AN813

AN813
Applying the TC1219/TC1220 Inverting Charge Pumps
with Small External Capacitor Values
Author:
Patrick Maresca
Microchip Technology Inc.
6
INTRODUCTION
Microchip Technology Inc.’s TC1219 (switching
frequency at 12 kHz) and TC1220 (switching frequency
at 35 kHz) are inverting charge pump voltage converters that are specified using rather large capacitors
(10 µF for the TC1219 and 3.3 µF for the TC1220).
These capacitor sizes allow the designer the luxury of a
reasonably low output resistance (25Ω typical) capable
of driving load currents up to 25 mA. However, these
larger-value external capacitors are more expensive
and require additional printed circuit board (PCB) space
than their smaller-valued counterparts. Additionally, the
time required to shutdown these charge pump converters becomes longer with larger-value external capacitors and in certain higher-speed applications, this
unfortunate feature can be devastating.
In many cases where a negative DC bias source is
required, lower output load currents (15 mA or less)
and faster shutdown times are what the design
engineer optimally needs. For applications such as
these, the TC1219 and TC1220 can be applied with
lower value external capacitors than those recommended in the device data sheet. The data in this
Application Note shows measurements taken on both
the TC1219 and TC1220 using five different, smallervalue external capacitors: a) 2.2 µF, b) 1 µF, c) 0.47 µF,
d) 0.22 µF and e) 0.1 µF. All measurements were made
with a 5V input (at the VIN pin) and at ambient
temperature TA = +25°C.
APPLICATION TEST CIRCUIT
Figure 1 shows the circuit configuration for measuring
the output performance of the TC1219 and TC1220
under varying load currents. Two external capacitors
(flying capacitor C1 and output capacitor C2) and a
resistive load (comprised of RL1 and RL2) are required
to measure the output voltage droop, output voltage
ripple and shutdown response times under different
output loading conditions.
 2004 Microchip Technology Inc.
Connect to VIN for
DC Measurements
+5V
C1
C+
2
VIN
SHDN
5
TC1219/1220
D.U.T.
3
C–
GND
4
OUT
1
Connect to External
Func. Gen. For Tuning
Measurements
Oscilloscope Connection for
Output Voltage Measurement
VOUT
C2
A
Ammeter Connection
for Load Current
Measurement
200Ω RL1
10 kΩ RL2
FIGURE 1:
Circuit.
TC1219/20 Application
TEST RESULTS
Table 1 contains typical TC1219 data for varying load
currents with these five different values of external
capacitors. Note that output voltage droop and the
output voltage ripple both increase with higher load
currents and smaller external capacitors. Table 2
contains similar data for the TC1220.
Figure 2 is a plot of the TC1219 output voltage droop
versus load current, Figure 3 is a plot of the TC1219
Output Voltage Droop versus Capacitance, Figure 4 is
a plot of the TC1219 Output Voltage Ripple versus
Load Current, and Figure 5 is a plot of the TC1219
Output Voltage Ripple versus Capacitance. Figure 6 is
a plot of the TC1220 Output Voltage Droop versus
Load Current, Figure 7 is a plot of the TC1220 Output
Voltage Droop versus Capacitance, Figure 8 is a plot of
the TC1220 Output Voltage Ripple versus Load
Current and Figure 9 is a plot of the TC1220 Output
Voltage Ripple versus Capacitance.
Figure 10 shows the shutdown response time for the
TC1219 using 2.2 µF external capacitors for C1 and C2
driving a 10 mA load current. The top trace is the output
signal (VOUT) and the bottom trace is the shutdown
input. Note that the shutdown time for this condition
measured 2.259 msec. Similarly, Figure 11 shows the
shutdown response time for the TC1219 using 0.47 µF
external capacitors for C1 and C2 driving a 10 mA load
current. As before, the top trace is the output signal
DS00813A-page 1
AN813
(VOUT) and the bottom trace is the shutdown input.
Note that the shutdown time for this condition measured only 225.9 µsec at the expense of significantly
higher output voltage ripple at the VOUT pin.
Figure 12 shows the shutdown response time for the
TC1220, using 0.47 µF external capacitors for C1 and
C2 driving a 10 mA load current. The top trace is the
output signal (VOUT) and the bottom trace is the
shutdown input. Note that the shutdown time for this
condition measured 482 µsec. Similarly, Figure 13
shows the shutdown response time for the TC1220
using 0.22 µF external capacitors for C1 and C2 driving
a 10 mA load current. As before, the top trace is the
output signal (VOUT) and the bottom trace is the
shutdown input. Note that the shutdown time for this
condition measured only 225.9 µsec at the expense of
significantly higher output voltage ripple at the VOUT
pin.
DS00813A-page 2
Figure 14 is a plot of the TC1219 Shutdown Time
versus Load Current, Figure 15 is a plot of the TC1219
Shutdown Time versus Capacitance, Figure 16 is a plot
of the TC1220 Shutdown Time versus Load Current,
and Figure 17 is a plot of the TC1220 Shutdown Time
versus Capacitance.
 2004 Microchip Technology Inc.
AN813
TABLE 1:
TC1219 DATA SUMMARY AT VARIOUS LOAD CURRENTS
VIN Voltage
(V)
Flying
Capacitor
C1 (µF)
Output
Capacitor
C2 (µF)
Load
Current
(mA)
VOUT
Voltage (V)
VOUT Droop
(V)
Osc. Freq.
(kHz)
Output
Ripple
(mVp-p)
5.0
2.2
2.2
0
-4.99
0.01
12
0
5.0
2.2
2.2
0.5
-4.97
0.03
12
19
5.0
2.2
2.2
1
-4.94
0.06
12
38
5.0
2.2
2.2
2
-4.89
0.11
12
76
5.0
2.2
2.2
3
-4.84
0.16
12
114
5.0
2.2
2.2
4
-4.78
0.22
12
152
5.0
2.2
2.2
5
-4.73
0.27
12
190
5.0
2.2
2.2
6
-4.68
0.32
12
228
5.0
2.2
2.2
7
-4.63
0.37
12
267
5.0
2.2
2.2
8
-4.58
0.42
12
305
5.0
2.2
2.2
9
-4.53
0.47
12
343
5.0
2.2
2.2
10
-4.47
0.53
12
381
5.0
2.2
2.2
12
-4.37
0.63
12
457
5.0
2.2
2.2
15
-4.19
0.81
12
571
5.0
1
1
0
-4.99
0.01
12
0
5.0
1
1
0.5
-4.94
0.06
12
42
5.0
1
1
1
-4.88
0.12
12
84
5.0
1
1
2
-4.78
0.22
12
167
5.0
1
1
3
-4.67
0.33
12
251
5.0
1
1
4
-4.56
0.44
12
334
5.0
1
1
5
-4.45
0.55
12
418
5.0
1
1
6
-4.34
0.66
12
501
5.0
1
1
7
-4.24
0.76
12
585
5.0
1
1
8
-4.13
0.87
12
668
5.0
1
1
9
-4.02
0.98
12
752
5.0
1
1
10
-3.91
1.09
12
835
5.0
1
1
12
-3.70
1.30
12
1002
5.0
1
1
15
-3.37
1.63
12
1253
5.0
0.47
0.47
0
-4.99
0.01
12
0
5.0
0.47
0.47
0.5
-4.89
0.11
12
89
5.0
0.47
0.47
1
-4.79
0.21
12
178
5.0
0.47
0.47
2
-4.58
0.42
12
355
5.0
0.47
0.47
3
-4.38
0.62
12
533
5.0
0.47
0.47
4
-4.17
0.83
12
710
5.0
0.47
0.47
5
-3.97
1.03
12
888
5.0
0.47
0.47
6
-3.76
1.24
12
1065
5.0
0.47
0.47
7
-3.56
1.44
12
1243
5.0
0.47
0.47
8
-3.36
1.64
12
1420
5.0
0.47
0.47
9
-3.15
1.85
12
1598
5.0
0.47
0.47
10
-2.93
2.07
12
1775
5.0
0.22
0.22
0
-4.99
0.01
12
0
5.0
0.22
0.22
0.5
-4.78
0.22
12
189
5.0
0.22
0.22
1
-4.57
0.43
12
379
 2004 Microchip Technology Inc.
DS00813A-page 3
AN813
TABLE 1:
TC1219 DATA SUMMARY AT VARIOUS LOAD CURRENTS (CONTINUED)
VIN Voltage
(V)
Flying
Capacitor
C1 (µF)
Output
Capacitor
C2 (µF)
Load
Current
(mA)
VOUT
Voltage (V)
5.0
0.22
0.22
2
-4.15
0.85
12
758
5.0
0.22
0.22
3
-3.74
1.26
12
1137
5.0
0.22
0.22
4
-3.32
1.68
12
1516
5.0
0.22
0.22
5
-2.91
2.09
12
1895
5.0
0.1
0.1
0
-4.98
0.02
12
0
5.0
0.1
0.1
0.5
-4.46
0.54
12
417
5.0
0.1
0.1
1
-3.95
1.05
12
834
5.0
0.1
0.1
2
-2.94
2.06
12
1667
5.0
0.1
0.1
3
-2.03
2.97
12
2501
TABLE 2:
VOUT Droop
(V)
Osc. Freq.
