/T2_2/EXINT3/AN3
5
24
P0.3/CC60_1/SDA_1/CTRAP_0/LINE3/TSIN3
6
23
P0.2/T1_0/CC62_1/SCL_1/CCPOS2_0/LINE2/TSIN2
P2.2/CCPOS2_1/T12HR_3/T13HR_3/SCK_3/
T1_1/EXINT2_0/AN2
P2.1/CCPOS1_1/RXD_5/MTSR_6/T0_1/
EXINT1_1/AN1
P2.0/CCPOS0_1/T12HR_2/T13HR_2/T2EX_3/
T2_1/EXINT0_3/AN0
P0.6/SPD_1/RXD_1/SDA_0/MTSR_1/MRST_0/EXINT0_1/
T2EX_0/LINE6/TSIN6/TXD_0/COL2_1/COLA_2
P0.5/RXD_0/MTSR_0/MRST_1/EXINT0_0/LINE5/
TSIN5/COUT62_1/TXD_4/COL1_1/EXF2_3
P0.4/T2EX_1/SCL_0/SCK_0/EXINT1_0/CTRAP_1/
LINE4/TSIN4/EXF2_0/COL0_1/COL3_2/COLA_4
8
21
P0.1/T0_0/CC61_1/MTSR_3/MRST_2/T13HR_0/
CCPOS1_0/LINE1/TSIN1
P0.0/T2_0/T13HR_1/MTSR_2/MRST_3/T12HR_0/
CCPOS0_0/LINE0/TSIN0/COUT61_1
9
20
P1.5/CC62_0/COL5/COLA_1
10
19
P1.4/EXINT5/COL4/COUT62_0/COUT63_2
11
18
VDDC
VDDP
12
17
VSSP
P1.3/CC61_0/COL3_0/CC61_0/EXF2_2
13
16
P1.0/SPD_2/RXD_2/T2EX_2/EXINT0_2/
COL0_0/COUT60_0/TXD_1
P1.2/EXINT4/COL2_0/COUT61_0/COUT63_1
14
15
P1.1/CC60_0/COL1_0/TXD_2
Figure 5
Data Sheet
7
XC836
22
XC836 Pin Configuration, PG-TSSOP-28 Package (top view)
8
V1.2, 2011-03
XC835/836
General Device Information
2.4
Pin Definitions and Functions
The functions and default states of the XC835/836 external pins are provided in Table 3.
Table 3
Pin Definitions and Functions for XC835/836
Symbol Pin
Type Reset Function
Number
State
TSSOP28/
DS024
P0
P0.0
I/O
21/19
Data Sheet
Port 0
Port 0 is a bidirectional general purpose I/O port.
It can be used as alternate functions for
LEDTSCU, Timer 0, 1 and 2, SSC, CCU6, IIC,
SPD and UART.
Hi-Z
T2_0
Timer 2 Input
T13HR_1
CCU6 Timer 13 Hardware Run
Input
MTSR_2
SSC Master Transmit Output/
Slave Receive Input
MRST_3
SSC Master Receive Input
T12HR_0
CCU6 Timer 12 Hardware Run
Input
CCPOS0_0
CCU6 Hall Input 0
TSIN0
Touch-sense Input 0
LINE0
LED Line 0
COUT61_1
Output of Capture/Compare
Channel 1
9
V1.2, 2011-03
XC835/836
General Device Information
Table 3
Pin Definitions and Functions for XC835/836 (cont’d)
Symbol Pin
Type Reset Function
Number
State
TSSOP28/
DS024
P0.1
P0.2
P0.3
22/20
23/21
24/22
Data Sheet
Hi-Z
Hi-Z
Hi-Z
T0_0
Timer 0 Input
CC61_1
Input/Output of Capture/Compare
channel 1
MTSR_3
SSC Slave Receive Input
MRST_2
SSC Master Receive Input/
Slave Transmit Output
T13HR_0
CCU6 Timer 13 Hardware Run
Input
CCPOS1_0
CCU6 Hall Input 1
TSIN1
Touch-sense Input 1
LINE1
LED Line 1
T1_0
Timer 1 Input
CC62_1
Input/Output of Capture/Compare
channel 2
SCL_1
IIC Clock Line
CCPOS2_0
CCU6 Hall Input 2
TSIN2
Touch-sense Input 2
LINE2
LED Line 2
CC60_1
Input/Output of Capture/Compare
channel 0
SDA_1
IIC Data Line
CTRAP_0
CCU6 Trap Input
TSIN3
Touch-sense Input 3
LINE3
LED Line 3
10
V1.2, 2011-03
XC835/836
General Device Information
Table 3
Pin Definitions and Functions for XC835/836 (cont’d)
Symbol Pin
Type Reset Function
Number
State
TSSOP28/
DS024
P0.4
P0.5
11/9
10/8
Data Sheet
PD
Hi-Z
T2EX_1
Timer 2 External Trigger Input
SCK_0
SSC Clock Input/Output
SCL_0
IIC Clock Line
CTRAP_1
CCU6 Trap Input
EXINT1_0
External Interrupt Input 1
TSIN4
Touch-sense Input 4
LINE4
LED Line 4
EXF2_0
Timer 2 Overflow Flag
COL0_1
LED Column 0
COL3_2
LED Column 3
COLA_4
LED Column A
RXD_0
UART Receive Input
MTSR_0
SSC Master Transmit Output/
Slave Receive Input
MRST_1
SSC Master Receive Input
EXINT0_0
External Interrupt Input 0
TSIN5
Touch-sense Input 5
LINE5
LED Line 5
COUT62_1
Output of Capture/Compare
Channel 2
TXD_4
UART Transmit Output
COL1_1
LED Column 1
EXF2_3
Timer 2 Overflow Flag
11
V1.2, 2011-03
XC835/836
General Device Information
Table 3
Pin Definitions and Functions for XC835/836 (cont’d)
Symbol Pin
Type Reset Function
Number
State
TSSOP28/
DS024
P0.6
P0.7
9/7
PU
28/2
P1
Data Sheet
Hi-Z
I/O
SPD_1
SPD Input/Output
RXD_1
UART Receive Input
SDA_0
IIC Data Line
MTSR_1
SSC Slave Receive Input
MRST_0
SSC Master Receive Input/
Slave Transmit Output
EXINT0_1
External Interrupt Input 0
T2EX_0
Timer 2 External Trigger Input
TSIN6
Touch-sense Input 6
LINE6
LED Line 6
TXD_0
UART Transmit Output
COL2_1
LED Column 2
COLA_2
LED Column A
SCL_3
IIC Clock Line
TSIN7
Touch-sense Input 7
LINE7
LED Line 7
TXD_5
UART Transmit Output/
2-wire UART BSL Transmit Output
COUT63_0
Output of Capture/Compare
Channel 3
COL3_1
LED Column 3
COLA_3
LED Column A
Port 1
Port 1 is a bidirectional general purpose I/O port.
