INFINEON BTS4140N

BTS 4140 N
Smart High-Side Power Switch
One Channel: 1 x 1Ω
Features
Product Summary
• Current controlled input
Overvoltage protection
Vbbin(AZ)
• Short circuit protection
Operating voltage
Vbb(on)
• Current limitation
On-state resistance
RON
62
V
4.9...60 V
Ω
1
• Overload protection
• Overvoltage protection (including load dump)
• Switching inductive loads
• Clamp of negative voltage at output
SOT-223
4
with inductive loads
• Thermal shutdown with restart
• ESD - Protection
3
• Loss of GND and loss of Vbb protection
• Very low standby current
2
1
VPS05163
• Reverse battery protection
• Improved electromagnetic compatibility (EMC)
Application
• All types of resistive, inductive and capacitive loads
• Current controlled power switch for 12V, 24V and 42V DC applications
• Driver for electromechanical relays
• Signal amplifier
General Description
N channel vertical power MOSFET with charge pump and current controlled input,
monolithically integrated in Smart SIPMOS technology.
Providing embedded protective functions.
Page 1
2004-01-27
BTS 4140 N
Block Diagram
+ V bb
2 /4
C o n tro l
C irc u it
OUT
3
T e m p e ra tu re
Sensor
R IN
1
IN
R L
GND
Pin
Symbol
Function
1
IN
Input, activates the power switch in case of connection to GND
2
Vbb
Positive power supply voltage
3
OUT
Output to the load
4
Vbb
Positive power supply voltage
Page 2
2004-01-27
BTS 4140 N
Maximum Ratings
Symbol
Parameter
Value
Unit
at Tj = 25°C, unless otherwise specified
60
V
IL
self limited
A
Maximum current through the input pin ( DC )
I IN
±15
mA
Operating temperature
Tj
-40 ...+150
°C
Storage temperature
T stg
-55 ... +150
Power dissipation1)
Ptot
1.7
W
EAS
1
J
Supply voltage
Vbb
Load current (Short - circuit current, see page 5)
TA = 25 °C
Inductive load switch-off energy dissipation 2)
single pulse
Tj = 150 °C, IL = 0.15 A
Load dump protection 3) VLoadDump4)= VA + VS
V
VLoaddump
RI=2Ω, td=400ms, VIN= low or high
IL = 150 mA, Vbb = 13,5 V
93.5
Vbb = 27 V
127
kV
Electrostatic discharge voltage (Human Body Model) VESD
according to ANSI EOS/ESD - S5.1 - 1993
ESD STM5.1 - 1998
Input pin
±1
all other pins
±5
1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for V
bb
connection. PCB is vertical without blown air.
2not subject to production test, specified by design
3more details see EMC-Characteristics on page 7
4V
Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 .
Page 3
2004-01-27
BTS 4140 N
Electrical Characteristics
Symbol
Parameter
at Tj = -40...150 °C, Vbb = 9...42 V unless otherwise specified
Values
Unit
min.
typ.
max.
Thermal Characteristics
Thermal resistance @ min. footprint
Rth(JA)
-
86
125
Thermal resistance @ 6 cm 2 cooling area 1)
Rth(JA)
-
60
72
Thermal resistance, junction - soldering point
RthJS
-
-
17
K/W
K/W
Load Switching Capabilities and Characteristics
On-state resistance
Ω
RON
Pin1 connencted to GND
Tj = 25 °C, IL = 150 mA, Vbb = 9...52 V
Tj = 150 °C
-
1
1.5
-
1.5
3
Tj = 25 °C, IL = 50 mA, Vbb = 6 V
-
2
5
0.2
-
-
Nominal load current2)
IL(nom)
A
Device on PCB 1)
Ta = 85 °C , Tj ≤ 150 °C
Turn-on time3)
VIN = Vbb to 0V
to 90% VOUT
ton
µs
RL = 270 Ω
-
-
125 4)
RL = 270 Ω, Vbb = 13.5 V, Tj = 25 °C
-
45
100
RL = 270 Ω
-
-
175 4)
RL = 270 Ω, Vbb = 13.5 V, Tj = 25 °C
-
40
140
Turn-off time3)
Slew rate on3)
VIN = 0V to Vbb
VIN = Vbb to 0V
to 10% VOUT
10 to 30% VOUT
toff
dV/dton
V/µs
RL = 270 Ω
-
-
64)
RL = 270 Ω, Tj = 25 °C, Vbb = 13.5 V
-
1.3
4
RL = 270 Ω
-
-
84)
RL = 270 Ω, Tj = 25 °C, Vbb = 13.5 V
-
1.7
4
Slew rate off 3)
VIN = 0V to Vbb
70 to 40% VOUT
-dV/dtoff
1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for V
bb
connection. PCB is vertical without blown air.
