

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 AN49079 CapSense Plus - Dynamically Configuring CapSense.pdf

		
				 AN49079
CapSense Plus™: Dynamically Configuring CapSense®
Author: Vibheesh Bharathan
Associated Project: Yes
Associated Part Family: CY8C21x34, CY8C24x94
Software Version: PSoC Designer™ 5.0
Related Application Notes: AN2104 , AN2397
®
Dynamic reconfiguration is one of the powerful features available in PSoC . This application note explains how to create
a CapSense Plus™ application with dynamic reconfiguration.
Contents
Introduction
Introduction ...1
What Is a Configuration? ...1
How Dynamic Reconfiguration Works2
Base Configuration Concept...2
GPIO Drive Modes Across Configurations2
Global Resources Settings ...2
Interconnections and Configuration3
Creating a New Configuration in PSoC Designer3
Handling Interrupts ...3
Using APIs for Reconfiguration3
Changing the Configuration in Real Time4
Optimizing for Speed or Size ..4
CapSense Plus Project ...4
Variable Clocks and CapSense (CSD)5
Deciding on the Configuration6
Code Walkthrough ..7
Schematic Diagram of the Circuit for Testing7
Testing the Example Project...8
Summary ...9
Worldwide Sales and Design Support 11
CapSense is a widely accepted technology that is used
to replace conventional mechanical switches. Creating an
application by adding user modules like PWM or ADC to a
CapSense device reduces the BOM cost and adds value
to the design. This application note explains how to use
dynamic reconfiguration to create CapSense Plus™
applications and provides tips on using the reconfiguration
efficiently.
www.cypress.com
®
What Is a Configuration?
A configuration is set of code that enables a particular
block or set of blocks, interconnections, GPIO settings,
and global settings to make the device work as specific
hardware. If a set of digital and analog blocks is
configured to work as a CapSense block, that same set of
blocks can be reused to implement other functions like
ADC, counter, and so on at two different instances in time.
This process of reusing digital and analog resources is
called “dynamic reconfiguration.”
Why implement such an idea to design an application with
®
PSoC ? If the PSoC device used for the design does not
have the required digital and analog blocks to implement
all functionalities, you can use dynamic reconfiguration to
reuse the blocks and time share PSoC hardware
efficiently. This gives a cost advantage to the solution, as
PSoC is priced according to the number of blocks in the
device. Thus, the reuse of hardware saves money.
Document No. 001-49079 Rev. *C
1
CapSense Plus™: Dynamically Configuring CapSense®
How Dynamic Reconfiguration Works
Consider a digital block, which has a set of seven
registers—input, output, function, control, and three data
registers—that control the block’s functionality. The input
and output registers select the source of input to the block
and route the output of the block to an I/O or other blocks.
The function register decides the intended functionality of
the block (whether the block should work as a counter, a
timer, or something else). The control register enables and
disables the block, maintains status flags, and so on. The
overall functionality of a particular block is completely
dependent on these register values. (Refer to the
“Register Details” chapter in the PSoC Technical
Reference Manual).
When a block is configured to work as a particular function
(user module), the above-mentioned registers are written
with specific values. Changing these values during run
time allows you to change the functionality of the device
dynamically, and hence it is called “dynamic
reconfiguration.”
In short, all the resources inside the PSoC digital and
analog blocks; all global resources like CPU speed, clock
dividers, and so on; GPIO pin type; type and drive mode;
and digital and analog interconnects are controlled by
RAM-based registers whose values can be changed
during run time to create a different functionality. This
makes
PSoC
more
flexible
and
dynamically
reconfigurable.
GPIO Drive Modes Across Configurations
The GPIO drive mode settings in the base configuration
remain
unchanged
over
all
optional
loadable
configurations until a change is made explicitly for each
configuration in the GPIO setting window. If an application
needs a port pin to be configured as strong drive mode in
the first configuration and as resistive pull-up in the
second configuration, you can do so by setting it in the
port setting window individually for each configuration. The
value of the port data resistor remains the same across all
configurations. If the value of the port data register
(PRTxDR) has to be changed during the configuration
change, the application program should change the value
of PRTxDR.
Remember the following points when configuring GPIOs in
dynamic reconfiguration:

All GPIO settings in the base configuration are applied
globally to the optional loadable configurations.