It can be used as alternate functions for CCU6,
LEDTSCU, SPD, UART and Timer 2
12
V1.2, 2011-03
XC835/836
General Device Information
Table 3
Pin Definitions and Functions for XC835/836 (cont’d)
Symbol Pin
Type Reset Function
Number
State
TSSOP28/
DS024
P1.0
P1.1
P1.2
P1.3
P1.4
16/14
15/13
14/12
13/11
19/17
Data Sheet
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
SPD_2
SPD Input/Output
RXD_2
UART Receive Input
T2EX_2
Timer 2 External Trigger Input
EXINT0_2
External Interrupt Input 0
COL0_0
LED Column 0
COUT60_0
Output of Capture/Compare
Channel 0
TXD_1
UART Transmit Output
CC60_0
Input/Output of Capture/Compare
channel 0
COL1_0
LED Column 1
TXD_2
UART Transmit Output
EXINT4
External Interrupt Input 4
COL2_0
LED Column 2
COUT61_0
Output of Capture/Compare
channel 1
COUT63_1
Output of Capture/Compare
channel 3
CC61_0
Input/Output of Capture/Compare
channel 1
COL3_0
LED Column 3
EXF2_2
Timer 2 Overflow Flag
EXINT5
External Interrupt Input 5
COL4
LED Column 4
COUT62_0
Output of Capture/Compare
channel 2
COUT63_2
Output of Capture/Compare
channel 3
13
V1.2, 2011-03
XC835/836
General Device Information
Table 3
Pin Definitions and Functions for XC835/836 (cont’d)
Symbol Pin
Type Reset Function
Number
State
TSSOP28/
DS024
P1.5
20/18
P2
P2.0
P2.1
Hi-Z
I
8/6
7/5
Data Sheet
CC62_0
Input/Output of Capture/Compare
channel 2
COL5
LED Column 5
COLA_1
LED Column A
Port 2
Port 2 is a general purpose input-only port. It can
be used as inputs for A/D Converter and out of
range comparator, CCU6, Timer 2, SSC and
UART.
Hi-Z
Hi-Z
CCPOS0_1
CCU6 Hall Input 0
T12HR_2
CCU6 Timer 12 Hardware Run
Input
T13HR_2
CCU6 Timer 13 Hardware Run
Input
T2EX_3
Timer 2 External Trigger Input
T2_1
Timer 2 Input
EXINT0_3
External Interrupt Input 0
AN0
Analog Input 0 /
Out of range comparator channel 0
CCPOS1_1
CCU6 Hall Input 1
RXD_5
UART Receive Input
MTSR_6
SSC Slave Receive Input
T0_1
Timer 0 Input
EXINT1_1
External Interrupt Input 1
AN1
Analog Input 1 /
Out of range comparator channel 1
14
V1.2, 2011-03
XC835/836
General Device Information
Table 3
Pin Definitions and Functions for XC835/836 (cont’d)
Symbol Pin
Type Reset Function
Number
State
TSSOP28/
DS024
P2.2
P2.3
P2.4
P2.5
6/4
5/3
4/-
3/-
Data Sheet
Hi-Z
Hi-Z
Hi-Z
Hi-Z
CCPOS2_1
CCU6 Hall Input 2
T12HR_3
CCU6 Timer 12 Hardware Run
Input
T13HR_3
CCU6 Timer 13 Hardware Run
Input
SCK_3
SSC Clock Input/Output
T1_1
Timer 1 Input
EXINT2_0
External Interrupt Input 2
AN2
Analog Input 2 /
Out of range comparator channel 2
CCPOS0_2
CCU6 Hall Input 0
CTRAP_2
CCU6 Trap Input
T2_2
Timer 2 Input
EXINT3
External Interrupt Input 3
AN3
Analog Input 3 /
Out of range comparator channel 3
T12HR_5
CCU6 Timer 12 Hardware Run
Input
T13HR_5
CCU6 Timer 13 Hardware Run
Input
T2_3
Timer 2 Input
AN4
Analog Input 4 /
Out of range comparator channel 4
T12HR_7
CCU6 Timer 12 Hardware Run
Input
T13HR_7
CCU6 Timer 13 Hardware Run
Input
AN5
Analog Input 5 /
Out of range comparator channel 5
15
V1.2, 2011-03
XC835/836
General Device Information
Table 3
Pin Definitions and Functions for XC835/836 (cont’d)
Symbol Pin
Type Reset Function
Number
State
TSSOP28/
DS024
P2.6
P2.7
2/-
1/-
P3
P3.0
Hi-Z
Hi-Z
I/O
26/24
Data Sheet
SCK_2
SSC Clock Input/Output
EXINT6
External Interrupt Input 6
AN6
Analog Input 6 /
Out of range comparator channel 6
RXD_6
UART Receive Input
T2EX_6
Timer 2 External Trigger Input
MTSR_7
SSC Slave Receive Input
EXINT0_4
External Interrupt Input 0
AN7
Analog Input 7 /
Out of range comparator channel 7
Port 3
Port 3 is a bidirectional general purpose I/O port.
It can be used as alternate functions for IIC,
LEDTSCU, UART, Timer 2, SSC, SPD and
32.768 kHz crystal pad.
