IRF IRF6645

PD - 97006
IRF6645
DirectFET™ Power MOSFET ‚
l
l
l
l
l
l
l
l
l
Typical values (unless otherwise specified)
RoHs Compliant Containing No Lead and Bromide 
Low Profile (<0.7 mm)
Dual Sided Cooling Compatible 
Ultra Low Package Inductance
Optimized for High Frequency Switching 
Ideal for High Performance Isolated Converter
Primary Switch Socket
Optimized for Synchronous Rectification
Low Conduction Losses
Compatible with existing Surface Mount Techniques 
VDSS
VGS
100V max ±20V max
Qg
tot
14nC
RDS(on)
28mΩ@ 10V
Qgd
Vgs(th)
4.8nC
4.0V
DirectFET™ ISOMETRIC
SJ
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SH
SJ
SP
MZ
MN
Description
The IRF6645 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the
lowest on-state resistance in a package that has the footprint of an Micro8 and only 0.7 mm profile. The DirectFET package is compatible with
existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques,
when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided
cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6645 is optimized for primary side bridge topologies in isolated DC-DC applications, for wide range universal input Telecom applications
(36V - 75V), and for secondary side synchronous rectification in regulated DC-DC topologies. The reduced total losses in the device coupled
with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements,
and makes this device ideal for high performance isolated DC-DC converters.
Absolute Maximum Ratings
Max.
Units
VDS
Drain-to-Source Voltage
100
V
VGS
Gate-to-Source Voltage
±20
Parameter
e
e
@ 10V f
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
5.7
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
4.5
ID @ TC = 25°C
Continuous Drain Current, VGS
25
IDM
Pulsed Drain Current
EAS
Single Pulse Avalanche Energy
IAR
Avalanche Current
g
g
VGS, Gate-to-Source Voltage (V)
Typical R DS (on) (mΩ)
ID = 3.4A
70
60
TJ = 125°C
50
40
TJ = 25°C
30
20
4
6
8
10
12
14
VGS, Gate-to-Source Voltage (V)
16
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
45
h
80
A
29
mJ
3.4
A
12
ID= 3.4A
10
VDS = 80V
VDS= 50V
8
6
4
2
0
0
4
8
12
16
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 5.0mH, RG = 25Ω, IAS = 3.4A.
1
8/5/05
IRF6645
Electrical Characteristic @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Units
BVDSS
Drain-to-Source Breakdown Voltage
Parameter
100
–––
–––
V
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.12
–––
V/°C
RDS(on)
Static Drain-to-Source On-Resistance
–––
28
35
mΩ
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 5.7A c
VDS = VGS, ID = 50µA
VGS(th)
Gate Threshold Voltage
3.0
–––
4.9
V
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-12
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
20
µA
VDS = 100V, VGS = 0V
–––
–––
250
VDS = 80V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
7.4
–––
–––
Qg
VGS = -20V
S
VDS = 10V, ID = 3.4A
Total Gate Charge
–––
14
20
Qgs1
Pre-Vth Gate-to-Source Charge
–––
3.1
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
0.8
–––
Qgd
Gate-to-Drain Charge
–––
4.8
7.2
ID = 3.4A
Qgodr
See Fig. 15
VDS = 50V
nC
VGS = 10V
Gate Charge Overdrive
–––
5.3
–––
Qsw
Switch Charge (Qgs2 + Qgd)
–––
5.6
–––
Qoss
Output Charge
–––
7.2
–––
nC
RG
Gate Resistance
–––
1.0
–––
Ω
td(on)
Turn-On Delay Time
–––
9.2
–––
VDD = 50V, VGS = 10Vc
tr
Rise Time
–––
5.0
–––
ID = 3.4A
td(off)
Turn-Off Delay Time
–––
18
–––
tf
Fall Time
–––
5.1
–––
Ciss
Input Capacitance
–––
890
–––
Coss
Output Capacitance
–––
180
–––
Crss
Reverse Transfer Capacitance
–––
40
–––
ƒ = 1.0MHz
Coss
Output Capacitance
–––
870
–––
VGS = 0V, VDS = 1.0V, f=1.0MHz
Coss
Output Capacitance
–––
100
–––
VGS = 0V, VDS = 80V, f=1.0MHz
Min.