Changes made to the GPIO settings inside an
optional loadable configuration remain local to that
configuration.

The value of the port data register does not change
when changing configurations. Any change required in
the data registers after switching configurations has to
be done in firmware by writing to the PRTxDR
register.
Global Resources Settings
Base Configuration Concept
Each PSoC project has one base configuration and
optional loadable configurations. The base configuration is
automatically loaded during power up. You can load or
unload any other optional configuration, as required. It is
preferable to keep all the user modules that have to be
active throughout the program’s run time in the base
configuration. Loading the base configuration is time
consuming and requires more code, since it must
configure all the register values based on the settings in
the Device Editor. Do not unload the base configuration,
as it takes the blocks and port pins to the reset state. The
example project provided in this application note has a
base configuration and three optional configurations for
implementing the ADC, EZI2C, and CapSense
peripherals.
The global resources behave the same as GPIO. All
global resources settings in the base configuration remain
unchanged throughout the optional configurations unless
they are explicitly changed inside those configurations.
Keeping the global parameters the same in the
configurations helps to keep parameters like power
setting, CPU clock, and SMP, which hardly need to
change, the same. Figure 1 shows a screen shot of the
Global Resources window.
Figure 1. Global Resources Window
.
www.cypress.com
Document No. 001-49079 Rev. *C
2
CapSense Plus™: Dynamically Configuring CapSense®
Interconnections and Configuration
When a new configuration is created, the connections
between the port pins and global bus nets remain
unchanged, whereas the connections established between
the global bus and the row interconnects are no longer
available. This helps minimize code change when
switching between the configurations. So, if you want a
particular connection between a row output net and a
global out net, make this connection in the new
configuration.
Similarly, for the analog, the column clock, column mux
input, and column clock selections remain unchanged
unless explicitly changed over configurations.
Figure 2 shows the base configuration, which establishes
the connection between a digital block to row
interconnects (A), from row interconnects to the global bus
net (B), and from the global bus net to the port pin (C).
Figure 2. Interconnect View of Base Configuration
(C)
Creating a New Configuration in
PSoC Designer
Choose Interconnect > Add loadable configuration
to in PSoC Designer™ 5.0 and Config > Loadable
Configuration in PSoC Designer 4.4 to create, rename,
or delete a loadable configuration. Selecting the create
option opens the blank Device Editor (interconnect view)
page, where no user modules are placed in any of the
blocks. The number of configurations that can be made is
limited only by the program memory and the size of the
configuration.
Handling Interrupts
When one hardware block is shared between
configurations, the interrupt branches to the same vector
address per the vector table regardless of the
configuration.
An
intermediate
function,
Dispatch_INTERRUPT_ <Interrupt number>, is called
from the interrupt vector location, in which the dispatch
routine determines the current active configuration and the
interrupt branches to the corresponding user-defined ISRs
for execution. All these dispatch interrupt functions are
located in the psocdynamicint.asm file.
The effect of dynamic reconfiguration on the interrupts is
an increase in latency, as a dispatch function is executed
to decide on the active configuration. Do not change the
boot.asm (boot.tpl) file to redirect the ISR calls to a userdefined function because every shared interrupt should go
through the interrupt dispatch function. Doing so will
produce conflicts in the interrupt servicing, rendering the
system unstable.
(A)
(B)
Using APIs for Reconfiguration
Figure 3 shows the interconnect view of a newly created
optional loadable configuration in which only the
connection between the global bus net to port pin (C)
remains unchanged, and other connections are removed.