PU
SCL_2
IIC Clock Line
SCK_1
SSC Clock Input/Output
EXINT2_1
External Interrupt Input 2
COL6
LED Column 6
XTAL4
32.768 kHz External Oscillator
Output
16
V1.2, 2011-03
XC835/836
General Device Information
Table 3
Pin Definitions and Functions for XC835/836 (cont’d)
Symbol Pin
Type Reset Function
Number
State
TSSOP28/
DS024
P3.1
P3.2
25/23
PU
27/1
PU
RXD_4
UART Receive Input
RTCCLK
RTC External Clock Input
MTSR_4
SSC Master Transmit Output/
Slave Receive Input
MRST_4
SSC Master Receive Input
EXINT0_5
External Interrupt Input 0
COLA_0
LED Column A
XTAL3
32.768 kHz External oscillator
Input
EXF2_1
Timer 2 Overflow Flag
SPD_0
SPD Input/Output
RXD_3
UART Receive Input/
UART BSL Receive Input
SDA_2
IIC Data Line
MTSR_5
SSC Slave Receive Input
MRST_5
SSC Master Receive Input/
Slave Transmit Output
EXINT0_6
External Interrupt Input 0
T2EX_7
Timer 2 External Trigger Input
TXD_3
UART Transmit Output/
1-wire UART BSL Transmit Output
VDDP
12/10
–
–
I/O Port Supply (2.5 V - 5.5 V)
VDDC
18/16
–
–
Core Supply Monitor (2.5 V)
VSSP/
VSSC
17/15
–
–
I/O Port Ground/
Core Supply Ground
Data Sheet
17
V1.2, 2011-03
XC835/836
General Device Information
2.5
Memory Organization
The XC835/836 CPU operates in the following five address spaces:
•
•
•
•
•
8 Kbytes of Boot ROM, Library ROM and User routines
256 bytes of internal RAM
256 bytes of XRAM
(XRAM can be read/written as program memory or external data memory)
A 128-byte Special Function Register area
4/8 Kbytes of Flash
Figure 6 illustrates the memory address spaces of the 4 Kbyte Flash devices. Figure 7
illustrates the memory address spaces of the 8 Kbyte Flash devices.
FFFF H
XRAM
256 Bytes
F100H
F000H
FFFF H
XRAM
256 Bytes
F100H
F000H
E000H
Boot ROM
8 KBytes
C000H
B000H
Flash Bank 0
4 KBytes 1)
A000H
Indirect
Address
Direct
Address
Internal RAM
Special Function
Registers
FFH
80H
1000H
7FH
Flash Bank 0
4 KBytes
40H
0000H
Code Space
1)
0000H
External Data Space
Data Sheet
In Debug Mode, this 64-byte address area
is replaced by a 64-byte Monitor RAM.
00H
Internal Data Space
Physically one 4-Kbyte Flash bank, mapped to both address range .
Figure 6
Internal RAM
Memory Map User Mode
Memory Map of XC835/836 with 4 Kbytes of Flash memory
18
V1.2, 2011-03
XC835/836
General Device Information
FFFF H
User BSL Flash Sector
64 Bytes2)
XRAM
256 Bytes
FFFF H
FF80H
FF40H
F100H
F000H
XRAM
256 Bytes
F100H
F000H
E000H
Boot ROM
8 KBytes
C000H
B000H
Flash Bank 1
4 KBytes 1)
A000H
Indirect
Address
Direct
Address
Internal RAM
Special Function
Registers
FFH
2000H
Flash Bank 1
4 KBytes 1)
80H
1000H
7FH
Flash Bank 0
4 KBytes
40 H
0000H
Code Space
0000H
External Data Space
Internal RAM
In Debug Mode, this 64-byte address area
is replaced by a 64-byte Monitor RAM.
00 H
Internal Data Space
1)
Physically one 4-Kbyte Flash bank, mapped to both address range . Flash Bank 1 is only available in 8-Kbyte Flash Variant.
2)
User BSL Flash sector is only available in 8-Kbyte Flash Variant .
Figure 7
Data Sheet
Memory Map User Mode
Memory Map of XC835/836 with 8 Kbytes of Flash memory
19
V1.2, 2011-03
XC835/836
General Device Information
2.6
JTAG ID
JTAG ID register is a read-only register located inside the JTAG module, and is used to
recognize the device(s) connected to the JTAG interface. Its content is shifted out when
INSTRUCTION register contains the IDCODE command (opcode 04H), and the same is
also true immediately after reset.
The JTAG ID register contents for the XC835/836 Flash devices are given in Table 4.
Table 4
JTAG ID Summary
Device Type
Device Name
JTAG ID
Flash
XC835*-2FG
101B A083H
XC836*-2FR
XC836*-1FR
101B B083H
Note: The asterisk (*) above denotes all possible device configurations.
Data Sheet
20
V1.2, 2011-03
XC835/836
General Device Information
2.7
Chip Identification Number
The XC835/836 identity (ID) register is located at Page 1 of address B3H. The value of
ID register is 59H. However, for easy identification of product variants, the Chip
Identification Number, which is an unique number assigned to each product variant, is
available. The differentiation is based on the product and variant type information.
Two methods are provided to read a device’s Chip Identification number:
•
•
In-application subroutine, GET_CHIP_INFO
Boot-loader (BSL) mode A
Table 5 lists the Chip Identification numbers of XC835/836 device variants.
Table 5
Chip Identification Number
Product Variant
Chip Identification Number
XC835MT-2FG
59080001H
XC836-2FR
59080060H
XC836T-2FR
59080040H
XC836M-2FR
59080020H
XC836M-1FR
59080120H
XC836MT-2FR
59080000H
XC836MT-1FR
59080100H
Data Sheet
21
V1.2, 2011-03
XC835/836
Electrical Parameters
3
Electrical Parameters
Chapter 3 provides the characteristics of the electrical parameters which are
implementation-specific for the XC835/836.
3.1
General Parameters
The general parameters are described here to aid the users in interpreting the
parameters mainly in Section 3.2 and Section 3.3.
3.1.1
Parameter Interpretation
The parameters listed in this section represent partly the characteristics of the
XC835/836 and partly its requirements on the system. To aid interpreting the parameters
easily when evaluating them for a design, they are indicated by the abbreviations in the
“Symbol” column:
•
•
CC
– These parameters indicate Controller Characteristics, which are distinctive
features of the XC835/836 and must be regarded for a system design.
SR
– These parameters indicate System Requirements, which must be provided by the
microcontroller system in which the XC835/836 is designed in.
Data Sheet
22
V1.2, 2011-03
XC835/836
Electrical Parameters
3.1.2
Absolute Maximum Rating
Maximum ratings are the extreme limits to which the XC835/836 can be subjected to
without permanent damage.
Table 6
Absolute Maximum Rating Parameters
Parameter
Symbol
TA
Storage temperature
TST
Junction temperature
TJ
Voltage on power supply pin with VDDP
respect to VSS
Maximum current per pin for
IM
Ambient temperature
Limit Values
Unit Notes
Min.
Max.
