PDF Obsolete Data Sheets Rev. H

Micropower, Low Noise Precision Voltage
References with Shutdown
ADR390
PIN CONFIGURATION
APPLICATIONS
VIN 2
ADR390/
ADR391/
ADR392/
ADR395
5 GND
V
VOUT (SENSE) 3
(Not to Scale) 4 OUT (FORCE)
Figure 1. 5-Lead TSOT (UJ Suffix)
TE
Table 1.
B
SO
Battery-powered instrumentation
Portable medical instrumentation
Data acquisition systems
Industrial process controls
Automotive
SHDN 1
Model
ADR390B
ADR390A
ADR391B
ADR391A
ADR392B
ADR392A
ADR395B
ADR395A
Output
Voltage (VO)
2.048
2.048
2.5
2.5
4.096
4.096
5.0
5.0
LE
Compact 5-lead TSOT packages
Low temperature coefficient
B grade: 9 ppm/°C
A grade: 25 ppm/°C
Initial accuracy
B grade: ±4 mV maximum (ADR390)
A grade: ±6 mV maximum
Ultralow output noise: 5 μV p-p (0.1 Hz to 10 Hz)
Low dropout: 300 mV
Low supply current
3 μA maximum in shutdown
120 μA maximum in operation
No external capacitor required
Output current: 5 mA
Wide temperature range: −40°C to +125°C
00419-001
FEATURES
Temperature
Coefficient
(ppm/°C)
9
25
9
25
9
25
9
25
Accuracy
(mV)
±4
±6
±4
±6
±5
±6
±5
±6
GENERAL DESCRIPTION
The ADR39x family of micropower, low dropout voltage
references provides a stable output voltage from a minimum
supply of 300 mV above the output. Their advanced design
eliminates the need for external capacitors, which further
reduces board space and system cost. The combination of
low power operation, small size, and ease of use makes the
ADR39x precision voltage references ideally suited for batteryoperated applications.
O
The ADR390/ADR391/ADR392/ADR395 are precision 2.048 V,
2.5 V, 4.096 V, and 5 V band gap voltage references, respectively,
featuring low power and high precision in a tiny footprint. Using
patented temperature drift curvature correction techniques
from Analog Devices, Inc., the ADR39x references achieve a
low 9 ppm/°C of temperature drift in the TSOT package.
Rev. H
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2002–2008 Analog Devices, Inc. All rights reserved.
ADR390
TABLE OF CONTENTS
ESD Caution...................................................................................7
Applications ....................................................................................... 1
Terminology .......................................................................................8
Pin Configuration ............................................................................. 1
Typical Performance Characteristics ..............................................9
General Description ......................................................................... 1
Theory of Operation ...................................................................... 16
Specifications..................................................................................... 3
Device Power Dissipation Considerations .............................. 16
ADR390 Electrical Characteristics............................................. 3
Shutdown Mode Operation ...................................................... 16
ADR391 Electrical Characteristics............................................. 4
Applications Information .............................................................. 17
ADR392 Electrical Characteristics............................................. 5
Basic Voltage Reference Connection ....................................... 17
ADR395 Electrical Characteristics............................................. 6
Capacitors .................................................................................... 18
Absolute Maximum Ratings............................................................ 7
Outline Dimensions ....................................................................... 19
Thermal Resistance ...................................................................... 7
Ordering Guide .......................................................................... 19
TE
Features .............................................................................................. 1
REVISION HISTORY
Changes to Thermal Resistance..................................................... 7
Moved ESD Caution........................................................................ 7
Changes to Figure 3, Figure 4, Figure 7, and Figure 8 ................ 9
Changes to Figure 11, Figure 12, Figure 13, and Figure 14...... 10
Changes to Figure 15, Figure 16, Figure 19, and Figure 20...... 11
Changes to Figure 23 and Figure 24............................................ 12
Changes to Figure 27..................................................................... 13
Changes to Ordering Guide ......................................................... 19
Updated Outline Dimensions ...................................................... 19
LE
2/08—Rev. F to Rev. G
Changes to Ripple Rejection Ration Parameter (Table 2) ........... 3
Changes to Ripple Rejection Ration Parameter (Table 3) ........... 4
Changes to Ripple Rejection Ration Parameter (Table 4) ........... 5
Changes to Ripple Rejection Ration Parameter (Table 5) ........... 6
Changes to Figure 7 .......................................................................... 9