This is the default connection scheme provided when a
new configuration is created. You can modify it, if required.
Figure 3. Interconnect View of Optional Configuration
(C)
www.cypress.com
After a new configuration is created in PSoC Designer,
APIs are generated to load and unload the configurations.
The function LoadConfig<Config Name> configures the
required analog or digital block to work as the selected
user module and establishes the interconnection of the
blocks (between the blocks or input and output routings)
as defined in that configuration. This function writes
specific values to the registers that configure the
analog/digital blocks, interconnects, and so on as defined
in the Device Editor.
The function UnloadConfig<Config Name> resets the
registers that are configured for a particular configuration.
Note that unloading a configuration does not return the
device to a previously loaded configuration. It only resets
the resources. To load a previously running configuration,
call the relevant API function.
Document No. 001-49079 Rev. *C
3
CapSense Plus™: Dynamically Configuring CapSense®
Also, when a configuration is loaded or unloaded using the
previously mentioned functions, only the registers that
correspond to the resources that are changed between the
configurations are modified. The code generated to load or
unload the configurations and to change the register
values is located in the psocdynamic.asm and
psocconfigtbl.asm files.
Changing the Configuration in Real Time
Unload the current configuration before loading another
one if both configurations use common hardware. This
avoids conflicts in register configuration. Reconfiguring the
set of hardware blocks without unloading the present
configuration creates conflicts. However, never unload the
base configuration, as that will take the device to an
unstable state.
Consider the following situation. A project requires a PWM
on DBB00 to run continuously. DBB01 should be time
shared to work as a Timer and a Counter at different
instances. To implement this, place the PWM in DBB00 in
the base configuration. Since the base configuration is
loaded by default and is never unloaded, DBB00 always
operates as a PWM. Create two loadable configurations
and configure DBB01 as a Timer in one configuration and
as a Counter in another configuration. Ensure that the
Timer or Counter does not use the same row interconnect
resource as the PWM in the base configuration. In the
application program, when DBB01 has to be configured as
a Timer, load the Timer configuration. When DBB01 has to
function as a Counter, unload the Timer configuration and
then load the Counter configuration. To revert to the
functionality of the Timer, unload the Counter configuration
and load the Timer configuration.
Time Requirements for Changing the
Configuration
The time required to change from one configuration to
another depends on the number of registers that need to
be updated in the new configuration. For example, to
configure a digital block from a Timer to a PWM, six
registers are updated. A CPU clock of 24 MHz takes about
1.5 µs. Similarly, to change a PGA to a Comparator, only
two registers need be updated, which takes about
0.5 µs. Apart from these register writes, which configure
the digital or analog block, there are register writes that
update the interconnects, GPIO drive modes, and so on.
The most accurate method of determining the time
required is to calculate the number of CPU cycles taken by
the LoadConfig function (by adding the CPU cycles taken
by each assembly instruction on the API, or measuring the
execution time of the API by toggling a port pin) and then
calculate the total time from the CPU speed.
www.cypress.com
Optimizing for Speed or Size
There are two options to create code for the loadable
configurations, as listed in Table 1. Choose Project >
Settings and select the Chip Editor tab. The first option,
“Loop (Size Efficient),” generates code that uses less flash
memory, but takes a longer time to load. In this method, all
the values to be written to the registers are put in a table.
The LoadConfig API loops through the table and updates
the registers.
The second option, “Direct Write (Speed Efficient),” uses a
larger amount of flash, but loads faster. In this method, all