-40
125
°C
under bias
-65
150
°C
–
-40
150
°C
under bias
-0.5
6
V
-115
115
mA
-10
10
mA
–
50
mA
P1[3:0]
Input current on any pin during
overload condition
IIN
Absolute sum of all input currents Σ|IIN|
during overload condition
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause
permanent damage to the device. This is a stress rating only and functional
operation of the device at these or any other conditions above those indicated in
the operational sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
During absolute maximum rating overload conditions (VIN > VDDP or VIN < VSS) the
voltage on VDDP pin with respect to ground (VSS) must not exceed the values
defined by the absolute maximum ratings.
Data Sheet
23
V1.2, 2011-03
XC835/836
Electrical Parameters
3.1.3
Operating Condition
The following operating conditions must not be exceeded in order to ensure correct
operation of the XC835/836. All parameters mentioned in the following tables refer to
these operating conditions, unless otherwise noted.
Table 7
Operating Condition Parameters
Parameter
Symbol
Digital power supply voltage VDDP
Digital core supply voltage2) VDDC
CPU Clock Frequency
Ambient temperature
fCCLK
TA
Limit Values
Min.
Max.
Unit Notes/
Conditions
3.0
5.5
V
2.5
3.0
V
2.3
2.7
V
22.5
25.6
MHz typ. 24 MHz
7.5
8.5
MHz typ. 8 MHz
-40
85
°C
1)
SAF-XC835/836...
1) In this voltage range, limited operations are available in active mode. Operations in power save modes are
fully supported.
2) VDDC is supplied by the on-chip EVR. The limits are verified by design and production testing.
Data Sheet
24
V1.2, 2011-03
XC835/836
Electrical Parameters
3.2
DC Parameters
The electrical characteristics of the DC Parameters are detailed in this section.
3.2.1
Input/Output Characteristics
Table 8 provides the characteristics of the input/output pins of the XC835/836.
Table 8
Input/Output Characteristics (Operating Conditions apply)
Parameter
Symbol
Limit Values
Min.
Unit Test Conditions
Max.
Output low voltage on VOLP
port pins
(all except P1)
CC –
1.0
V
–
0.4
V
Output low voltage on VOLP1
P1[3:0]
CC –
1.0
V
–
0.32
V
–
0.4
V
CC –
1.0
V
–
0.4
V
–
V
VDDP - –
V
VOHP1 CC VDDP - –
V
IOL = 25 mA (5 V)
IOL = 13 mA (3.3 V)
IOL = 10 mA (5 V)
IOL = 5 mA (3.3 V)
IOL = 50 mA (5 V)
IOL = 25 mA (3.3 V)
IOL = 20 mA (5 V)
IOL = 10 mA (3.3 V )
IOL = 50 mA (5 V)
IOL = 25 mA (3.3 V)
IOL = 20 mA (5 V)
IOL = 10 mA (3.3 V)
IOH = -15 mA (5 V)
IOH = -8 mA (3.3 V )
IOH = -5 mA (5 V)
IOH = -2.5 mA (3.3 V)
IOH = -20 mA (5 V)
VDDP - –
V
IOH = -25 mA (3.3 V)
VDDP - –
V
IOH = -10 mA (3.3 V)
VOHP2 CC VDDP - –
V
VDDP - –
V
IOH = -30 mA (5 V)
IOH = -16 mA (3.3 V)
IOH = -10 mA (5 V)
IOH =- 5 mA (3.3 V)
Output low voltage on VOLP2
P1[5:4]
Output high voltage
on port pins
(all except P1)
VOHP
CC VDDP 1.0
0.4
Output high voltage
on P1[3:0]
0.32
1.0
0.4
Output high voltage
on P1[5:4]
1.0
0.4
Data Sheet
25
V1.2, 2011-03
XC835/836
Electrical Parameters
Table 8
Input/Output Characteristics (Operating Conditions apply) (cont’d)
Parameter
Symbol
VILP
SR
Input high voltage on VIHP
port pins
SR
Input low voltage on
port pins
1)
Input Hysteresis
HYS
Limit Values
Min.
Max.
–
0.3 ×
Unit Test Conditions
V
CMOS Mode
(5 & 3.3 V)
–
V
CMOS Mode
(5 V & 3.3 V)
CC 0.08 × –
V
CMOS Mode (5 V)
V
CMOS Mode (3.3 V)
V
CMOS Mode (2.5 V)
VIH,min (5 V)
VIL,max (5 V)
VIH,min (3.3 V)
VIL,max (3.3 V)
VIL,max (5 V)
VIH,min (5 V)
VIL,max (3.3 V)
VIH,min (3.3 V)
0 < VIN < VDDP,
TA ≤ 125 °C
VDDP
0.7 ×
VDDP
VDDP
0.03 × –
VDDP
0.01 × –
VDDP
Pull-up current
Pull-down current
IPUP
IPDP
SR
SR
–
-20
µA
-150
–
µA
–
-5
µA
-100
–
µA
–
20
µA
150
–
µA
–
5
µA
100
–
µA
Input leakage current IOZP
on port pins2)
(all except P1)
CC -1
1
µA
Input leakage current IOZP1
on P1[3:0]2)
CC -3
3
µA
0 < VIN < VDDP,
TA ≤ 125 °C
Input leakage current IOZP2
on P1[5:4]2)
CC -2
2
µA
0 < VIN < VDDP,
TA ≤ 125 °C
Overcurrent
threshold per pin for
P1[3:0]3)
|IOCP1| SR 60
115
mA
VDDP = 5 V
Overload current on
any pin
IOVP
SR
-5
5
mA
4)
Absolute sum of
overload currents
Σ|IOV|
SR
–
25
mA
4)
Data Sheet
26
V1.2, 2011-03
XC835/836
Electrical Parameters
Table 8
Input/Output Characteristics (Operating Conditions apply) (cont’d)
Parameter
Symbol
Limit Values
Min.
Max.
Unit Test Conditions
Voltage on any pin
VPO
during VDDP power off
SR
–
0.3
V
5)
Maximum current per IMP
pin (excluding P1,
VDDP and VSS)
SR
-15
25
mA
–
Maximum current per IMP1A
pin for P1[3:0]
SR
-50
50
mA
–
Maximum current per IMP1B
pin for P1[5:4]
SR
-30
50
mA
–
130
mA
4)
130
mA
4)
Maximum current
into VDDP
IMVDDP SR –
Maximum current out IMVSS
of VSS
SR
–
1) Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta
stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching
due to external system noise.
2) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin.
3) Over current detection is available for 5V application only.
4) Not subjected to production test, verified by design/characterization.
5) Not subjected to production test, verified by design/characterization. However, for applications with strict low
power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin
when VDDP is powered off.