Changes to Outline Dimensions................................................... 19
Changes to Ordering Guide .......................................................... 19
B
SO
5/05—Rev. E to Rev. F
Changes to Table 5 ........................................................................... 7
Changes to Figure 2 ......................................................................... 9
4/04—Rev. D to Rev. E
Changes to ADR390—Specifications ............................................ 3
Changes to ADR391—Specifications ............................................ 4
Changes to ADR392—Specifications ............................................ 5
Changes to ADR395—Specifications ............................................ 6
O
4/04—Rev. C to Rev. D
Updated Format ................................................................ Universal
Changes to Title ............................................................................... 1
Changes to Features......................................................................... 1
Changes to Applications ................................................................. 1
Changes to General Description ................................................... 1
Changes to Table 1 ........................................................................... 1
Changes to ADR390—Specifications ............................................ 3
Changes to ADR391—Specifications ............................................ 4
Changes to ADR392—Specifications ............................................ 5
Changes to ADR395—Specifications ............................................ 6
Changes to Absolute Maximum Ratings ...................................... 7
10/02—Rev. B to Rev. C
Add parts ADR392 and ADR395 ....................................Universal
Changes to Features ........................................................................ 1
Changes to General Description ................................................... 1
Additions to Table I ......................................................................... 1
Changes to Specifications ............................................................... 2
Changes to Ordering Guide ........................................................... 4
Changes to Absolute Maximum Ratings ...................................... 4
New TPCs 3, 4, 7, 8, 11, 12, 15, 16, 19, and 20 ............................ 6
New Figures 4 and 5 ...................................................................... 13
Deleted A Negative Precision Reference
without Precision Resistors Section ............................................ 13
Edits to General-Purpose Current Source Section ................... 13
Updated Outline Dimensions ...................................................... 15
5/02—Rev. A to Rev. B
Edits to Layout ...................................................................Universal
Changes to Figure 6 ....................................................................... 13
Rev. H | Page 2 of 20
ADR390
SPECIFICATIONS
ADR390 ELECTRICAL CHARACTERISTICS
VIN = 2.5 V to 15 V, TA = 25°C, unless otherwise noted.
Table 2.
SUPPLY VOLTAGE HEADROOM
LINE REGULATION
LOAD REGULATION
VIN − VO
∆VO/∆VIN
∆VO/∆ILOAD
QUIESCENT CURRENT
IIN
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
enp-p
tR
∆VO
∆VO_HYS
RRR
ISC
SHUTDOWN PIN
Shutdown Supply Current
Shutdown Logic Input Current
Shutdown Logic Low
Shutdown Logic High
ISHDN
ILOGIC
VINL
VINH
Typ
2.048
2.048
Max
2.054
2.052
6
0.29
4
0.19
25
9
300
10
25
60
140
120
140
5
20
50
100
−80
25
30
1000 hours
fIN = 60 Hz
VIN = 5 V
VIN = 15 V
3
500
0.8
2.4
The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.
O
1
Min
2.042
2.044
VIN = 2.5 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +85°C, VIN = 3 V
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V
No load
−40°C < TA < +125°C
0.1 Hz to 10 Hz
B
SO
INITIAL ACCURACY
Conditions
A grade
B grade
A grade
A grade
B grade
B grade
A grade: −40°C < TA < +125°C
B grade: −40°C < TA < +125°C
TE
TEMPERATURE COEFFICIENT
Symbol
VO
VO
VOERR
VOERR
VOERR
VOERR
TCVO
LE
Parameter
OUTPUT VOLTAGE
Rev. H | Page 3 of 20
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
ppm/V
ppm/mA
ppm/mA
μA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
μA
nA
V
V
ADR390
ADR391 ELECTRICAL CHARACTERISTICS
VIN = 2.8 V to 15 V, TA = 25°C, unless otherwise noted.
Table 3.
INITIAL ACCURACY
TEMPERATURE COEFFICIENT
Symbol
VO
VO
VOERR
VOERR
VOERR
VOERR
TCVO
Conditions
A grade
B grade
A grade
A grade
B grade
B grade
A grade, −40°C < TA < +125°C
Min
2.494
2.496
Typ
2.5
2.5
B grade, −40°C < TA < +125°C
QUIESCENT CURRENT
IIN
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
enp-p
tR
∆VO
∆VO_HYS
RRR
ISC
SHUTDOWN PIN
Shutdown Supply Current
Shutdown Logic Input Current
Shutdown Logic Low
Shutdown Logic High
ISHDN
ILOGIC
VINL
VINH
300
VIN = 2.8 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +85°C, VIN = 3 V
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V
No load
−40°C < TA < +125°C
0.1 Hz to 10 Hz
10
25
60
140
120
140
5
20
50
100
−80
25
30
1000 hours
fIN = 60 Hz
VIN = 5 V
VIN = 15 V
3
500
0.8
2.4
The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.