the registers are written directly using the mov reg[..]
instructions.
Table 1. Code Optimization Options
Option Name
Effect in the Program
Loop (Size Efficient)
Consumes less code memory,
but takes more time to load the
configuration
Direct Write (Speed
Efficient)
Loads the configuration faster,
but consumes more code size
CapSense Plus Project
This example project controls the speed of a motor, based
on the analog input from a feedback system. The ON/OFF
control (user interface) of the motor is implemented with
two CapSense switches.
This system requires one CapSense Sigma Delta (CSD)
User Module for user interface switches, one 8-bit PWM to
control the speed of the motor, an ADC to sample the
2
analog input, and an I C slave interface (EzI2Cs) for
tuning the CapSense buttons. Table 2 describes the
resource requirements for the application.
Table 2. Resource Requirements
User Module Needed for
Application
PSoC Blocks Required for
Each User Module
8-Bit PWM
1 digital block
8-Bit ADC
1 digital and 2 analog blocks
CapSense – CSD
3 digital and 3 analog blocks
EzI2C
I2C dedicated block
The example project requires five digital blocks and five
analog blocks. The device used for the example project
includes only four analog and four digital blocks. Dynamic
reconfiguration enables the complete functionality of the
example project to be implemented with four analog and
four digital blocks.
Document No. 001-49079 Rev. *C
4
CapSense Plus™: Dynamically Configuring CapSense®
Variable Clocks and CapSense (CSD)
Figure 4. Application Flow Chart
When the CSD User Module is active, regardless of the
selections made in the Global Parameters window, it
alters the values of the VC1, VC2, and VC3 variable
clocks based on the scanning speed and resolution. The
value of the variable clocks for each setting of the user
module is located in the user module datasheet in the
”Resolution”
subsection
under
“Parameters
and
Resources.” This change of variable clock values affects
other configurations that are active along with the
CapSense configurations if they use a different variable
clock divider setting than the CSD. The workaround for
this problem is to use the same VC1, VC2, and VC3
dividers set by CSD in the other configurations.
Start
Initialise and start the PWM
with default duty cycle
Load CapSense Configuration
Initialize CapSense and ADC
User modules
Unload CapSense
Configuration
Figure 4 shows the flow chart of the application, based on
which the configurations are created.
Load I2CTune Configuration
Load ADC Configuration
Sample Analog
Data
Unload ADC Configuration
Calculate new duty cycle and
update PWM
Load CapSense Configuration
Scan capsense
buttons
Unload CapSense
Configuration
Switch ON PWM
YES
Is Button ‘ON’
active?
NO
Is button ‘OFF’
active?
YES
Switch OFF PWM
NO
Update I2C Buffer with new
parameters from CapSense
www.cypress.com
Document No. 001-49079 Rev. *C
5
CapSense Plus™: Dynamically Configuring CapSense®
Table 3. Configurations
Deciding on the Configuration
The CSD and the ADC do not operate continuously.
Therefore, these user modules should be placed in two
optional loadable configurations. On the other hand, the
PWM, which controls the motor, has to be continuously
active and hence should be placed in the base
configuration. The EzI2C is placed in another optional
loadable configuration, as described in Table 3.
Required
User
Modules
Figure 5 shows a complete view of how user modules are
placed in each configuration without any resource conflict
between configurations.
Required PSoC
Blocks
8-Bit PWM
1 digital block
CapSense Plus
(base configuration)
8-Bit ADC
1 digital block and
ADC (optional
configuration 1)
2 analog blocks
The PWM User Module in the base configuration is active
throughout the program. As mentioned in Interconnections
and Configuration, when a configuration (ADC, CapSense,
or I2CTune) is loaded with the base configuration, the
connection between the row interconnects and global bus
is no longer available. So you should make this connection
manually in all the configurations that are loaded with the
base configuration so that the user modules will work
properly in the base configuration.
Configuration
CapSense –
CSD
3 digital blocks and
EzI2C
I2C dedicated block
3 analog blocks
CapSense (optional
configuration 2)
I2CTune (optional
configuration 3)