Data Sheet
27
V1.2, 2011-03
XC835/836
Electrical Parameters
3.2.2
Supply Threshold Characteristics
Table 9 provides the characteristics of the supply threshold in the XC835/836.
5.0V
VDDP
VDDPPW/VDDPBOPD
VDDPBOA
VDDPSRR
2.5V
VDDC
VDDCPW
VDDCBOA
VDDCBOPD
VDDCSRR
VDDCRDR
Figure 8
Supply Threshold Parameters
Table 9
Supply Threshold Parameters (Operating Conditions apply)
Parameters
Symbol
Limit Values
Unit
Min. Typ. Max.
VDDP prewarning voltage1)2)
VDDP brownout voltage in active mode2)3)
VDDP brownout voltage in all power down
VDDPPW CC 3.0 3.6 4.5 V
VDDPBOA CC 2.65 2.75 2.87 V
VDDPBOPD
3.0
3.6 4.5
V
VDDP system reset release voltage2)4)
VDDC prewarning voltage2)5)
VDDC brownout voltage in active mode2)
VDDC brownout voltage in power down mode2)
VDDC system reset release voltage2)4)
VDDPSRR
VDDCPW
VDDCBOA
VDDCBOPD
VDDCSRR
VDDCRDR
mode2)3)
RAM data retention voltage
CC 2.7
2.8
2.92 V
CC 2.3
2.4
2.48 V
CC 2.25 2.3
2.42 V
CC 1.35 1.5
1.95 V
CC 2.28 2.3
2.47 V
CC 1.1
–
–
V
1) Detection is enabled via SDCON register in active mode. It is automatically disabled in power down mode.
Detection should be disabled for VDDP less than maximum of VDDPPW.
2) This parameter has a hysteresis of 50 mV.
3) Detection is enabled via SDCON register. Detection must be disabled for application with VDDP less than the
specified values.
4) VDDPSRR and VDDCSRR must be met before the system reset is released.
5) Detection is enabled via SDCON register in active mode. It is automatically disabled in power down mode.
Data Sheet
28
V1.2, 2011-03
XC835/836
Electrical Parameters
3.2.3
ADC Characteristics
The values in Table 10 are given for an analog power supply of 5.0 V. The ADC can be
used with an analog power supply down to 3 V. But in this case, analog parameters may
show a reduced performance. In the reduced voltage mode (2.5 V < VDDP < 3 V), the
ADC is not recommended to be used.
Table 10
ADC Characteristics (Operating Conditions apply; VDDP = 5 V;
fADCI <= 12 MHz)
Parameter
Symbol
Limit Values
Min.
Typ. Max.
Unit
Test
Conditions /
Remarks
Analog reference
voltage
VAREF
–
VDDP –
V
Connect
internally to VDDP
Analog reference
ground
VAGND
–
VSSP –
V
Connect
internally to VSSP
Alternate analog
reference ground
VAGNDALT SR VSSP - –
2.51)
V
Connect to AN0
in differential
mode, See
Figure 9.
Internal voltage
reference
VINTREF
1.23 1.28
V
4)
VAREF
V
–
16
MHz
internal analog
clock
µs
–
CC See Section 3.2.3.1
µs
–
SR –
µs
2)
0.1
Analog input voltage VAIN
range
ADC clock
fADCI
Sample time
tS
tC
Set-up time between tSETUP
Conversion time
SR 1.19
SR VAGND –
8
–
CC (2 + INPCR0.STC) ×
tADCI
35
–
conversions using
internal voltage
reference
Data Sheet
29
V1.2, 2011-03
XC835/836
Electrical Parameters
Table 10
ADC Characteristics (Operating Conditions apply; VDDP = 5 V;
fADCI <= 12 MHz) (cont’d)
Parameter
Symbol
Limit Values
Min.
Total unadjusted
error
TUE3)
Unit
Test
Conditions /
Remarks
8-bit conversion
with internal
reference4)
Typ. Max.
CC –
–
±1
LSB8
–
–
+4/-2
LSB10 10-bit
conversion with
internal
reference4)5)
–
–
+14/-2
LSB12 12-bit
conversion using
the Low Pass
Filter 4)
EADNL
CC –
–
+1.5/ -1 LSB
10-bit
conversion4)
Integral Nonlinearity EAINL
CC –
–
±1.5
LSB
10-bit
conversion4)
Differential
Nonlinearity
Offset
EAOFF
CC –
+4
–
LSB
10-bit
conversion4)
Gain
EAGAIN
CC –
-4
–
LSB
10-bit
conversion4)
Switched
capacitance at an
analog input
CAINSW
CC –
2
3
pF
4)6)
CC –
–
12
pF
4)6)
CC –
1.5
2
kΩ
4)
Total capacitance at CAINT
an analog input
Input resistance of
an analog input
RAIN
1) 1.2 V at VDDP = 3.0 V.
2) Not subject to production test, verified at CPU clock (fSCLK, CCLK ) = 8 MHz, TA = + 25 °C and VDDP = 5 V.
3) TUE is tested at VAREF = VDDP = 5.0 V and CPU clock (fSCLK, CCLK ) = 8 MHz.
4) Not subject to production test, verified by design/characterization.
5) If a reduced positive reference voltage is used, TUE will increase. If the positive reference is reduced by a
factor of K, the TUE will increased by 1/K. Example:K = 0.8, 1/K = 1.25; 1.25 X TUE = 2.5 LSB10.
6) The sampling capacity of the conversion C-Network is pre-charged to VAREF/2 before connecting the input to
the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than VAREF/2.
Data Sheet
30
V1.2, 2011-03
XC835/836
Electrical Parameters
V1.2VREF
ADC kernel
va_altref
va_altgnd
V1.2VGND
AD
converter
request
control
conversion
control
AIN CH0
AIN CH1
...
result
handling
AIN CH7
Interrupt
generation
Figure 9
Differential like measurement with internal 1.2V voltage reference,
and CH0 gnd.
Analog Input Circuitry
R EXT
VAIN
R AIN, On
ANx
C AINSW
C EXT
C AINT - C AINSW
VSSP
Figure 10
Data Sheet
ADC Input Circuits
31
V1.2, 2011-03
XC835/836
Electrical Parameters
3.2.3.1
ADC Conversion Timing
Conversion time, tC = tADC × (1 + r × (3 + n + STC)), where
•
•
•
•
•
r = CTC + 3,
CTC = Conversion Time Control (GLOBCTR.CTC),
STC = Sample Time Control (INPCR0.STC),
n = 8 or 10 (for 8-bit and 10-bit conversion respectively),
tADC = 1 / fADC
3.2.3.2
Out of Range Comparator Characteristics
Table 11 below shows the Out of Range Comparator characteristics.