(kHz)
Output
Ripple
(mVp-p)
TC1220 DATA SUMMARY AT VARIOUS LOAD CURRENTS
VIN Voltage
(V)
Flying
Capacitor
C1 (µF)
Output
Capacitor
C2 (µF)
Load
Current
(mA)
VOUT
Voltage (V)
VOUT Droop
(V)
Osc. Freq.
(kHz)
Output
Ripple
(mVp-p)
5.0
2.2
2.2
0
-4.99
0.01
35
0
5.0
2.2
2.2
0.5
-4.98
0.03
35
7
5.0
2.2
2.2
1
-4.96
0.04
35
13
5.0
2.2
2.2
2
-4.93
0.07
35
26
5.0
2.2
2.2
3
-4.90
0.10
35
40
5.0
2.2
2.2
4
-4.87
0.13
35
53
5.0
2.2
2.2
5
-4.83
0.17
35
66
5.0
2.2
2.2
6
-4.80
0.20
35
79
5.0
2.2
2.2
7
-4.77
0.23
35
92
5.0
2.2
2.2
8
-4.74
0.26
35
105
5.0
2.2
2.2
9
-4.71
0.29
35
119
5.0
2.2
2.2
10
-4.68
0.32
35
132
5.0
2.2
2.2
12
-4.62
0.38
35
158
5.0
2.2
2.2
15
-4.52
0.48
35
198
5.0
2.2
2.2
20
-4.36
0.64
35
264
5.0
1
1
0
-4.99
0.01
35
0
5.0
1
1
0.5
-4.97
0.03
35
14
5.0
1
1
1
-4.95
0.05
35
29
5.0
1
1
2
-4.90
0.10
35
58
5.0
1
1
3
-4.86
0.14
35
86
5.0
1
1
4
-4.82
0.18
35
115
5.0
1
1
5
-4.78
0.22
35
144
5.0
1
1
6
-4.73
0.27
35
173
5.0
1
1
7
-4.69
0.31
35
201
5.0
1
1
8
-4.65
0.35
35
230
5.0
1
1
9
-4.61
0.39
35
259
5.0
1
1
10
-4.56
0.44
35
288
5.0
1
1
12
-4.48
0.52
35
345
5.0
1
1
15
-4.35
0.65
35
432
DS00813A-page 4
 2004 Microchip Technology Inc.
AN813
TABLE 2:
VIN Voltage
(V)
TC1220 DATA SUMMARY AT VARIOUS LOAD CURRENTS (CONTINUED)
Flying
Capacitor
C1 (µF)
Output
Capacitor
C2 (µF)
Load
Current
(mA)
VOUT
Voltage (V)
VOUT Droop
(V)
Osc. Freq.
(kHz)
Output
Ripple
(mVp-p)
5.0
1
1
20
-4.15
0.85
35
575
5.0
0.47
0.47
0
-4.99
0.01
35
0
5.0
0.47
0.47
0.5
-4.95
0.05
35
30
5.0
0.47
0.47
1
-4.92
0.08
35
61
5.0
0.47
0.47
2
-4.85
0.15
35
122
5.0
0.47
0.47
3
-4.78
0.22
35
183
5.0
0.47
0.47
4
-4.72
0.28
35
244
5.0
0.47
0.47
5
-4.65
0.35
35
305
5.0
0.47
0.47
6
-4.58
0.42
35
366
5.0
0.47
0.47
7
-4.51
0.49
35
427
5.0
0.47
0.47
8
-4.44
0.56
35
488
5.0
0.47
0.47
9
-4.37
0.63
35
549
5.0
0.47
0.47
10
-4.30
0.70
35
610
5.0
0.47
0.47
12
-4.17
0.83
35
732
5.0
0.47
0.47
15
-3.96
1.04
35
915
5.0
0.22
0.22
0
-4.99
0.01
35
0
5.0
0.22
0.22
0.5
-4.92
0.08
35
65
5.0
0.22
0.22
1
-4.86
0.14
35
130
5.0
0.22
0.22
2
-4.73
0.27
35
260
5.0
0.22
0.22
3
-4.59
0.41
35
390
5.0
0.22
0.22
4
-4.46
0.54
35
520
5.0
0.22
0.22
5
-4.33
0.67
35
650
5.0
0.22
0.22
6
-4.20
0.80
35
780
5.0
0.22
0.22
7
-4.07
0.93
35
910
5.0
0.22
0.22
8
-3.93
1.07
35
1041
5.0
0.22
0.22
9
-3.80
1.20
35
1171
5.0
0.22
0.22
10
-3.67
1.33
35
1301
5.0
0.1
0.1
0
-4.98
0.02
35
0
5.0
0.1
0.1
0.5
-4.82
0.18
35
143
5.0
0.1
0.1
1
-4.66
0.34
35
286
5.0
0.1
0.1
2
-4.33
0.67
35
572
5.0
0.1
0.1
3
-4.01
0.99
35
858
5.0
0.1
0.1
4
-3.69
1.31
35
1144
5.0
0.1
0.1
5
-3.37
1.63
35
1430
 2004 Microchip Technology Inc.
DS00813A-page 5
AN813
C1, C2 = 2.2 µF
C1, C2 = 1 µF
C1, C2 = 0.47 µF
C1, C2 = 0.22 µF
C1, C2 = 0.1 µF
2.5
2.0
2500
Output Voltage Ripple (mV)
Output Voltage Droop (V)
3.0
1.5
1.0
0.5
2000
1500
500
0
0
3
6
9
Load Current (mA)
12
0.0
15
ILOAD = 1 mA
ILOAD = 3 mA
ILOAD = 5 mA
ILOAD = 7 mA
ILOAD = 10 mA
2.0
1.5
1.0
0.5
Output Voltage Droop (mV)
3.0
2.5
0.6
1.2
1.8
Capacitance (µF)
2.4
FIGURE 5:
TC1219 Output Voltage
Ripple vs. Capacitance (VIN = +5V).
FIGURE 2:
TC1219 Output Voltage
Droop vs. Load Current (VIN = +5V).
Output Voltage Droop (V)
1 mA
3 mA
5 mA
7 mA
10 mA
1000
0.0
2.0
C1,
C1,
C1,
C1,
C1,
1.5
C2
C2
C2
C2
C2
=
=
=
=
=
2.2 µF
1 µF
0.47 µF
0.22 µF
0.1 µF
1.0
0.5
0.0
0.0
0.0
0.6
0
2.4
1.2
1.8
Capacitance (µF)
FIGURE 3:
TC1219 Output Voltage
Droop vs. Capacitance (VIN = +5V).
5
10
15
Load Current (mA)
20
25
FIGURE 6:
TC1220 Output Voltage
Droop vs. Load Current (VIN = +5V).
3000
2.0
ILOAD =
ILOAD =
ILOAD =
ILOAD =
ILOAD =
ILOAD =
C1, C2 = 2.2 µF
2500
C1, C2 = 1 µF
C1, C2 = 0.47 µF
2000
C1, C2 = 0.22 µF
C1, C2 = 0.1 µF
1500
1000
500
0
Output Voltage Droop (V)
Output Voltage Ripple (mV)
ILOAD =
ILOAD =
ILOAD =
ILOAD =
ILOAD =
1.5
1.0
1 mA
3 mA
5 mA
7 mA
10 mA
15 mA
0.5
0.0
0
3
6
9
12
Load Current (mA)
15
18
FIGURE 4:
TC1219 Output Voltage
Ripple vs. Load Current (VIN = +5V).
DS00813A-page 6
0.0
0.5
1.0
1.5
Capacitance (µF)
2.0
2.5
FIGURE 7:
TC1220 Output Voltage
Droop vs. Capacitance (VIN = +5V).
 2004 Microchip Technology Inc.
AN813
Output Voltage Ripple (mV)
1500
C1,
C1,
C1,
C1,
C1,
1200
900
C2
C2
C2
C2
C2
=
=
=
=
=
2.2 µF
1 µF
0.47 µF
0.22 µF
0.1 µF
600
300
0
0
5
10
15
Load Current (mA)
20
25
FIGURE 8:
TC1220 Output Voltage
Ripple vs. Load Current (VIN = +5V).
Output Voltage Ripple (mV)
1500
ILOAD =
ILOAD =
ILOAD =
ILOAD =
ILOAD =
ILOAD =
1200
900
1 mA
3 mA
5 mA
7 mA
10 mA
15 mA
FIGURE 11:
TC1219 Shutdown Time
with 1 µF External Capacitors and 10 mA Load
Current. The top trace is the VOUT signal and the
bottom trace is the shutdown input.
600
300
0
0.0
0.5
1.0
1.5
Capacitance (µF)
2.0
2.5
FIGURE 9:
TC1220 Output Voltage
Ripple vs. Capacitance (VIN = +5V).
FIGURE 12:
TC1220 Shutdown Time
with 0.47 µF External Capacitors and 10 mA
Load Current. The top trace is the VOUT signal
and the bottom trace is the shutdown input.
FIGURE 10:
TC1219 Shutdown Time
with 2.2 µF External Capacitors and 10 mA Load
Current. The top trace is the VOUT signal and the
bottom trace is the shutdown input.
 2004 Microchip Technology Inc.
DS00813A-page 7
AN813
Shutdown Time (msec)
45
C1,
C1,
C1,
C1,
C1,
30
C2
C2
C2
C2
C2
=
=
=
=
=
2.2 µF
1 µF
0.47 µF
0.22 µF
0.1 µF
15
0
0
Shutdown Time (msec)
45
C1, C2 = 2.2 µF
C1, C2 = 1 µF
C1, C2 = 0.47 µF
C1, C2 = 0.22 µF
C1, C2 = 0.1 µF
30
20
2
25
IIload
== 11mA
mA
LOAD
ILoad
== 33mA
mA
LOAD
IIload
= 5 mA
LOAD = 5mA
= 7 mA
IIload
LOAD = 7mA
IIload
= 10 mA
LOAD = 10mA
IIload
= 15 mA
LOAD = 15mA
20
15
10
5
0
0.0
15
0
0
2
4
6
8
10
12
Load Current (mA)
14
16
FIGURE 14:
TC1219 Shutdown Time vs.
Load Current (VIN = +5V).
20
ILOAD = 1mA
1 mA
Iload
3 mA
ILOAD = 3mA
Iload
=
5 mA
IIload
5mA
LOAD
Iload
7 mA
ILOAD = 7mA
Iload
10 mA
ILOAD = 10mA
18
Shutdown Time (msec)
10
15
Load Current (mA)
FIGURE 16:
TC1220 Shutdown Time vs.
Load Current (VIN = +5V).
Shutdown Time (msec)
FIGURE 13:
TC1220 Shutdown Time
with 0.22 µF External Capacitors and 10 mA
Load Current. The top trace is the VOUT signal
and the bottom trace is the shutdown input.
5
15
13
10
0.5
1.0
1.5
Capacitance (µF)
2.0
2.5
FIGURE 17:
TC1220 Shutdown Time vs.
Capacitance (VIN = +5V).
SUMMARY
Microchip Technology Inc.’s TC1219 and TC1220
inverting charge pumps can be applied with lower value
and lower cost external capacitors in circuit designs
requiring lower output load currents that can also afford
to have increased output voltage ripple. Using these
devices with lower power external capacitors
significantly quickens the shutdown response time,
which is important in applications requiring higher
speeds.
8
5
3
0
0.0
0.5
1.0
1.5
Capacitance (µF)
2.0
2.5
FIGURE 15:
TC1219 Shutdown Time vs.
Capacitance (VIN = +5V).
DS00813A-page 8
 2004 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.
Trademarks
The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.
AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL,
SmartSensor and The Embedded Control Solutions Company
are registered trademarks of Microchip Technology
Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Migratable Memory, MPASM,
MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net,
PICLAB, PICtail, PowerCal, PowerInfo, PowerMate,
PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial,
SmartTel and Total Endurance are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2004, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
 2004 Microchip Technology Inc.
DS00813A-page 9
WORLDWIDE SALES AND SERVICE
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
480-792-7627
Web Address:
www.microchip.com
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
India - New Delhi
Tel: 91-11-5160-8632
Fax: 91-11-5160-8632
Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Ballerup
Tel: 45-4420-9895
Fax: 45-4420-9910
China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599
Japan - Kanagawa
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
France - Massy
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
China - Fuzhou
Tel: 86-591-750-3506
Fax: 86-591-750-3521
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Germany - Ismaning
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307
Boston
Westford, MA
Tel: 978-692-3848
Fax: 978-692-3821
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Shanghai
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060
China - Shenzhen
Tel: 86-755-8290-1380
Fax: 86-755-8295-1393
China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571
China - Qingdao
Tel: 86-532-502-7355
Fax: 86-532-502-7205
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Kaohsiung
Tel: 886-7-536-4816
Fax: 886-7-536-4817
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
England - Berkshire
Tel: 44-118-921-5869
Fax: 44-118-921-5820
Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
08/24/04
DS00813A-page 10
 2004 Microchip Technology Inc.