O
1
9
LE
VIN − VO
∆VO/∆VIN
∆VO/∆ILOAD
B
SO
SUPPLY VOLTAGE HEADROOM
LINE REGULATION
LOAD REGULATION
Max
2.506
2.504
6
0.24
4
0.16
25
TE
Parameter
OUTPUT VOLTAGE
Rev. H | Page 4 of 20
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
ppm/V
ppm/mA
ppm/mA
μA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
μA
nA
V
V
ADR390
ADR392 ELECTRICAL CHARACTERISTICS
VIN = 4.3 V to 15 V, TA = 25°C, unless otherwise noted.
Table 4.
SUPPLY VOLTAGE HEADROOM
LINE REGULATION
LOAD REGULATION
QUIESCENT CURRENT
VIN − VO
∆VO/∆VIN
∆VO/∆ILOAD
IIN
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
enp-p
tR
∆VO
∆VO_HYS
RRR
ISC
SHUTDOWN PIN
Shutdown Supply Current
Shutdown Logic Input Current
Shutdown Logic Low
Shutdown Logic High
ISHDN
ILOGIC
VINL
VINH
Typ
4.096
4.096
Max
4.102
4.101
6
0.15
5
0.12
25
9
300
10
25
140
120
140
7
20
50
100
−80
25
30
1000 hours
fIN = 60 Hz
VIN = 5 V
VIN = 15 V
3
500
0.8
2.4
The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.
O
1
Min
4.090
4.091
VIN = 4.3 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 5 V
No load
−40°C < TA < +125°C
0.1 Hz to 10 Hz
B
SO
INITIAL ACCURACY
Conditions
A grade
B grade
A grade
A grade
B grade
B grade
A grade, −40°C < TA < +125°C
B grade, −40°C < TA < +125°C
TE
TEMPERATURE COEFFICIENT
Symbol
VO
VO
VOERR
VOERR
VOERR
VOERR
TCVO
LE
Parameter
OUTPUT VOLTAGE
Rev. H | Page 5 of 20
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
ppm/V
ppm/mA
μA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
μA
nA
V
V
ADR390
ADR395 ELECTRICAL CHARACTERISTICS
VIN = 5.3 V to 15 V, TA = 25°C, unless otherwise noted.
Table 5.
SUPPLY VOLTAGE HEADROOM
LINE REGULATION
LOAD REGULATION
QUIESCENT CURRENT
VIN − VO
∆VO/∆VIN
∆VO/∆ILOAD
IIN
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
enp-p
tR
∆VO
∆VO_HYS
RRR
ISC
SHUTDOWN PIN
Shutdown Supply Current
Shutdown Logic Input Current
Shutdown Logic Low
Shutdown Logic High
ISHDN
ILOGIC
VINL
VINH
Typ
5.000
5.000
Max
5.006
5.005
6
0.12
5
0.10
25
9
300
10
25
140
120
140
8
20
50
100
−80
25
30
1000 hours
fIN = 60 Hz
VIN = 5 V
VIN = 15 V
3
500
0.8
2.4
The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.
O
1
Min
4.994
4.995
VIN = 4.3 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 6 V
No load
−40°C < TA < +125°C
0.1 Hz to 10 Hz
B
SO
INITIAL ACCURACY
Conditions
A grade
B grade
A grade
A grade
B grade
B grade
A grade, −40°C < TA < +125°C
B grade, −40°C < TA < +125°C
TE
TEMPERATURE COEFFICIENT
Symbol
VO
VO
VOERR
VOERR
VOERR
VOERR
TCVO
LE
Parameter
OUTPUT VOLTAGE
Rev. H | Page 6 of 20
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
ppm/V
ppm/mA
μA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
μA
nA
V
V
ADR390
ABSOLUTE MAXIMUM RATINGS
At 25°C, unless otherwise noted.
THERMAL RESISTANCE
Table 6.
θJA is specified for the worst-case conditions, that is, for a device
soldered in a circuit board for surface-mount packages.
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature (Soldering, 60 sec)
Rating
18 V
See derating
curves
−65°C to +125°C
−40°C to +125°C
−65°C to +125°C
300°C
θJA
230
θJC
146
ESD CAUTION
O
B
SO
LE
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Table 7.
Package Type
TSOT (UJ-5)
TE
Parameter
Supply Voltage
Output Short-Circuit Duration to GND
Rev. H | Page 7 of 20
Unit
°C/W
ADR390
TERMINOLOGY
Temperature Coefficient
The change of output voltage with respect to operating temperature changes normalized by the output voltage at 25°C. This
parameter is expressed in ppm/°C and can be determined by the
following equation:
VO (T2 ) – VO (T1 )
× 10 6
VO (25°C ) × (T2 – T1 )
∆VO = VO(t0) − VO(t1)
⎞
⎛ V (t 0 ) − VO (t 1 )
ΔVO [ppm] = ⎜⎜ O
× 10 6 ⎟⎟
VO (t 0 )
⎠
⎝
(1)
(2)
where:
VO (t0) is VO at 25°C at Time 0.