Table 11
Out of Range Comparator Characteristics (Operating Conditions
apply)
Parameter
Symbol
Limit Values
Unit Remarks
Min. Typ. Max.
DC Switching
Level
VSenseDC
SR 60
125
270
mV
Above VDDP
DC Hysteresis
VSenseHys
tSensePW
tSenseSD
tSensePSL
CC 30
–
–
mV
1)
SR 300
–
–
ns
ANx > VDDP1)
CC –
–
400
ns
ANx >= VDDP + 350 mV1)
SR –
250
–
mV
@ 300 nsec1)
SR –
60
–
mV
@ 800 usec1)
Pulse Width
Switching Delay
Pulse Switching
Level
1) Not subject to production test, verified by design/characterization.
Data Sheet
32
V1.2, 2011-03
XC835/836
Electrical Parameters
3.2.4
Flash Memory Parameters
The XC835/836 is delivered with all Flash sectors erased (read all zeros).
The data retention time of the XC835/836’s Flash memory (i.e. the time after which
stored data can still be retrieved) depends on the number of times the Flash memory has
been erased and programmed.
Note: Flash memory parameters are not subject to production test but verified by design
and/or characterization.
Table 12
Flash Timing Parameters (Operating Conditions apply)
Parameter
Symbol
Limit Values
Unit Remarks
Min. Typ. Max.
Read access time
(per byte)
tACC
CC –
125
–
ns
Programming time
(per wordline)
tPR
CC –
2.2
–
ms
Erase time
tER
(one or more sectors)
CC –
120
–
ms
Flash wait states
Table 13
NWSFLASH CC
0
CPU clock = 8 MHz
1
CPU clock = 24 MHz
Flash Data Retention and Endurance (Operating Conditions apply)
Retention
Endurance1)
Size
20 years
1,000 cycles
up to 8 Kbytes
5 years
10,000 cycles
1 Kbyte
2 years
70,000 cycles
512 bytes
2 years
100,000 cycles
128 bytes
Remarks
1) One cycle refers to the programming of all wordlines in a sector and erasing of sector. The Flash endurance
data specified in Table 13 is valid only if the following conditions are fulfilled:
- the maximum number of erase cycles per Flash sector must not exceed 100,000 cycles.
- the maximum number of erase cycles per Flash bank must not exceed 300,000 cycles.
- the maximum number of program cycles per Flash bank must not exceed 2,500,000 cycles.
Data Sheet
33
V1.2, 2011-03
XC835/836
Electrical Parameters
Table 14
Emulated Flash Data Retention and Endurance based on EEPROM
Emulation ROM Library (Operating Conditions apply)
Retention
Endurance1)
Emulation Size
2 years
1,600,000 cycles
31 bytes
2 years
1,400,000 cycles
62 bytes
2 years
1,200,000 cycles
93 bytes
2 years
1,000,000 cycles
124 bytes
Remarks
1) These values show the maximum endurance. Maximum endurance is the maximum possible unique data write
if each data update is only 31 bytes. Minimum endurance cycle is the maximum possible unique data write if
each data update is the same as the emulation size. The minimum endurance cycle can be calculated using
the formulae [(max. endurance)*(31)/(emulation size)].
Data Sheet
34
V1.2, 2011-03
XC835/836
Electrical Parameters
3.2.5
Power Supply Current
Table 15 provides the characteristics of the power supply current in the XC835/836.
Table 15
Power Consumption Parameters1) 2)(Operating Conditions apply)
Parameter
Symbol
Limit Values
Typ.
Active Mode
Idle Mode
Power Down Mode 1
Power Down Mode 2
Power Down Mode 3
Power Down Mode 4
IDDPA
IDDPI
IPDP1
IPDP2
IPDP3
IPDP4
Unit
Test Condition
Max.
23
28
mA
5 V / 3.3 V 3)
16
20
mA
5 V / 3.3 V 4)
–
5
mA
2.5 V5)
18
25
mA
5 V / 3.3 V 6)
–
5
mA
2.5 V 5)
3
5
µA
TA = 25° C7)
–
28
µA
TA = 85° C7)8)9)
6
8
µA
TA = 25° C7)8)
–
31
µA
TA = 85° C7)8)9)
5
7
µA
TA = 25° C7)8)
–
30
µA
TA = 85° C7)8)9)
5
7
µA
TA = 25° C7)
–
30
µA
TA = 85° C7)8)9)
1) The typical IDDP values are measured at TA = + 25 °C and VDDP = 5 V and 3.3 V.
2) The maximum IDDC values are measured under worst case conditions (TA = + 125 °C and VDDC = 5 V).
3) IDDP (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz
(CLKMODE=0).
4) IDDP (active mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz
(CLKMODE=1).
5) This value is based on the maximum load capacity of EVR during VDDP = 2.5 V. Not subject to production test,
verified by design/characterisation.
6) IDDPI (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals
enabled and running at 24 MHz (CLKMODE=0).
7) IPDP1, IPDP2, IPDP3 and IPDP4 is measured at 5 V and 3.3 V with: wake-up port is programmed to be input with
either internal pull devices enabled or driven externally to ensure no floating inputs.
8) Not subject to production test, verified by design/characterisation.
9) IPDP1, IPDP2, IPDP3 and IPDP4 has a maximum values of 120 uA at TA = + 125 °C.
Data Sheet
35
V1.2, 2011-03
XC835/836
Electrical Parameters
Table 16 shows the maximum active current within the device in the reduced voltage
condition of 2.5 V < VDDP < 3.0 V. The active current consumption needs to be below the
specified values as according to the VDDP voltage. If the conditions are not met, a
brownout reset may be triggered.
Table 16
Active Current Consumption in Reduced Voltage Condition
2.5 V
VDDP
Maximum active current 7 mA
2.6 V
2.7 V
2.8 V
13 mA
20 mA
25 mA
Table 17 provides the active current consumption of some modules operating at 8 MHz
active mode, 3 V power supply at 25° C. The typical values shown are used as a
reference guide for device operating in reduced voltage conditions.
Table 17
Typical Active Current Consumption1) 2)
Active Current
Consumption
Symbol
Baseload current3)
ICPUDDC
6900
µA
Modules including Core,
memories, UART, T0, T1 and
EVR. Disable ADC analog
(GLOBCTR.ANON = 0).