Note The EzI2C User Module ideally should be included in
the base configuration, as it should work continuously like
the PWM. This is because when a new configuration is
loaded, a set of global registers like the global digital
interconnect, IDAC, decimator, and I2C are written with a
reset value based on a comparison with the base
configuration. Therefore, the I2C stops working when a
configuration is changed. As a workaround, the I2C is
placed in a loadable configuration (I2CTune) and loaded
once at the beginning of the program. This configuration is
never unloaded. In this way, the loading and unloading of
other configurations does not affect the I2C operation.
This same concept applies to the decimator and IDAC, so
take care when using them in your applications.
Figure 5. User Module Placement in Each Configuration
DBB0
0
DBB0
1
ACE00
DCB0
2
DCB0
3
DBB0
0
ACE01
DBB0
1
ACE00
DCB0
2
ADC
PSoC (CY8C21x34) block layout
CSD
DCB0
3
CSD
DBB0
0
DBB0
1
ACE00
CSD
DCB0
2
www.cypress.com
DCB0
3
ACE01
I
2
C
ASE10
CapSense Configuration layout
ASE11
ADC configuration Layout
I
2
C
ASE10
ACE01
ADC
Base configuration layout
CSD
DCB0
3
I
2
C
ASE11
ASE10
CSD
DCB0
2
I
2
C
ASE11
CSD
DBB0
1
ADC
ACE01
I
2
C
ASE10
8-Bit
PWM
ASE11
I2CTune configuration layout
Document No. 001-49079 Rev. *C
6
CapSense Plus™: Dynamically Configuring CapSense®
Code Walkthrough
5.
The CapSense configuration is loaded. The CSD
User Module is started, the buttons are scanned using
the ScanAllSensors function, and the baselines are
updated. Remember that the baseline and finger
thresholds should not be initialized at this stage
because they are initialized in the beginning. The
finger threshold, baseline, and raw counts are
firmware implementations that persist throughout the
program and across all configurations. After the
sensors are scanned, the CapSense configuration is
unloaded.
6.
The last part of the software is the ON/OFF control of
the PWM and updating the I2C buffers with the latest
data from the CapSense User Module.
The following sequence is based on the program of the
example project attached to this application note.
1.
The software starts the PWM with a default duty cycle
value, as the base configuration is loaded by default.
2.
The I2CTune configuration is loaded over the base
configuration. The I2C buffers are initialized and the
I2C interface used for tuning CapSense is started.
This configuration is never unloaded.
3.
Now that the base configuration and the I2C
configuration are active, the ADC configuration is
loaded to sample the analog input. The ADC is
started, and a conversion is initiated. When the
conversion is complete, the ADC configuration is
unloaded.
4.
Schematic Diagram of the Circuit for
Testing
Based on the ADC result, a new PWM duty cycle is
The schematic diagram of the circuit is shown in Figure 6.
calculated, and the PWM is updated.
Figure 6. Schematic Diagram of CY3280-21x34 UCC Kit
All the components are already present and connected in
the CY3280-21x34 UCC Kit. The only external component
that needs to be connected is the system 5K
potentiometer to provide 0 V to 4 V of variable voltage
input to the ADC. This potentiometer should be connected
to the P1.7 port pin using the J2 header, as described in
Table 4.
www.cypress.com
Document No. 001-49079 Rev. *C
7
CapSense Plus™: Dynamically Configuring CapSense®
Figure 8. Download Code (MiniProg1)
Testing the Example Project
The example CapSense project can be tested on
Cypress’s CY3280-21x34 UCC Kit or CY3214PSoCEvalUSB Kit (with modification to the CapSense
button pin numbering). The procedure to test the project
with the CY3280-21x34 UCC Kit and monitor the
performance is as follows.
Table 4. Pin Configurations
Functional Input/Output
PSoC Pin Number
PWM output
P1.5
ADC analog input
P1.7
CapSense buttons
P1.3 and P1.6 (Button 1 and 2
in CY3280-21x34 UCC Kit)
EzI2C – interface
SCL-P1.1, SDA-P1.0 (ISSP
Header)
1.
Connect the CY3280-SLM Kit to the CY3280-21x34
UCC Kit, as shown in Figure 7.
4. Connect the analog input (feedback), which can swing
between 0 V and 4 V (for testing purposes, a simple
potentiometer can be used), to the P1.7 port pin (use
the header in the CY3280-21x34 UCC Kit), as shown
in Figure 9.
Figure 9. Connect Analog Input
Figure 7. Connect CY3280-SLM to CY3280-21x34 UCC
2.
Configure the jumper settings:

Jumper on J2 on CY3280-SLM should be between
GND and SHIELD.

Jumper on J1 on CY3280-21x34 UCC should be
between 5 V and VCC.

Jumper on J4 on CY3280-21x34 UCC should be
between XRES and XRES/XRES/INT.
3. Download the code to the CY3280-21x34 UCC Kit
using MiniProg1 (shown in Figure 8), ICE-Cube, or
MiniProg3.
5. Connect the PWM output pin (P1.5) to the motor
driving circuit or oscilloscope (use the header in
the CY3280-21x34 UCC Kit).
6. Power the board from MiniProg1, MiniProg3, CY3240I2USB Bridge, or adapter, as Figure 10 shows.
Figure 10. Connect PWM Output Pin and Power the Board
Potentiometer
www.cypress.com
Document No. 001-49079 Rev. *C
8
CapSense Plus™: Dynamically Configuring CapSense®
7. Monitor the application. The duty cycle of the PWM
(30 kHz) varies from 32 percent to 67 percent as the
ADC sampled data varies from 0 count to 62 counts.
Using CapSense switch-1 and switch-2 stops and
starts the PWM (Figure 11).
Figure 11. PWM Output on Oscilloscope
10. Open the file I2CReadCommands.iic attached to this
application note by clicking File in the menu bar and
then Open file.
11. Press Enter and click the repeat button in the USB-to2
I C bridge. Then move to the Chart window.
12. Monitor the raw count, baseline, and difference count
data for the CapSense switches; the duty cycle of the
PWM; and the analog sampled data, as shown in
Figure 13.
Figure 13. CapSense Data on Bridge Control Panel
8. To monitor the CapSense parameters and tune the
CapSense switches, connect the CY3240-I2USB
Bridge and open the Bridge Control Panel software in
the computer (refer to AN2397 for more information on
how to use the CY3240-I2USB Bridge)
9. Open the Variable Settings window from Chart >
Data Setting in the File menu (Figure 12). Click the
Load
button
and
open
the
USBIIC_Cmd_CapSensePLUS.ini file attached to this
application note. Then click the OK button.
Figure 12. CY3240-I2USB Bridge Variable Settings
Summary
This application note explained how to build a CapSense
Plus application when not enough blocks are available in
the device. You can build additional useful and powerful
applications using the same dynamic reconfiguration
concept by adding analog and digital user modules like
Amplifiers, Comparators, Filters, DACs, ADCs, Counters,
Timers, PWMs, PRS, SPI, and UART. The ability to time
share the hardware makes PSoC unique among
conventional microcontrollers and programmable devices.
About the Author
www.cypress.com
Name:
Vibheesh Bharathan.
Title:
Systems Engineer Staff
Document No. 001-49079 Rev. *C
9
CapSense Plus™: Dynamically Configuring CapSense®
Document History
Document Title: CapSense Plus™: Dynamically Configuring CapSense® - AN49079
Document Number: 001-49079
Revision
ECN
Orig. of
Change
Submission
Date
Description of Change
**
2617502
BVI
12/08/08
New Application Note
*A
3124084
BVI
12/30/2010
Added figures and replaced the obsolete CY3213 kit with CY3280-21x34 UCC
and CY3280-SLM kits in the example project implementation section.
Revised the test setup details.
*B
4274568
DCHE
02/07/2014
Removed reference of AN2352 and added reference of AN2397 Application Note
instead in all instances across the document.
Added hyperlinks to CY3280-21x34 UCC kit.
Updated in new template.
Completing Sunset Review.
*C
4581722
DCHE
11/27/2014
Added references to Bridge Control Panel.
Added Figure 6.
Updated Figure 7, Figure 12 and Figure 13.
www.cypress.com
Document No. 001-49079 Rev. *C
10
CapSense Plus™: Dynamically Configuring CapSense®
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
Automotive
cypress.com/go/automotive
psoc.cypress.com/solutions
Clocks & Buffers
cypress.com/go/clocks
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Interface
cypress.com/go/interface
Lighting & Power Control
cypress.com/go/powerpsoc
cypress.com/go/plc
Memory
cypress.com/go/memory
PSoC
cypress.com/go/psoc
Touch Sensing
cypress.com/go/touch
USB Controllers
cypress.com/go/usb
Wireless/RF
cypress.com/go/wireless
Cypress Developer Community
Community | Forums | Blogs | Video | Training
Technical Support
cypress.com/go/support
CapSense and PSoC are registered trademarks and CapSense Plus and PSoC Designer are trademarks of Cypress Semiconductor Corporation. All
other trademarks or registered trademarks referenced herein are the property of their respective owners.
Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone
Fax
Website
: 408-943-2600
: 408-943-4730
: www.cypress.com
© Cypress Semiconductor Corporation, 2008-2014. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
www.cypress.com
Document No. 001-49079 Rev. *C
11

				

 Open as PDF

 	Similar pages
	

										CSD_001-13535.pdf

	

										I2C to USB Bridge Guide(pdf)

	

										CY3210-PSoCEVAL1 Kit - User Guide

	

										AN2397 PSoC® 1 and CapSense® Controllers CapSense Data Monitoring Tools.pdf

	

										CY3214-PSoCEVALUSB Kit - User Guide.pdf

	

										CY3240 USB-I2C Bridge Kit - User Guide.pdf

	

										AN52678 PSoC 1 Interface with Triaxial Analog Accelerometer for Measuring Tilt.pdf

	

										CE54365 - CSD with I2CHW Slave on CY8C21x34/B.pdf

	

										CYPRESS CY8C22345

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