VO (t1) is VO at 25°C after 1000 hours operation at 25°C.
where:
VO (25°C) is VO at 25°C.
VO (T1) is VO at Temperature 1.
VO (T2) is VO at Temperature 2.
VO_HYS = VO(25°C) − VO_TC
VO _ HYS [ppm] =
VO (25 C ) − VO _ TC
o
LE
Line Regulation
The change in output voltage due to a specified change in input
voltage. This parameter accounts for the effects of self-heating.
Line regulation is expressed in either percent per volt, partsper-million per volt, or microvolts per volt change in input
voltage.
Thermal Hysteresis
The change of output voltage after the device is cycled through
temperatures from +25°C to –40°C to +125°C and back to
+25°C. This is a typical value from a sample of parts put
through such a cycle.
TE
TCVO [ppm/°C] =
Long-Term Stability
Typical shift of output voltage at 25°C on a sample of parts
subjected to a test of 1000 hours at 25°C.
VO (25 o C )
× 10 6
where:
VO (25°C) is VO at 25°C
VO_TC is VO at 25°C after a temperature cycle from +25°C to
−40°C to +125°C and back to +25°C
O
B
SO
Load Regulation
The change in output voltage due to a specified change in load
current. This parameter accounts for the effects of self-heating.
Load regulation is expressed in either microvolts per milliampere, parts-per-million per milliampere, or ohms of dc
output resistance.
Rev. H | Page 8 of 20
(3)
(4)
ADR390
TYPICAL PERFORMANCE CHARACTERISTICS
2.060
5.006
5.004
2.056
SAMPLE 3
5.002
VOUT (V)
2.052
SAMPLE 3
2.048
SAMPLE 1
4.998
SAMPLE 1
2.044
100
125
4.994
–40
30
65
TEMPERATURE (°C)
100
125
Figure 5. ADR395 Output Voltage vs. Temperature
Figure 2. ADR390 Output Voltage vs. Temperature
140
SAMPLE 2
2.504
LE
2.506
+125°C
120
SAMPLE 3
2.496
2.494
–40
–5
30
65
TEMPERATURE (°C)
100
125
40
2.5
O
SAMPLE 3
4.096
SAMPLE 2
4.094
SAMPLE 1
4.092
5.0
7.5
10.0
INPUT VOLTAGE (V)
12.5
15.0
Figure 6. ADR390 Supply Current vs. Input Voltage
140
120
SUPPLY CURRENT (µA)
4.098
–40°C
80
Figure 3. ADR391 Output Voltage vs. Temperature
4.100
+25°C
100
60
00419-004
2.498
B
SO
2.500
+85°C
00419-007
SAMPLE 1
2.502
+125°C
100
+85°C
+25°C
80
–40°C
4.088
–40
0
40
TEMPERATURE (°C)
80
125
40
2.5
00419-008
60
4.090
00419-005
VOUT (V)
–5
5.0
7.5
10.0
INPUT VOLTAGE (V)
12.5
Figure 7. ADR391 Supply Current vs. Input Voltage
Figure 4. ADR392 Output Voltage vs. Temperature
Rev. H | Page 9 of 20
15.0
00419-006
30
65
TEMPERATURE (°C)
TE
–5
00419-003
4.996
2.040
–40
VOUT (V)
SAMPLE 2
5.000
SUPPLY CURRENT (µA)
VOUT (V)
SAMPLE 2
ADR390
180
140
IL = 0mA TO 5mA
100
+25°C
–40°C
80
00419-009
60
40
7
13
9
11
INPUT VOLTAGE (V)
VIN = 5V
VIN = 3V
140
120
100
80
–40
15
–10
20
50
TEMPERATURE (°C)
80
110
125
TE
5
160
Figure 8. ADR392 Supply Current vs. Input Voltage
00419-012
SUPPLY CURRENT (µA)
120
LOAD REGULATION (ppm/mA)
+125°C
Figure 11. ADR391 Load Regulation vs. Temperature
140
90
7.0
8.5
13.0
11.5
10.0
INPUT VOLTAGE (V)
60
Figure 9. ADR395 Supply Current vs. Input Voltage
120
60
VIN = 3V
VIN = 5V
40
0
–40
–10
20
50
TEMPERATURE (°C)
80
110
125
IL = 0mA TO 5mA
00419-0 11
20
100
30
65
TEMPERATURE (°C)
80
LOAD REGULATION (ppm/mA)
O
LOAD REGULATION (ppm/mA)
80
–5
Figure 12. ADR392 Load Regulation vs. Temperature
IL = 0mA TO 5mA
100
VIN = 5V
50
40
–40
14.5