ADC4)
IADCDDC
3760
µA
Set PMCON1.ADC_DIS to 0
and GLOBECTR. ANON to 1
SSC5)
ISSCDDC
ICCU6DDC
IT2DDC
IMDUDDC
ICORDICDDC
ILEDDDC
IIICDDC
460
µA
Set PMCON1.SSC_DIS to 0
3320
µA
Set PMCON1.CCU_DIS to 0
200
µA
Set PMCON1.T2_DIS to 0
1260
µA
Set PMCON1.MDU_DIS to 0
1880
µA
Set PMCON1.CDC_DIS to 0
850
µA
Set PMCON1.LTS_DIS to 0
580
µA
Set PMCON1.IIC_DIS to 0
CCU66)
Timer 27)
MDU8)
CORDIC9)
LEDTSCU10)
11)
IIC
Limit Values Unit
Test Condition
Typ.
1) Modules that are controllable by programming the register PMCON1.
2) Not subject to production test, verified by design/characterisation.
3) Baseload current is measured when the device is running in user mode with an endless loop in the flash
memory. All modules in register PMCON1 are disabled.
4) ADC active current is measured with: module enable, ADC analog clock at 8MHz, running in parallel
conversion request in autoscan mode for 4 channels
5) SSC active curremt is measured with: module enabled, running in loop back mode at a baud rate of 1 MBaud
6) CCU6 active current is measured with: module enabled, all timers running in 8 MHz, 6 PWM outputs are
generated.
Data Sheet
36
V1.2, 2011-03
XC835/836
Electrical Parameters
7) Timer 2 active current is measured with: module enabled, timer running in 8 MHz
8) MDU active current is measured with: module enabled, division operation was performed.
9) CORDIC active mode is measured with: module enabled, circular mode was selected for the calculation.
10) LEDTSCU active curent is measured with: module enabled, counter running in 8 MHz.
11) IIC active current is measured with: module enabled, performing a master transmit with the master clock
running at 400 KHz.
Data Sheet
37
V1.2, 2011-03
XC835/836
Electrical Parameters
3.3
AC Parameters
The electrical characteristics of the AC Parameters are detailed in this section.
3.3.1
Testing Waveforms
The testing waveforms for rise/fall time, output delay and output high impedance are
shown in Figure 11, Figure 12 and Figure 13.
VDDP
90%
10%
10%
VSS
Figure 11
90%
tF
tR
Rise/Fall Time Parameters
VDDP
VDDE / 2
Test Points
VDDE / 2
VSS
Figure 12
Testing Waveform, Output Delay
VLoad + 0.1 V
VLoad - 0.1 V
Figure 13
Data Sheet
Timing
Reference
Points
VOH - 0.1 V
VOL - 0.1 V
Testing Waveform, Output High Impedance
38
V1.2, 2011-03
XC835/836
Electrical Parameters
3.3.2
Output Rise/Fall Times
Table 18 provides the characteristics of the output rise/fall times in the XC835/836.
Table 18
Output Rise/Fall Times Parameters (Operating Conditions apply)
Parameter
Symbol
Rise/fall times on High
Current Pad Type A1)2)
tHCPR,
tHCPF
Limit Values
Unit Test Conditions
Min.
Max.
–
15
ns
20 pF @ Fast edge
(5 V) 3).
–
150
ns
20 pF @ Slow Edge
(5 V)3).
–
25
ns
20 pF @ Fast edge
(3.3 V)4).
–
300
ns
20 pF @ Slow edge
(3.3 V)4).
Rise/fall times on High
Current Pad Type B1)2)
tR, tF
–
10
ns
20 pF3)4)
(5 V & 3.3 V).
Rise/fall times on
Standard Pad1)2)
tR, tF
–
10
ns
20 pF3)4)
(5 V & 3.3 V).
1) Rise/Fall time parameters are taken with 10% - 90% of supply.
2) Not all parameters are 100% tested, but are verified by design/characterisation and test correlation.
3) Additional rise/fall time valid for CL = 20 pF - CL = 100 pF @ 0.125 ns/pF at 5 V supply voltage.
4) Additional rise/fall time valid for CL = 20 pF - CL = 100 [email protected] 0.225 ns/pF at 3.3 V supply voltage.
VDDC
90%
VSS
90%
10%
10%
tF
tR
Figure 14
Data Sheet
Rise/Fall Times Parameters
39
V1.2, 2011-03
XC835/836
Electrical Parameters
3.3.3
Oscillator Timing and Wake-up Timing
Table 19 provides the characteristics of the power-on reset, PLL and wake-up timings in
the XC835/836.
Table 19
Power-On Reset Wake-up Timing1) (Operating Conditions apply)
Parameter
Symbol
Limit Values
Unit Test Conditions
Min. Typ. Max.
t48MOSCST CC –
–
13
µs
75 KHz Oscillator start- t75KOSCST CC –
up time
–
800
µs
t32KOSCST CC –
–
1
s
160
–
µs
48 MHz Oscillator
start-up time
32 KHz external
oscillator start-up
time2)
Flash initialization time tFINT
CC –
1) Not subject to production test, verified by design/characterisation.
2) The external circuitry has to be optimized by the user and checked for negative resistance as recommended
and specified by the crystal supplier.
Data Sheet
40
V1.2, 2011-03
XC835/836
Electrical Parameters
3.3.4
On-Chip Oscillator Characteristics
Table 20 provides the characteristics of the 48 MHz oscillator in the XC835/836.
Table 20
48 MHz Oscillator Characteristics (Operating Conditions apply)
Parameter
Symbol
Limit Values
Min.
Nominal frequency
Typ. Max.
fNOM CC -0.5 % 48
Long term
∆fLT
frequency deviation
CC
Short term
∆fST CC
frequency deviation
(over VDDC)
Unit Test Conditions
+0.5% MHz under nominal
conditions1) after
trimming
-2.0
–
3.0
%
with respect to fNOM, over
lifetime and temperature
(0 °C to 85 °C)
-4.5
–
4.5
%
with respect to fNOM, over
lifetime and temperature
(-40 °C to 125 °C)
-1
–
1
%
with respect to fNOM,
within one LIN message
(< 10 ms … 100 ms)
1) Nominal condition: VDDC = 2.5 V, TA = + 25°C.
Data Sheet
41
V1.2, 2011-03
XC835/836
Electrical Parameters
Table 21 provides the characteristics of the 75 kHz oscillator in the XC835/836.