Typ.
Max.
–––
–––
25
ns
VDS = 16V, VGS = 0V
RG=6.2Ω
VGS = 0V
pF
VDS = 25V
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
Units
MOSFET symbol
A
–––
–––
Conditions
showing the
integral reverse
45
D
G
S
p-n junction diode.
(Body Diode)d
VSD
Diode Forward Voltage
–––
–––
1.3
V
TJ = 25°C, IS = 3.4A, VGS = 0V c
trr
Reverse Recovery Time
–––
31
47
ns
TJ = 25°C, IF = 3.4A, VDD = 50V
Qrr
Reverse Recovery Charge
–––
40
60
nC
di/dt = 100A/µs c
Notes:
 Pulse width ≤ 400µs; duty cycle ≤ 2%.
‚ Repetitive rating; pulse width limited by max. junction temperature.
2
www.irf.com
IRF6645
Absolute Maximum Ratings
Units
Power Dissipation
3.0
W
Power Dissipation
1.4
PD @TC = 25°C
c
c
Power Dissipation f
Max.
TP
Peak Soldering Temperature
270
TJ
Operating Junction and
TSTG
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
Parameter
42
°C
-40 to + 150
Thermal Resistance
Parameter
cg
Junction-to-Ambient dg
Junction-to-Ambient eg
Junction-to-Case fg
RθJA
Typ.
Max.
–––
58
Junction-to-Ambient
RθJA
RθJA
RθJC
RθJ-PCB
12.5
–––
20
–––
Junction-to-PCB Mounted
–––
3.0
1.0
–––
Units
°C/W
100
Thermal Response ( Z thJA )
D = 0.50
0.20
10
0.10
0.05
R1
R1
0.02
1
τJ
0.01
τJ
τ1
R2
R2
τ2
τ1
R3
R3
R4
R4
τAC
τ
τ2
τ3
τ3
τ4
Ci= τi/Ri
Ci= τi/Ri
0.1
Ri (°C/W)
R5
R5
τ4
τ5
C
τ5
τi (sec)
0.6677
0.000066
1.0463
0.000896
1.5612
0.004386
29.2822
0.686180
25.4550 32
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = Pdm x Zthja + Ta
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 
Notes:
 Surface mounted on 1 in. square Cu, steady state.
‚ Used double sided cooling , mounting pad.
ƒ Mounted on minimum footprint full size board with metalized
„ TC measured with thermocouple incontact with top (Drain) of part.
… Rθ is measured at TJ of approximately 90°C.
back and with small clip heatsink.
 Surface mounted on 1 in. square Cu
board (still air).
www.irf.com
ƒ Mounted to a PCB with
small clip heatsink (still air)
ƒ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6645
100
100
BOTTOM
10
6.0V
1
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
BOTTOM
10
6.0V
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.1
1
0.1
1
10
100
0.1
VDS , Drain-to-Source Voltage (V)
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Fig 5. Typical Output Characteristics
100
2.0
ID = 5.7A
VDS = 10V
≤60µs PULSE WIDTH
10
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (Α)
VGS
15V
10V
8.0V
7.0V
6.0V
TJ = 150°C
TJ = 25°C
TJ = -40°C
1
VGS = 10V
1.5
1.0
0.1
4.0
5.0
6.0
7.0
0.5
8.0
-60 -40 -20 0
VGS, Gate-to-Source Voltage (V)
Fig 6. Typical Transfer Characteristics
10000
60
VGS = 8.0V
(mΩ)
DS(on)
Coss
Typical R
C, Capacitance(pF)
Ciss
100
TA= 25°C
VGS = 7.0V
Coss = Cds + Cgd
Crss
50
VGS = 10V
VGS = 15V
40
30
20
10
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
TJ , Junction Temperature (°C)
Fig 7. Normalized On-Resistance vs. Temperature
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
1000
20 40 60 80 100 120 140 160
0
10
20
30
40
50
ID, Drain Current (A)
Fig 9. Typical On-Resistance vs. Drain Current
www.irf.com
IRF6645
1000
TJ = 150°C
TJ = 25°C
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
100.0
TJ = -40°C
10.0
1.0
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100
100µsec
10
1msec
1
TA = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.1
0.1
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.1
1.1
1.0
10.0
100.0
1000.0
VDS , Drain-toSource Voltage (V)
VSD , Source-to-Drain Voltage (V)
Fig11. Maximum Safe Operating Area
Fig 10. Typical Source-Drain Diode Forward Voltage
6.0
VGS(th) Gate threshold Voltage (V)
6.0
5.0
ID , Drain Current (A)
10msec
4.0
3.0
2.0
1.0
5.5
5.0
4.5
4.0
3.5
ID = 1.0A
ID = 1.0mA
3.0
ID = 50µA
ID = 250µA
2.5
2.0
0.0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
TJ , Temperature ( °C )
TJ , Ambient Temperature (°C)
Fig 13. Typical Threshold Voltage vs.
Junction Temperature
Fig 12. Maximum Drain Current vs. Ambient Temperature
EAS, Single Pulse Avalanche Energy (mJ)
120
ID
1.5A
2.4A
BOTTOM 3.4A
TOP
100
80
60
40
20
0
25
50
75
100
125
150
Starting TJ, Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6645
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Current Sampling Resistors
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
D.U.T
RG
VGS
20V
DRIVER
L
VDS
tp
+
V
- DD
IAS
A
I AS
0.01Ω
tp
Fig 16c. Unclamped Inductive Waveforms
Fig 16b. Unclamped Inductive Test Circuit
VDS
RD
VDS
90%
VGS
D.U.T.
RG
+
- VDD
10V
Pulse Width ≤ 1 µs
10%
VGS
td(on)
tr
td(off)
tf
Duty Factor ≤ 0.1 %
Fig 17a. Switching Time Test Circuit
6
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6645
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, SJ Outline
(Small Size Can, J-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
D
G
D
S
S
D
D
G = GATE
D = DRAIN
S = SOURCE
www.irf.com
7
IRF6645
DirectFET™ Outline Dimension, SJ Outline
(Small Size Can, J-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
MAX
CODE MIN
4.85
A
4.75
3.95
B
3.70
2.85
C
2.75
0.45
D
0.35
0.62
E
0.58
0.62
F
0.58
0.72
G
0.68
0.72
H
0.68
K
0.98 1.02
2.32
L
2.28
0.58
M
0.48
0.08
N
0.03
0.17
P
0.08
IMPERIAL
MIN
0.187
0.146
0.108
0.014
0.023
0.023
0.027
0.027
0.039
0.090
0.019
0.001
0.003
MAX
0.191
0.156
0.112
0.018
0.024
0.024
0.028
0.028
0.040
0.091
0.023
0.003
0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6645
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6645). For 1000 parts on 7" reel,
order IRF6645TR1
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
METRIC
MAX
MIN
MIN
CODE
MIN
MIN
MAX
MAX
MAX
N.C
6.9
12.992
A
330.0
177.77 N.C
N.C
N.C
0.75
B
0.795
N.C
20.2
19.06
N.C
N.C
N.C
0.53
C
0.504
0.50
12.8
13.5
0.520
12.8
13.2
0.059
D
0.059
1.5
1.5
N.C
N.C
N.C
N.C
2.31
E
3.937
100.0
58.72
N.C
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
N.C
0.724
13.50
18.4
G
0.47
0.488
12.4
11.9
N.C
0.567
12.01
14.4
H
0.47
0.469
11.9
11.9
N.C
0.606
12.01
15.4
NOTE: CONTROLLING
DIMENSIONS IN MM
DIMENSIONS
METRIC
MIN
MAX
7.90
8.10
3.90
4.10
11.90
12.30
5.45
5.55
4.00
4.20
5.00
5.20
1.50
N.C
1.50
1.60
IMPERIAL
MAX
0.319
0.161
0.484
0.219
0.165
0.205
N.C
0.063
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/05
www.irf.com
9