VIN = 7.5V
00419-013
00419-010
40
5.5
70
70
VIN = 7.5V
60
50
40
30
–40
125
Figure 10. ADR390 Load Regulation vs. Temperature
VIN = 5V
–5
30
65
TEMPERATURE (°C)
100
Figure 13. ADR395 Load Regulation vs. Temperature
Rev. H | Page 10 of 20
125
00419-014
–40°C
80
60
80
LE
+25°C
100
B
SO
SUPPLY CURRENT (µA)
120
LOAD REGULATION (ppm/mA)
IL = 0mA TO 5mA
+125°C
ADR390
14
25
12
LINE REGULATION (ppm/V)
LINE REGULATION (ppm/V)
20
15
10
10
VIN = 5.3V TO 15V
8
6
4
5
20
50
TEMPERATURE (°C)
80
110
0
–40
125
20
LE
VIN MIN (V)
0
–40
–10
20
50
TEMPERATURE (°C)
80
110
+25°C
+85°C
0
1
2
3
LOAD CURRENT (mA)
3.6
+125°C
3.4
+85°C
3.2
+25°C
3.0
–40°C
4
30
65
TEMPERATURE (°C)
100
125
00419-017
–5
Figure 16. ADR392 Line Regulation vs. Temperature
2.6
0
1
2
3
LOAD CURRENT (mA)
4
5
Figure 19. ADR391 Minimum Input Voltage vs. Load Current
Rev. H | Page 11 of 20
00419-020
2.8
2
0
–40
5
4
Figure 18. ADR390 Minimum Input Voltage vs. Load Current
VIN MIN (V)
O
VIN = 4.4V TO 15V
–40°C
2.4
2.0
125
Figure 15. ADR391 Line Regulation vs. Temperature
6
2.6
2.2
00419-016
5
LINE REGULATION (ppm/V)
+125°C
00419-019
10
8
125
2.8
15
10
100
3.0
B
SO
LINE REGULATION (ppm/V)
25
12
30
65
TEMPERATURE (°C)
Figure 17. ADR395 Line Regulation vs. Temperature
Figure 14. ADR390 Line Regulation vs. Temperature
14
–5
00419-018
–10
TE
0
–40
00419-015
2
ADR390
70
4.8
–40°C
+125°C
+25°C
60
+125°C
4.6
TEMPERATURE: +25°C
50
VIN MIN (V)
FREQUENCY
+25°C
4.4
–40°C
4.2
40
30
20
4.0
4
5
Figure 20. ADR392 Minimum Input Voltage vs. Load Current
+125 °C
+25°C
–40 °C
0
B
SO
5.0
4.6
1
4
2
3
LOAD CURRENT (mA)
1k
900
800
700
TEMPERATURE: +25°C
50
5
+125°C
+25°C
VIN = 5V
400
ADR391
300
200
100
10
ADR390
100
1k
FREQUENCY (Hz)
10k
Figure 24. Voltage Noise Density vs. Frequency
0
0
VOLTAGE (2µV/DIV)
0
0
30
0
0
20
0
10
0.18
0.24
0
0.30
TIME (1s/DIV)
Figure 25. ADR391 Typical Voltage Noise 0.1 Hz to 10 Hz
Figure 22. ADR390 VOUT Hysteresis Distribution
Rev. H | Page 12 of 20
00419-026
0
–0.24 –0.18 –0.12 –0.06
0
0.06 0.12
VOUT DEVIATION (mV)
0
00419-023
FREQUENCY
O
40
–40°C
0.34
600
Figure 21. ADR395 Minimum Input Voltage vs. Load Current
60
0.19
500
00419-022
VIN MIN (V)
5.6
4.8
–0.26
–0.11
0.04
VOUT DEVIATION (mV)
LE
5.8
5.2
–0.41
Figure 23. ADR391 VOUT Hysteresis Distribution
6.0
5.4
0
–0.56
00419-025
2
3
LOAD CURRENT (mA)
TE
1
VOLTAGE NOISE DENSITY (nV/√Hz)
0
00419-021
3.8
00419-024
10
ADR390
CL = 0nF
VLOAD ON
LOAD OFF
00419-027
00419-030
VOLTAGE (1V/DIV)
VOLTAGE (100µV/DIV)
VOUT
TIME (10µs/DIV)
TE
TIME (200µs/DIV)
Figure 26. ADR391 Voltage Noise 10 Hz to 10 kHz
Figure 29. ADR391 Load Transient Response
CBYPASS = 0µF
CL = 1nF
VOUT
VOUT
VOLTAGE (1V/DIV)
VOLTAGE
LE
0.5V/DIV
B
SO
00419-028
1V/DIV
LOAD OFF
VLOAD ON
00419-031
LINE
INTERRUPTION
TIME (200µs/DIV)
TIME (10µs/DIV)
Figure 30. ADR391 Load Transient Response
Figure 27. ADR391 Line Transient Response
CL = 100nF
CBYPASS = 0.1µF
O
1V/DIV
LOAD OFF
VLOAD ON
00419-032
00419-029
VOUT
VOLTAGE (1V/DIV)
0.5V/DIV
LINE
INTERRUPTION
VOLTAGE
VOUT
TIME (200µs/DIV)
TIME (10µs/DIV)
Figure 31. ADR391 Load Transient Response
Figure 28. ADR391 Line Transient Response
Rev. H | Page 13 of 20
ADR390
VIN = 15V
CBYPASS = 0.1µF
5V/DIV
2V/DIV
VOLTAGE
VOLTAGE
VOUT
VIN
2V/DIV
VOUT
5V/DIV
00419-035
00419-033
VIN
TIME (200µs/DIV)
TE
TIME (20µs/DIV)
Figure 32. ADR391 Turn-On Response Time at 15 V
Figure 34. ADR391 Turn-On/Turn-Off Response at 5 V with Capacitance
VIN = 15V
VIN
RL = 500Ω
5V/DIV
2V/DIV
VOLTAGE
2V/DIV
5V/DIV
B
SO
00419-034
VIN
00419-036
VOUT
LE
VOLTAGE
VOUT
TIME (40µs/DIV)
TIME (200µs/DIV)
Figure 35. ADR391 Turn-On/Turn-Off Response at 5 V with Resistor Load
O
Figure 33. ADR391 Turn-Off Response at 15 V
Rev. H | Page 14 of 20
ADR390
100
RL = 500Ω
CL = 100nF
90
80
5V/DIV
VIN
70
60
CL = 0µF
50
40
30
00419-037
20
0
10
80
60
LE
RIPPLE REJECTION (dB)
40
20
0
–20
–40
–60
00419-038
B
SO
–80
100
1k
10k
FREQUENCY (Hz)
100k
1k
10k
FREQUENCY (Hz)
CL = 0.1µF
100k
Figure 38. Output Impedance vs. Frequency
Figure 36. ADR391 Turn-On/Turn-Off Response at 5 V
–120
10
100
TE
TIME (200µs/DIV)
–100
CL = 1µF
10
1M
O
Figure 37. Ripple Rejection vs. Frequency
Rev. H | Page 15 of 20
1M
00419-039
VOLTAGE
VOUT
OUTPUT IMPEDANCE (Ω)
2V/DIV
ADR390
THEORY OF OPERATION
Band gap references are the high performance solution for low
supply voltage and low power voltage reference applications,
and the ADR390/ADR391/ADR392/ADR395 are no exception.
The uniqueness of these devices lies in the architecture. As
shown in Figure 39, the ideal zero TC band gap voltage is
referenced to the output, not to ground. Therefore, if noise
exists on the ground line, it is greatly attenuated on VOUT. The
band gap cell consists of the PNP pair, Q51 and Q52, running at
unequal current densities. The difference in VBE results in a
voltage with a positive TC, which is amplified by a ratio of
The ADR390/ADR391/ADR392/ADR395 are capable of
delivering load currents to 5 mA, with an input voltage that
ranges from 2.8 V (ADR391 only) to 15 V. When these devices
are used in applications with large input voltages, care should be
taken to avoid exceeding the specified maximum power
dissipation or junction temperature because it could result in
premature device failure. The following formula should be used
to calculate the maximum junction temperature or dissipation
of the device:
R58
R54
PD =
This PTAT voltage, combined with VBEs of Q51 and Q52,
produces a stable band gap voltage.
VIN
Q1
VOUT (FORCE)
VOUT (SENSE)
R59
R44
SHUTDOWN MODE OPERATION
The ADR390/ADR391/ADR392/ADR395 include a shutdown
feature that is TTL/CMOS level compatible. A logic low or a
zero volt condition on the SHDN pin is required to turn the
devices off. During shutdown, the output of the reference
becomes a high impedance state, where its potential would then
be determined by external circuitry. If the shutdown feature is
not used, the SHDN pin should be connected to VIN (Pin 2).
R49
R54
Q51
R53
Q52
R48
R60
R61
GND
00419-040
SHDN
(5)
where:
TJ and TA are, respectively, the junction and ambient temperatures.
PD is the device power dissipation.
θJA is the device package thermal resistance.
B
SO
R58
θ JA
LE
Reduction in the band gap curvature is performed by the ratio
of Resistors R44 and R59, one of which is linearly temperature
dependent. Precision laser trimming and other patented circuit
techniques are used to further enhance the drift performance.