Table 21
75 kHz Oscillator Characteristics (Operating Conditions apply)
Parameter
Symbol
Limit Values
Unit Test Conditions
Min. Typ. Max.
Nominal frequency
fNOM CC
-1%
75
+1% KHz under nominal
conditions1) after trimming
CC
-4.5
–
4.5
%
with respect to fNOM, over
lifetime and temperature
(-40 °C to 125 °C)
Short term frequency ∆fST CC
deviation
-1.5
–
1.5
%
with respect to fNOM, over
Long term frequency ∆fLT
deviation
VDDC
1) Nominal condition: VDDC = 2.5 V, TA = + 25°C.
Data Sheet
42
V1.2, 2011-03
XC835/836
Electrical Parameters
3.3.5
SSC Timing
3.3.5.1
SSC Master Mode Timing
Table 22 provides the SSC master mode timing in the XC835/836.
Table 22
SSC Master Mode Timing1) (Operating Conditions apply; CL = 50 pF)
Parameter
Symbol
Limit Values
Min.
Max.
Unit
CC
2 * TSSC2)
–
ns
MTSR delay from SCLK
t0
t1
CC
0
3
ns
MRST set-up to SCLK
t2
SR
32
–
ns
MRST hold from SCLK
t3
SR
0
–
ns
SCLK clock period
1) Not subject to production test, verified by design/characterisation.
2) TSSCmin = TCPU = 1/fCPU. When fCPU = 24 MHz, t0 = 83.3 ns. TCPU is the CPU clock period.
t0
SCLK1)
t1
t1
MTSR1)
t2
t3
Data
valid
MRST1)
t1
1) This timing is based on the following setup: CON.PH = CON.PO = 0.
SSC_Tmg1
Figure 15
Data Sheet
SSC Master Mode Timing
43
V1.2, 2011-03
XC835/836
Electrical Parameters
3.3.5.2
SSC Slave Mode Timing
Table 23 provides the SSC slave mode timing in the XC835/836.
Table 23
SSC Slave Mode Timing1) (Operating Conditions apply; CL = 50 pF)
Parameter
Symbol
Limit Values
Min.
SR
4 * TSSC
MRST delay from SCLK
t0
t1
CC
MTSR set-up to SCLK
t2
MTSR hold from SCLK
t3
SCLK clock period
Unit
Max.
2)
–
ns
0
29
ns
SR
32
–
ns
SR
0
–
ns
1) Not subject to production test, verified by design/characterisation.
2) TSSCmin = TCPU = 1/fCPU. When fCPU = 24 MHz, t0 = 166.7 ns. TCPU is the CPU clock period.
t0
SCLK1)
t2
MTSR1)
t3
Data Valid
t1
MRST1)
1)
Figure 16
Data Sheet
This timing is based on the following setup : CON.PH = CON.PO = 0.
SSC Slave Mode Timing
44
V1.2, 2011-03
XC835/836
Electrical Parameters
3.3.6
SPD Timing
The SPD interface will work with standard SPD tools having a sample/output clock frequency deviation of +/- 5% or less. For further details please refer to application note
AP24004 in section SPD Timing Requirements.
Note: These parameters are no subject to product test but verified by design and/or
characterization.
Note: Operating Conditions apply.
Data Sheet
45
V1.2, 2011-03
XC835/836
Package and Quality Declaration
4
Package and Quality Declaration
Chapter 4 provides the information of the XC835/836 package and reliability section.
4.1
Package Parameters
Table 24 provides the thermal characteristics of the packages used in XC835 and
XC836 respectively.
Table 24
Parameter
Thermal Characteristics of the Packages
Symbol
Limit Values
Min.
Thermal resistance junction RTJC
case1)
Thermal resistance junction RTJL
lead1)
Unit
Package Types
Max.
CC -
30.8
K/W
PG-DSO-24-1
-
27.0
K/W
PG-TSSOP-28-1
-
20.2
K/W
PG-TSSOP-28-12
CC -
30.5
K/W
PG-DSO-24-1
-
195.3
K/W
PG-TSSOP-28-1
-
41
K/W
PG-TSSOP-28-12
1) The thermal resistances between the case and the ambient (RTCA) , the lead and the ambient (RTLA) are to be
combined with the thermal resistances between the junction and the case (RTJC), the junction and the lead
(RTJL) given above, in order to calculate the total thermal resistance between the junction and the ambient
(RTJA). The thermal resistances between the case and the ambient (RTCA), the lead and the ambient (RTLA)
depend on the external system (PCB, case) characteristics, and are under user responsibility.
The junction temperature can be calculated using the following equation: TJ=TA+RTJA × PD, where the RTJA is
the total thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA
can be obtained from the upper four partial thermal resistances, by
a) simply adding only the two thermal resistances (junction lead and lead ambient), or
b) by taking all four resistances into account, depending on the precision needed.
Data Sheet
46
V1.2, 2011-03
XC835/836
Package and Quality Declaration
4.2
Package Outline
Figure 17 and Figure 18 shows the package outlines of the XC835 (DSO-24-1) and
XC836 (TSSOP-28-1 and TSSOP-28-12) devices respectively.
Figure 17
Data Sheet
PG-DSO-24-1 Package Outline
47
V1.2, 2011-03
XC835/836
Package and Quality Declaration
Figure 18
Data Sheet
PG-TSSOP-28-1 Package Outline
48
V1.2, 2011-03
XC835/836
Package and Quality Declaration
Figure 19
Data Sheet
PG-TSSOP-28-12 Package Outline
49
V1.2, 2011-03
XC835/836
Package and Quality Declaration
4.3
Quality Declaration
Table 25 shows the characteristics of the quality parameters in the XC835/836.
Table 25
Quality Parameters
Parameter
Symbol Limit Values
Unit
Notes
Min.
Max.
-
1500
hours TJ = 150°C
-
15000
hours TJ = 110°C
-
1500
hours TJ = -40°C
-
131400
hours TJ = 27°C
ESD susceptibility
VHBM
according to Human Body
Model (HBM)
-
2000
V
Conforming to
EIA/JESD22A114-B2)
VCDM
-
500
V
Conforming to
JESD22-C101-C2)
Operation Lifetime when
the device is used at the
three stated TJ1)
tOP1
Operation Lifetime when
the device is used at the
stated TJ1)
tOP2
ESD susceptibility
according to Charged
Device Model (CDM) pins
1) This lifetime refers only to the time when device is powered-on.
2) Not all parameters are 100% tested, but are verified by design/characterisation and test correlation.
Data Sheet
50
V1.2, 2011-03
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG