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Implementation of 12-bit delta-sigma DAC
with MSC12xx controller
By Hugo Cheung, MSC Group, Data Acquisition Products (Email: [email protected]),
and Sreeja Raj, MSC Group, Data Acquisition Products (Email: [email protected])
Introduction
Figure 1. High-level block diagram of a PWM or ∆Σ DAC
Digital-to-analog converters (DACs) are
usually used as an interface between digital
systems and continuous analog circuitry. To
choose the type of DAC best suited for an
application, the designer must consider
many important performance measures.
• Resolution: Generally, a DAC is specified by the number of bits in the input,
or the input width, which represents the
number of voltage levels (2N for an N-bit
DAC) that can be generated by the DAC.
• Full-scale (FS): If a DAC is implemented
to represent the voltages from 0 V to the
power-supply voltage, VCC, then the lowest DAC input code should represent 0 V
and the highest should represent VCC, or
the full-scale voltage. Each analog voltage step of an N-bit DAC is given by
FS
VLSB = N .
2
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Modulator
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Figure 2. Bitstream output for PWM and ∆Σ DAC for DACIN = 3011
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• Output bitstream: The output of a
pulse-width modulator (PWM) or deltasigma (∆Σ) DAC is a stream of pulses,
referred to as a bitstream, which is
VFS 0 1 0 0 1 0 1 0
passed through a low-pass filter to get
the precision analog output voltage (see
Figure 1). The frequency of the bitstream decides the complexity and size
Frame
Period
of the filter design. Higher frequencies
will result in smaller filters.
• Average analog output voltage: The
output of the filter is an analog voltage
corresponding to the average on-time of
the bitstream input to the low-pass filter. If the frame
–
period (Figure 2) is divided into 2N parts, the on-time is
represented as the number of parts in the frame, where
the bitstream is 1. The analog voltage is given by
On-time
× FS .
2N
For example, in Figure 2, the average analog output
equals 3/8 × VCC. There are various types of DACs based
on different methods of conversion. Two of them are:
PWM
Bitstream
∆Σ Bitstream
1-Bit
On-Time
PWM DAC: This is the simplest type of DAC. In this
method of conversion, a stream of pulses is passed
through a low-pass analog filter, and the width of the
pulse is determined by the digital input code. Generally,
the implementation compares a sawtooth waveform
and the DAC input to produce an output pulse with
on-time proportional to the DAC input.
– ∆Σ DAC: In this method, the output is a stream of
pulses of equal width such that the average density of
the pulses corresponds to the digital input value. The
output stream is then passed through a low-pass filter
to produce an analog voltage.
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Design of ∆Σ DAC
This section explains the structure, operation, theory, and
implementation of a ∆Σ DAC.
Therefore, the average analog output voltage is 3/8 × FS.
Table 2 shows the bitstream for all the inputs of a 3-bit
DAC and their corresponding average analog output voltage.
Theory of ∆Σ conversion
Structure
As the name suggests, a ∆Σ DAC makes computations using
binary adders (see Figure 3). Their functionality is as follows:
• ∆ adder: This adder is used to compute the difference
between the DAC input and DAC output. The ∆ feedback
signal to the ∆ adder (Figure 3) depends on the DAC
output, which is either a 1 or a 0. If it is a 0, then ∆ is an
N+2 bit number with all 0s. If it is a 1, then ∆ is the 1’s
complement of the highest N bit number, sign-extended
to N+2 bits. It is equivalent to two 1s concatenated as
MSBs to an N bit number of all 0s. The DACIN is an
unsigned number; however, since the outputs of both
adders represent signed numbers, it is sign-extended.
Therefore, the outputs of the ∆ adder and Σ adder are
signed numbers. For example, in the 3-bit case, the output of the adders is 5 bits. When the DAC input is 0, the
output is always 0 V.
• Σ adder: This adder is used to compute the sum of the
∆ adder output and the current content of the Σ register.
The output of the Σ adder is stored in the Σ register. The
MSB of the Σ register gives the DAC output (DACOUT).
Operation
The ∆Σ operation can be explained with a 3-bit example.
Table 1 details the bitstream computation steps for a single
case, when the DACIN is equal to 3011. At t0, the value of Σ
is initialized with 10000. The bitstream from t0 to t7 has
three 1s. The ratio of on-time to frame time is 3/8.
The Σ adder functions like an integrator, which accumulates
the input at a rate or slope proportional to the magnitude
of the input. When Σ becomes a negative number—i.e.,
when the MSB equals 1—the ∆ error signal is subtracted
from Σ such that the accumulated value is reduced to a
smaller positive value. Then the integration is continued
until the overflow takes place again. The MSB of Σ is the
DACOUT, and the rate at which the MSB becomes 1 is
directly proportional to the DAC input. Therefore, the
density of 1s in the DACOUT bitstream is also directly
proportional to the input.
Implementation of ∆Σ DAC
There are different approaches for implementing a DAC,
depending on the resources used for the computations. It
can be completely implemented with hardware only, software only, or a combination of both.
• Hardware-only implementation: This is the best
possible method in terms of both performance and
accuracy. Since all the computations are done by hardwired circuits, this implementation is also the fastest.
• Software-only implementation: In this method, the
microcontroller is programmed to perform all the operations involved in the ∆Σ conversion. Although this is
inexpensive, as it does not use any hardware resources,
it exacts huge penalties of lower speed and loss of accuracy from software-induced errors and uncertainties.
Table 1. DACOUT computation steps for DACIN = 3011
∆
∆OUT
Σ
ΣOUT
DACOUT
t0
11000
11011
10000
01011
t1
00000
00011
01011
01110
t2
00000
00011
01110
10001
t3
11000
11011
10001
01100
TIME
t4
00000
00011
01100
01111
t5
00000
00011
01111
10010
t6
11000
11011
10010
01101
t7
00000
00011
01101
10000
t8
11000
11011
10000
01011
1
0
0
1
0
0
1
0
1
Table 2. Bitstream and average analog output
voltage for 3-bit DAC inputs
Figure 3. ∆Σ modulator
DACOUT
BITSTREAM
Σ [N+1:0]
∆ Adder
DACIN
N
+
N+2
∆ OUT
+
N+2
ΣOUT
Σ Register
N+2
DACOUT
Σ Adder
N+2
∆
0
∆=
DACOUT = 0
3 x 2N
DACOUT = 1
DACIN
0000
1001
2010
3011
4100
5101
6110
7111
81000
t1 2 3 4 5 6 7 8
00000000
00000010
00100010
01001010
10101010
10110110
11101110
11111110
11111111
ANALOG OUTPUT
VOLTAGE (FS = VCC)
(V)
0
1/8 × FS
2/8 × FS
3/8 × FS
4/8 × FS
5/8 × FS
6/8 × FS
7/8 × FS
FS
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• Hardware/software co-implementation: This
method, described next, uses part hardware and part
software, which helps to minimize the errors induced by
software computations. The use of hardware adders
improves speed considerably.
Hardware/software co-implementation of ∆Σ DAC
with MSC12xx
The implementation method of the ∆Σ DAC described in
this article uses both hardware and software resources of
the MSC12xx block (see the Appendix on page 32). One
of the adders is implemented with the accumulator/shift
(ACCSH) block of the MSC12xx (Figure 4). The summation/
shift feature of this module can be used only when the
ADCON bit is set to 0 in the power-down control register
(PDCON), and the summation/shift control register (SSCON)
has to be appropriately set to enable summation mode.
The output of the ∆ adder is obtained by executing a
software algorithm with the microcontroller. If the output
of the DAC is 0, then the output of the ∆ adder should be
the DAC input itself. If the DAC output is 1, then we need
to add the 1’s complement of all the 1s sign-extended to
N+2 bits. For example, the 1’s complement of FFH (for an
8-bit number, sign-extended to N+2 bits) will be 300H. If
this is added to the DAC input, it is equivalent to concatenating two 1s as the MSBs of the DAC input (Table 1).
Therefore, we eliminate the ∆ adder and use software to
generate ∆OUT :
If DACOUT = 0
∆OUT = DACIN;
else
∆OUT = Concatenate 11 with DACIN;
end if;
The Σ adder of the ∆Σ modulator is implemented directly
with the hardwired adder in the ACCSH block.
The next step is to send the DAC output to a port of the
device so it can be filtered and used for some applications
(see Figure 5). There are several means of writing the output of the DAC to an output port of the MSC12xx. The
serial peripheral interface (SPI) output can be used to
observe the DAC output as a series waveform. The SPI can
be run either in the master mode, where it derives a clock
Figure 4. Simplified block diagram of ACCSH block
∆OUT
Summation/Shift Register (A)
(SUMR3-0- 32-Bit)
+
Summation/Shift Register (B)
(SUMR3-0- 32-Bit)
Figure 5. SPI port for DAC output
∆ΣOUT
PWM
t CLK
CPU
CLK
SPI
SPIDATA
MSC1211
from the CPU itself, or in the slave mode, where the user
can provide the clock or the clock can be generated from
a timer or PWM. The disadvantage of running the SPI in
the master mode is that some clock cycles may be wasted,
as the SPI clock is a discrete multiple of the CPU clock
speed in the master mode. With the CPU running with a
22-MHz crystal, it takes about 50% of the CPU’s time to
run the output bitstream at 150 kHz.
Comparing ∆Σ DAC with PWM DAC
To compare the performance of the ∆Σ DAC, a PWM DAC
was implemented with software and the microcontroller on
the same MSC12xx board. In the implementation, a counter
was used to count from 0 to 2N–1, and the count value was
compared with the DAC input after each increment. The
DAC output was maintained at 1 until the counter exceeded
the DAC input, when it was pulled down to 0. When the
counter expired, the DAC output was set back to 1; so a
series of pulses was generated with an on-time proportional to the DAC input. The disadvantage of this type of
DAC is that, since the frequency of the output bitstream is
the same as the frame rate, it is not possible to achieve
very high frequencies for the output as compared with the
∆Σ DAC. Therefore, to obtain an analog output voltage, we
will need to design filters with large time constants.
For a fair comparison, we chose a PWM implemented
with a timer running at a frequency of 10 MHz. For a 12bit DAC, the frame rate would be equal to 2.5 kHz. With a
∆Σ DAC, more than 90% of the DACIN codes will result in
a ∆OUT bit frequency greater than 8 kHz. Therefore, the
∆Σ DAC output filter design is much easier than for a
PWM DAC. Hence, the disadvantages of using a PWM DAC
are as follows:
• Requires larger filters.
• For very low/high codes, the PWM on/off-time might not
accurately represent the code because there might be
software overhead that causes the on/off-time to be
greater than the exact time representing the code.
• Some devices don’t have double-buffered timers. This will
cause some software uncertainties during the duty-cycle
transition in the PWM DAC, which might result in poor
integral/differential nonlinearity (INL/DNL) performance.
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Filter design
Settling time
In the DACs previously described, the DAC outputs are
always a stream of pulses. To generate an analog output
voltage corresponding to the digital input, the pulse stream
is passed through an analog low-pass filter. The filter output is the average signal level of the pulse stream.
There are several issues in the design of an RC low-pass
filter, including attenuation of high-frequency components,
settling time, and INL/DNL performance. These issues will
be discussed in detail next, with a DAC of 12-bit resolution
used as an example.
A very important parametric of the DAC performance is the
settling time, which is the time required to settle within
the range of 1-LSB voltage without error. The required
settling times for 10-, 12-, 14-, and 16-bit DACs are shown
in Table 4. The settling time is computed as a factor of the
RC time constant. The factor is the number of time constants required to settle to a 1-LSB value. Figure 6 shows
the DAC settling time versus bit resolution when the DAC
input is changed from 0 to FS and vice versa.
Figure 6. DAC settling time vs. bit resolution
The maximum ripple allowed in the filtered output has to be
less than the voltage corresponding to 1 LSB (see Table 3).
For a 12-bit DAC, with the highest voltage (FS) equal to
5 V, this value is
 1 
20 log  12  = −72 dB.
2 
(1)
Table 3. Required attenuation
12
FS to 0 (1st RC)
0 to FS (1st RC)
0 to FS (2nd RC)
FS to 0 (2nd RC)
10
Resolution (Bits)
Attenuation of high-frequency components
8
6
4
2
NO. OF BITS
(N)
10
12
14
16
MAX RIPPLE
(1 LSB WITH FS = 5 V)
(V)
0.0048
0.00122
0.00031
0.000076
0
–0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
Time (s)
This attenuation should be attained at the lowest possible frequency. To keep the filter design reasonable, we
assume that the DAC input is always above 5% of the total
number of codes (2N for an N-bit DAC). For a 12-bit DAC,
this value is given by CCH. For the specifications of the
board and crystal chosen for the design, the SPI clock rate
(bitstream frequency) was found to be 150 kHz, and the
frequency corresponding to CCH was 8.9 kHz. The RC time
constant of the filter is calculated as follows:
H(ω ) =
0.1
VOUT
1
=
VIN
1 + (ωRC)2
(2)
Solving for RC with Equations 1 and 2, we get
RC = 0.0712 s.
INL/DNL performance
The filter design under discussion is a very simplified form
of the output circuitry of a ∆Σ DAC. If the output voltage
is measured with only this filter, then a significant degradation in INL/DNL performance is expected. To achieve the
desired INL/DNL performance, certain auxiliary circuits
have to be designed along with the filter to minimize output
transistor resistance and digital power-supply noise (see
Figure 7). In addition, for impedance matching, a buffering
circuit should follow the filter before the analog voltagemeasuring instrument. The design of these analog circuits
is briefly discussed here.
The digital bitstream from the DAC (denoted as DIN) is
passed through the conditioning circuit, resulting in an
analog voltage output that is used for INL/DNL measurements. The optical coupler HCPL-0630 is used to provide
isolation between the digital and analog sides, which
Table 4. Theoretical calculations for settling times for DACs with different bit resolutions
NO. OF BITS
(N)
10
12
14
16
5% OF 2N
33H
CCH
333H
CCCH
BITSTREAM
FREQUENCY
(kHz)
8.9
8.9
8.9
8.9
RC TIME
CONSTANT
(s)
0.0179
0.0712
0.283
1.128
TYPICAL NO. OF
RC TIME CONSTANTS
REQUIRED
8
9
11
12
SETTLING
TIME
(s)
0.143
0.641
3.1176
13.54
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LSB
significantly reduces the
Figure 7. Conditioning circuit to improve INL/DNL performance
impact of digital noise on the
analog signal. The isolated
signal is then passed through
C1
10 µF
an inverter and the RC filter.
U1
T2 R1
Finally, the filtered output is
HCPL-0630
2
DIN 332 Ω 1
R3
R4
1 T5
passed through a voltageVCC 8 4.02 kΩ
A1
5
U3A
A+
71.5 kΩ
4
2
7
2
3
follower op amp buffer to yield
T1
C1
V01
OPA2277
DGND
3
U2 SN74AHCT1G14
6
an analog voltage in the range
V02
C2
T4
3
C2
DGND
5
4
of 0 to 5 V. The op amps use
1 µF
T6
GND
GND
A1
A–
the 9-V supply voltage, but
GND
additional circuitry is required
T3
to generate a 5-V supply for the
V+
R2
inverter and optical coupler.
1.21 kΩ
U4
C4
TPS76150 BVR
C3
1µF
The results of the INL/DNL
R5
1 µF
5
1
6 –
IN OUT
D1
calculation are plotted in
10 Ω
7
2
9-V
1N4148
U3B
GND
Figures 8 and 9. We can see
Supply
5
3
4
+
EN NC
that the conditioning circuit
OPA2277
D2
C5
1N4148
results in excellent DNL per0.1 µF
formance (±0.2 LSB) but does
T7
not help to correct INL errors
V–
(±0.6 LSB) to a large extent.
GND
The INL performance is
degraded because of the
different gains the RC filter
offers to the higher bitstream frequencies and those closer
Figure 8. DNL measurements for ∆Σ DAC
to 0. The filter needs to have flatter frequency response in
the passband. To improve the INL performance, another
0.3
RC filter was cascaded, thus forming a second-order filter.
DNL (1st RC)
Although this degraded the settling-time performance, it
0.2
DNL (2nd RC)
helped reduce the INL error to ±0.2 LSB and the DNL
0.1
error to ±0.15 LSB.
Conclusion
A ∆Σ DAC is implemented on an MSC1211 microcontroller
board with both hardware and software resources. The ∆
adder is implemented with software, and the Σ adder is
implemented with the hardware adder on the MSC1211
board. The design results in a very efficient ∆Σ DAC, as it
offers much better speed and error-free performance as
compared with a software-only implementation. Also, with
a higher bit rate, the frequency spectrum is better than
that of a PWM DAC, resulting in smaller filters and faster
settling times.
0
–0.1
–0.2
–0.3
0
500 1000 1500 2000 2500 3000 3500 4000
DAC Code
Figure 9. INL measurements for ∆Σ DAC
Related Web sites
1.6
INL (1st RC)
INL (2nd RC)
1.2
LSB
analog.ti.com
www.ti.com/sc/device/partnumber
Replace partnumber with MSC1211Y2, OPA2277,
SN74AHCT1G14, or TPS76150
0.8
0.4
0
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0
500 1000 1500 2000 2500 3000 3500 4000
DAC Code
31
Analog Applications Journal
1Q 2005
www.ti.com/sc/analogapps
Analog and Mixed-Signal Products
Data Acquisition
Texas Instruments Incorporated
Appendix—C program for 12-bit ∆Σ DAC with MSC12xx
#include <REG1210.H>
#include <stdio.h>
void autobaud ();
sbit REQ = P3^7;
sbit ACK = P3^6;
union intU
{
int i;
struct{
unsigned char b1;
unsigned char b0;
} byt;
};
union intU dacbuf;
void INT0_isr(void) interrupt 0
{
T0=1;
// INL & DNL test
/*
if ((dacbuf.i % 2)==0) dacbuf.i+=1;
else dacbuf.i+=31;
if(dacbuf.i==4096) dacbuf.i=0;
printf(“\n**%d**\n”,dacbuf.i); */
// Step response test
if (dacbuf.i==0) dacbuf.i=4095; else dacbuf.i=0;
}
void main(void)
{
unsigned char lut[8] = {1,2,4,8,16,32,64,128};
unsigned char outbuf, bitcnt;
autobaud();
// Init SPI
PDCON = 0x66;
P1DDRH = 0xDD;
//b11011101;
SS = 0;
SSCON = 0;
//Clear summation registers
SSCON = 0x10;
//Enabling summation mode of the ACCSH register
SPICON = 0x00;
//Setting the SPI control to slave mode
SPITCON = 0x08;
//Setting drive immediately
SPIDATA = 0x00;
//Init PWM, used for SPI clk, connect PWM o/p to SCLK
PWMCON = 0x09;
// Set period, SysClk source, PWM mode
PWM = 0x0085;
// PWM period
PWMCON = 0x00;
// Disable PWM/tone
PWMCON = 0x19;
// Set duty, SysClk source, PWM mode
PWM = 0x0042;
// PWM duty
// INT0 edge interrupt
printf(“Delta Sigma
DAC\n”);
dacbuf.i=0;
EX0=1; IT0=1;
EA=1;
while(1) {
bitcnt = 0;
outbuf = 0;
for(bitcnt=0;bitcnt<8;bitcnt++) {
if ((SUMR1&0x20) != 0){
SUMR1 = 0x30 | dacbuf.byt.b1;
outbuf = outbuf | lut[bitcnt];
//The i-th bit of OUTBUF is forced to 1
} else SUMR1 = dacbuf.byt.b1;
SUMR0 = dacbuf.byt.b0;
}
while (!(AIE & 0x08)) {} // Wait for SPI TX empty
SPIDATA = outbuf;
outbuf = SPIDATA ; // Clear SPI RX buf
} //Main
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