2Nominal load current is limited by the current limitation ( see page 5 )
3Timing values only with high input slewrates, otherwise slower.
4not subject to production test, specified by design
Page 4
2004-01-27
BTS 4140 N
Electrical Characteristics
Symbol
Parameter
at Tj = -40...150 °C, Vbb = 9...42 V unless otherwise specified
Values
Unit
min.
typ.
max.
Operating Parameters
Operating voltage
Vbb(on)
4.9
-
60
V
Standby current
Ibb(off)
-
2
10
µA
Pin1 = open
Protection Functions1)
Initial peak short circuit current limit
A
IL(SCp)
(see page 11)
Tj = -40 °C, Vbb = 13.5 V, tm = 100 µs
Tj = 25 °C
Tj = 150 °C
-
-
1.2
-
0.9
-
0.2
-
-
-
0.7
-
Repetitive short circuit current limit
IL(SCr)
Tj = Tjt
Output clamp (inductive load switch off)
VON(CL)
60
-
-
Vbbin(AZ)
62
68
-
Thermal overload trip temperature
Tjt
150
-
-
°C
Thermal hysteresis
∆Tjt
-
10
-
K
V
at VOUT = Vbb - VON(CL),
Ibb = 4 mA
Overvoltage protection
Ibb = 1 mA
1Integrated protection functions are designed to prevent IC destruction under fault conditions
described in the data sheet. Fault conditions are considered as "outside" normal operating range.
Protection functions are not designed for continuous repetitive operation.
Page 5
2004-01-27
BTS 4140 N
Electrical Characteristics
Parameter
Symbol
at Tj = -40...150 °C, Vbb = 9...42 V unless otherwise specified
Values
min.
typ.
Unit
max.
Input
Off state input current
mA
IIN(off)
VOUT ≤ 0.1 V
Tj = 25 °C, RL = 270 Ω
-
-
0.05
Tj = 150 °C
-
-
0.04
-
0.3
1
On state input current ( Pin1 grounded ) 1)
IIN(on)
Input resistance
RI
0.5
1
2.5
kΩ
IS
-
-
0.2
A
-VON
-
600
-
Reverse Battery
Continuous reverse drain current
TC = 25 °C
Drain-source diode voltage (VOUT > Vbb)
mV
IF = 0.2 A, IIN ≤ 0,05 mA
1Driver circuit must be able to drive currents > 1mA.
Page 6
2004-01-27
BTS 4140 N
EMC-Characteristics
All EMC-Characteristics are based on limited number of sampels and no part of production test.
Test Conditions:
If not other specified the test circuitry is the minimal functional configuration without any external
components for protection or filtering.
Supply voltage:
Vbb = 13.5V
Load:
RL = 220Ω
Operation mode:
PWM
DC On/Off
-
DUT-Specific.:
Temperature:
Ta = 23 ±5°C ;
Frequency:
100Hz / Duty Cycle:
50%
Fast electrical transients
Acc. ISO 7637
Test Pulse
Test Level
1
2
3a
3b
41)
5
-200 V
+200 V
-200 V
+ 200 V
-7 V
175 V
Test Results
On
Off
C
C
C
C
C
C
C
C
C
C
E (150V )
E (150V )
Pulse Cycle Time and
Generator Impedance
500ms ; 10Ω
500ms ; 10Ω
100ms ; 50Ω
100ms ; 50Ω
0,01Ω
400ms ; 2Ω
The test pulses are applied at Vbb
Definition of functional status
Class
C
E
Content
All functions of the device are performed as designed after exposure to disturbance.
One or more function of a device does not perform as designed after exposure
and can not be returned to proper operation without repairing or replacing the
device. The value after the character shows the limit.
Test circuit:
Pulse
Bat.
Vbb
PROFET
OUT
IN
RL
1Supply voltage V = 12 V instead of 13,5 V.
bb
Page 7
2004-01-27
BTS 4140 N
Conducted Emission
Acc. IEC 61967-4 (1Ω / 150Ω method)
Typ. Vbb-Pin Emission at DC-On with 150 Ω-matching network
100
90
N o is e
Vbb D C
80
70
60
dBµV
50
1 5 0 Ω / 8 -H
40
30
20
1 5 0 Ω / 1 3 -N
10
0
-1 0
-2 0
0 ,1
1
10
100
1000
f / MHz
Typ. Vbb -Pin Emission at PWM-Mode with 150 Ω-matching network
100
90
N o is e
Vbb PW M
80
70
60
dBµV
50
1 5 0 Ω / 8 -H
40
30
20
1 5 0 Ω / 1 3 -N
10
0
-1 0
-2 0
0 ,1
1
10
100
1000
f / MHz
Test circuit:
5µH
150Ω-Network
Vbb
PROFET
IN
BSS100
OUT
5µH
R
For defined decoupling and high reproducibility a defined choke (5µH at 1 MHz)
is inserted between supply and Vbb-pin.