TJ – T A
TE
2×
DEVICE POWER DISSIPATION CONSIDERATIONS
O
Figure 39. Simplified Schematic
Rev. H | Page 16 of 20
ADR390
APPLICATIONS INFORMATION
BASIC VOLTAGE REFERENCE CONNECTION
The circuit shown in Figure 40 illustrates the basic configuration
for the ADR39x family. Decoupling capacitors are not required
for circuit stability. The ADR39x family is capable of driving
capacitive loads from 0 μF to 10 μF. However, a 0.1 μF ceramic
output capacitor is recommended to absorb and deliver the
charge, as required by a dynamic load.
GND
SHDN
ADR39x
*
VIN
VOUT (FORCE)
VOUT (SENSE)
0.1µF
CB
*NOT REQUIRED
*
TE
CB
OUTPUT
00419-041
INPUT
0.1µF
A Negative Precision Reference without Precision Resistors
Some applications may require two reference voltage sources,
which are a combined sum of standard outputs. Figure 41 shows
how this stacked output reference can be implemented.
OUTPUT TABLE
U1/U2
VIN
2.048
2.5
4.096
5
4.096
5.0
8.192
10
B
SO
ADR390/ADR390
ADR391/ADR391
ADR392/ADR392
ADR395/ADR395
VOUT1 (V) VOUT2 (V)
A negative reference can be easily generated by adding an A1
op amp and is configured as shown in Figure 42. VOUT (FORCE)
and VOUT (SENSE) are at virtual ground and, therefore, the negative
reference can be taken directly from the output of the op amp.
The op amp must be dual-supply, low offset, and rail-to-rail if
the negative supply voltage is close to the reference output.
LE
Figure 40. Basic Configuration for the ADR39x Family
Stacking Reference ICs for Arbitrary Outputs
While this concept is simple, a precaution is required. Because
the lower reference circuit must sink a small bias current from
U2 plus the base current from the series PNP output transistor
in U2, either the external load of U1 or an external resistor must
provide a path for this current. If the U1 minimum load is not
well defined, the external resistor should be used and set to a
value that conservatively passes 600 μA of current with the
applicable VOUT1 across it. Note that the two U1 and U2
reference circuits are treated locally as macrocells; each has its
own bypasses at input and output for best stability. Both U1 and
U2 in this circuit can source dc currents up to their full rating.
The minimum input voltage, VIN, is determined by the sum of
the outputs, VOUT2, plus the dropout voltage of U2.
VIN
VOUT (FORCE)
SHDN
VOUT (SENSE)
U2
C2
0.1µF
VIN
SHDN
VOUT (FORCE)
+VDD
GND
VOUT2
–VREF
A1
VOUT (SENSE)
O
GND
U1
SHDN
VOUT (FORCE)
Figure 42. Negative Reference
General-Purpose Current Source
VIN
C2
0.1µF
–VDD
00419-043
SHUTDOWN
Table in Figure 41). For example, if both U1 and U2 are
ADR391s, VOUT1 is 2.5 V and VOUT2 is 5.0 V.
VOUT1
VOUT (SENSE)
00419-042
GND
Figure 41. Stacking Voltage References with the
ADR390/ADR391/ADR392/ADR395
Two reference ICs are used, fed from an unregulated input,
VIN. The outputs of the individual ICs are connected in series,
which provide two output voltages, VOUT1 and VOUT2. VOUT1 is the
terminal voltage of U1, while VOUT2 is the sum of this voltage
and the terminal voltage of U2. U1 and U2 are chosen for the
two voltages that supply the required outputs (see the Output
Many times in low power applications, the need arises for
a precision current source that can operate on low supply
voltages. The ADR390/ADR391/ADR392/ADR395 can be
configured as a precision current source. As shown in Figure 43,
the circuit configuration is a floating current source with a
grounded load. The reference output voltage is bootstrapped
across RSET, which sets the output current into the load. With
this configuration, circuit precision is maintained for load
currents in the range from the reference supply current,
typically 90 μA to approximately 5 mA.
Rev. H | Page 17 of 20
ADR390
VIN
R1
4.7kΩ
VIN
U1
SHDN
SHDN
GND
VIN
ADR39x
Q1
Q2N2222
VOUT (FORCE)
VIN
VOUT (SENSE)
ISET
VOUT (FORCE)
0.1µF
GND
R1
RL
RSET
ISY
ADJUST
ISY (ISET)
ADR39x
R1
Q2
Q2N4921
RS
00419-D-046
VOUT (SENSE)
P1
Figure 45. ADR39x for High Output Current
with Darlington Drive Configuration
IOUT = ISET + ISY (ISET )
TE
CAPACITORS
00419-044
RL
Input Capacitor
Figure 43. A General-Purpose Current Source
High Power Performance with Current Limit
Output Capacitor
LE
In some cases, the user may want higher output current
delivered to a load and still achieve better than 0.5% accuracy
out of the ADR39x. The accuracy for a reference is normally
specified on the data sheet with no load. However, the output
voltage changes with load current.
Input capacitors are not required on the ADR39x. There is no
limit for the value of the capacitor used on the input, but a 1 μF
to 10 μF capacitor on the input improves transient response in
applications where the supply suddenly changes. An additional
0.1 μF in parallel also helps reduce noise from the supply.
B
SO
The circuit shown in Figure 44 provides high current without
compromising the accuracy of the ADR39x. The series pass
transistor, Q1, provides up to 1 A load current. The ADR39x
delivers only the base drive to Q1 through the force pin. The
sense pin of the ADR39x is a regulated output and is connected
to the load.
The Transistor Q2 protects Q1 during short-circuit limit faults
by robbing its base drive. The maximum current is
ILMAX ≈ 0.6 V/RS
(6)
U1
SHDN
GND
VIN
Q1
Q2N4921
O
VOUT (FORCE)
ADR39x
50
Q2
Q2N2222
RL
0
–50
–100
RS
IL
–150
00419-045
VOUT (SENSE)
100
Figure 44. ADR39x for High Power Performance with Current Limit
00419-002
R1
4.7kΩ
150
DRIFT (ppm)
VIN
The ADR39x does not require output capacitors for stability under
any load condition. An output capacitor, typically 0.1 μF, filters
out any low level noise voltage and does not affect the operation
of the part. On the other hand, the load transient response can
improve with the addition of a 1 μF to 10 μF output capacitor in
parallel. A capacitor here acts as a source of stored energy for a
sudden increase in load current. The only parameter that degrades
by adding an output capacitor is the turn-on time, and it depends
on the size of the capacitor chosen.
0
100
200
300
400 500
600
TIME (Hours)
700
800
900
1000
Figure 46. ADR391 Typical Long-Term Drift over 1000 Hours
A similar circuit function can also be achieved with the
Darlington transistor configuration, as shown in Figure 45.
Rev. H | Page 18 of 20
ADR390
OUTLINE DIMENSIONS
2.90 BSC
5
4
2.80 BSC
1.60 BSC
1
2
3
PIN 1
0.95 BSC
1.90
BSC
*0.90
0.87
0.84
0.10 MAX
0.50
0.30
0.20
0.08
8°
4°
0°
TE
*1.00 MAX
SEATING
PLANE
0.60
0.45
0.30
*COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.
ORDERING GUIDE
Initial
Accuracy
(mV) (%)
±6 0.29
±6 0.29
±4 0.19
±4 0.19
±6 0.24
±6 0.24
±4 0.16
±4 0.16
±6 0.15
±6 0.15
±5 0.12
±5 0.12
±6 0.12
±6 0.12
±5 0.10
±5 0.10
Temperature
Coefficient
(ppm/°C)
25
25
9
9
25
25
9
9
25
25
9
9
25
25
9
9
Package
Description
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
O
B
SO
Models
ADR390AUJZ-REEL7 1
ADR390AUJZ-R21
ADR390BUJZ-REEL71
ADR390BUJZ-R21
ADR391AUJZ-REEL71
ADR391AUJZ-R21
ADR391BUJZ-REEL71
ADR391BUJZ-R21
ADR392AUJZ-REEL71
ADR392AUJZ-R21
ADR392BUJZ-REEL71
ADR392BUJZ-R21
ADR395AUJZ-REEL71
ADR395AUJZ-R21
ADR395BUJZ-REEL71
ADR395BUJZ-R21
Output
Voltage
(VO)
2.048
2.048
2.048
2.048
2.5
2.5
2.5
2.5
4.096
4.096
4.096
4.096
5.0
5.0
5.0
5.0
LE
Figure 47. 5-Lead Thin Small Outline Transistor Package [TSOT]
(UJ-5)
Dimensions shown in millimeters
1
Z = RoHS Compliant Part.
Rev. H | Page 19 of 20
Package
Option
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
Branding
R0A
R0A
R0B
R0B
R1A
R1A
R1B
R1B
RCA
RCA
RCB
RCB
RDA
RDA
RDB
RDB
Number
of Parts
per Reel
3,000
250
3,000
250
3,000
250
3,000
250
3,000
250
3,000
250
3,000
250
3,000
250
Temperature
Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
ADR390
O
B
SO
LE
TE
NOTES
©2002–2008 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D00419-0-2/08(G)
Rev. H | Page 20 of 20