Page 8
2004-01-27
BTS 4140 N
Conducted Susceptibility
Acc. 47A/658/CD IEC 62132-4 (Direct Power Injection)
Direct Power Injection:
Failure criteria:
Forward Power CW
Amplitude and frequency deviation max. 10% at Out
Typ. Vbb-Pin Susceptibility at DC-On/Off
40
35
30
dBm
25
20
15
D e v ic e :
D a te C o d e :
Load:
O -M o d e :
C o u p lin g P o in t :
M o n it o r in g :
M o d u la t io n :
M e a s u re m e n t:
L im it
ON
OFF
10
5
BTS 4140
E0150
220 O hm
O N / O FF
VBB
O ut
CW
P fw d
0
1
10
100
1000
f / MHz
Typ. Vbb -Pin Susceptibility at PWM-Mode
40
35
30
dBm
25
20
15
D e v ic e :
D a te C o d e :
Load:
O -M o d e :
C o u p lin g P o in t :
M o n it o r in g :
M o d u la t io n :
M e a s u re m e n t:
L im it
PW M
10
5
BTS 4140
E0150
220 O hm
PW M 100 H z 50%
VBB
O ut
CW
P fw d
0
1
10
100
1000
f / MHz
Test circuit:
HF
5µH
Vbb
150Ω
PROFET
IN
6,8nF
OUT
5µH
RL
BSS100
150Ω
6,8nF
For defined decoupling and high reproducibility the same choke and the same
150Ω -matching network as for the emission measurement is used.
Page 9
2004-01-27
BTS 4140 N
Terms
Inductive and overvoltage output clamp
+ Vbb
Ibb
V
Vbb
V
IL
PROFET
bb
Z
VON
V
ON
OUT
OUT
IN
IN
V OUT
I IN
VON clamped to 60 V min.
Input circuit (ESD protection)
Overvoltage protection of logic part
+ Vbb
V
+ Vbb
ESD
Control.
Circuit
R
V
Z2
Logic
I
IN
R IN
IN
Reverse battery protection
Signal GND
- Vbb
Vbb,AZ = V Z2 + Ibb * RIN = 62V min.
OUT
Logic
RIN
Power
Inverse
Diode
IN
RL
Signal GND
Power GND
R I=1kΩ typ., Temperature protection
is not active during inverse current.
Page 10
2004-01-27
BTS 4140 N
Vbb disconnect with charged inductive
load
Inductive Load switch-off energy
dissipation
E bb
E AS
ELoad
Vbb
Vb b
PROFET
PR O FET
OUT
OUT
L
=
IN
V
ZL
IN
I IN
bb
{
EL
ER
R
L
Energy stored in load inductance: EL = ½ * L * IL2
While demagnetizing load inductance,
the enérgy dissipated in PROFET is
E AS = E bb + EL - ER = VON(CL) * iL(t) dt,
with an approximate solution for RL > 0Ω:
E AS =
Page 11
IL * R L
IL * L
)
* ( V b b + | V O U T ( C L )| ) * ln (1 +
| V O U T ( C L )|
2 * RL
2004-01-27
BTS 4140 N
Typ. transient thermal impedance
Typ. transient thermal impedance
ZthJA=f(tp) @ 6cm 2 heatsink area
Z thJA=f(tp) @ min. footprint
Parameter: D=tp/T
Parameter: D=tp/T
10
2
10 2
K/W
10 1
Z thJA
ZthJA
K/W
D=0.5
D=0.2
D=0.1
D=0.05
D=0.02
D=0.01
D=0
10 0
10 -1 -5
-4
-3
-2
-1
0
1
2
10 10 10 10 10 10 10 10
10 1
D=0.5
D=0.2
D=0.1
D=0.05
D=0.02
D=0.01
D=0
10 0
s
10
10 -1 -5
-4
-3
-2
-1
0
1
2
10 10 10 10 10 10 10 10
4
tp
s
10
tp
Typ. on-state resistance
Typ. on-state resistance
RON = f(Tj) ; Vbb = 9V ; Pin1 grounded;
RON = f(V bb); IL = 150mA ; Pin1 grounded
IL=150mA
1.6
3
Ω
Ω
RON
RON
1.2
1
2
150°C
0.8
1.5
0.6
1
25°C
0.4
-40°C
0.5
0.2
0
-40 -20
0
20
40
60
80 100 120
°C
Tj
0
0
160
Page 12
5
10
15
20
25
30
35
40
V
Vbb
50
2004-01-27
4
BTS 4140 N
Typ. turn on time
Typ. turn off time
ton = f(Tj ); R L = 270Ω
toff = f(Tj); RL = 270Ω
80
80
µs
µs
9V
60
60
9...42V
toff
ton
13.5V
50
42V
50
40
40
30
30
20
20
10
10
0
-40 -20
0
20
40
60
80 100 120
°C
Tj
0
-40 -20
160
0
20
40
60
80 100 120
Typ. slew rate on
Typ. slew rate off
dV/dton = f(Tj ) ; RL = 270 Ω
dV/dtoff = f(Tj); RL = 270 Ω
3
°C
Tj
160
6
V/µs
5
-dV
dtoff
dV
dton
V/µs
2
4.5
4
3.5
42V
1.5
3
2.5
42V
1
2
13.5V
13,5V
9V
0.5
1.5
1
0.5
0
-40 -20
0
20
40
60
80 100 120
°C
Tj
0
-40 -20
160
Page 13
9V
0
20
40
60
80 100 120
°C
Tj
160
2004-01-27
BTS 4140 N
Typ. initial peak short circuit current limit
Typ. initial short circuit shutdown time
IL(SCp) = f(Tj) ; Vbb = 13,5 V; tm = 100 µs
toff(SC) = f(Tj,start)
10 3
1
ms
A
t off(SC)
I L(SCp)
10 2
0.6
10 1
0.4
10 0
13,5V
0.2
24V
42V
0
-40 -20
0
20
40
60
80 100 120
°C
Tj
10 -1
-40 -20
160
0
20
40
60
80 100 120
°C
Tj
Typ. initial peak short circuit current limit
Typ. current limitation characteristic:
IL(SCp) = f(Vbb); tm = 100 µs
IL(SC) = f(VON ), Vbb = 13,5V
1
1.2
A
-40°C
A
25°C
I L(SC)
I L(SCp)
160
0.8
150°C
0.6
0.6
0.4
0.4
0.2
0.2
0
0
5
10
15
20
25
30
35
40
V
Vbb
0
0
50
4
8
12
16
24
V
VON
Page 14
2004-01-27
BTS 4140 N
Typ. standby current
Maximum allowable inductive switch-off
Ibb(off) = f(Tj ) ; Pin1 open
energy, single pulse
EAS = f(I L); T jstart = 150°C
6
2.2
J
60V
µA
1.6
4
EAS
Ibb(off)
1.8
1.4
1.2
3
1
0.8
2
42V
13.5V
1
0.6
0.4
0.2
0
-40 -20
0
20
40
60
80 100 120
°C
Tj
0
50
160
Page 15
75
100
125
150
175
mA
IL
225
2004-01-27
BTS 4140 N
Timing diagrams
Figure 1a: Vbb turn on:
Figure 2b: Switching a lamp
I IN
I IN
Vbb
VOUT
I
IL
L
t
t
Figure 2a: Switching a resistive load,
turn-on/off time and slew rate definition
Figure 2c: Switching an inductive load
I IN
I IN
V OUT
VOUT
90%
t on
d V /d to n
10%
d V / d to ff
t
o ff
IL
IL
t
t
Page 16
2004-01-27
BTS 4140 N
Figure 3a: Turn on into short circuit,
shut down by overtemperature, restart by cooling
Figure 3b: Short circuit in on-state
shut down by overtemperature, restart by cooling
I IN
I IN
V OUT
V OUT
O utput short to G N D
I
L
I
L(S C p)
I
normal
operation
I
L(S C r)
tm
L
Output short to GND
I
L(SCr)
t
t
t off(S C )
Heating up of the chip may require several milliseconds, depending
on external conditions.
Figure 4: Overtemperature:
Reset if Tj < Tjt
I IN
VOUT
TJ
t
Page 17
2004-01-27
BTS 4140 N
Package and ordering code
all dimensions in mm
Sales code
BTS 4140 N
Ordering code,
Q67060-S6084-A101
1.6 ±0.1
6.5 ±0.2
+0.2
acc. to
DIN 6784
1
2
3
3.5±0.2
4
7 ±0.3
B
15˚ max
0.1 max
3 ±0.1
0.5 min
A
0.28 ±0.04
2.3
0.7 ±0.1
4.6
0.25
M
A
0.25
M
B
GPS05560
Published by
Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81669 München
© Infineon Technologies AG 2001
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as a guarantee
of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your
nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide
(see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the
types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Page 18
2004-01-27