PHILIPS PSMN015-100P

Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
FEATURES
PSMN015-100B, PSMN015-100P
SYMBOL
QUICK REFERENCE DATA
• ’Trench’ technology
• Very low on-state resistance
• Fast switching
• Low thermal resistance
d
VDSS = 100 V
ID = 75 A
g
RDS(ON) ≤ 15 mΩ
s
GENERAL DESCRIPTION
SiliconMAX products use the latest Philips Trench technology to achieve the lowest possible on-state resistance in
each package at each voltage rating.
Applications:• d.c. to d.c. converters
• switched mode power supplies
The PSMN015-100P is supplied in the SOT78 (TO220AB) conventional leaded package.
The PSMN015-100B is supplied in the SOT404 surface mounting package.
PINNING
SOT78 (TO220AB)
PIN
SOT404 (D2PAK)
DESCRIPTION
tab
tab
1
gate
2
drain1
3
source
tab
2
drain
1
1 23
3
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VDSS
VDGR
VGS
ID
Drain-source voltage
Drain-gate voltage
Gate-source voltage
Continuous drain current
Tj = 25 ˚C to 175˚C
Tj = 25 ˚C to 175˚C; RGS = 20 kΩ
IDM
PD
Tj, Tstg
Pulsed drain current
Total power dissipation
Operating junction and
storage temperature
- 55
100
100
± 20
752
53
240
230
175
V
V
V
A
A
A
W
˚C
Tmb = 25 ˚C
Tmb = 100 ˚C
Tmb = 25 ˚C
Tmb = 25 ˚C
1 It is not possible to make connection to pin:2 of the SOT404 package
2 Maximum continuous current limited by package
August 1999
1
Rev 1.100
Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
PSMN015-100B, PSMN015-100P
AVALANCHE ENERGY LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL PARAMETER
CONDITIONS
EAS
Non-repetitive avalanche
energy
Unclamped inductive load, IAS = 74 A;
tp = 100 µs; Tj prior to avalanche = 25˚C;
VDD ≤ 50 V; RGS = 50 Ω; VGS = 10 V; refer
to fig:15
IAS
Non-repetitive avalanche
current
MIN.
MAX.
UNIT
-
481
mJ
-
75
A
TYP.
MAX.
UNIT
-
0.65
K/W
60
50
-
K/W
K/W
THERMAL RESISTANCES
SYMBOL PARAMETER
Rth j-mb
Rth j-a
Thermal resistance junction
to mounting base
Thermal resistance junction
to ambient
CONDITIONS
SOT78 package, in free air
SOT404 package, pcb mounted, minimum
footprint
ELECTRICAL CHARACTERISTICS
Tj= 25˚C unless otherwise specified
SYMBOL PARAMETER
CONDITIONS
V(BR)DSS
VGS = 0 V; ID = 0.25 mA;
VGS(TO)
Drain-source breakdown
voltage
Gate threshold voltage
Tj = -55˚C
VDS = VGS; ID = 1 mA
Tj = 175˚C
Tj = -55˚C
RDS(ON)
IGSS
IDSS
Drain-source on-state
VGS = 10 V; ID = 25 A
resistance
Gate source leakage current VGS = ±10 V; VDS = 0 V
Zero gate voltage drain
VDS = 100 V; VGS = 0 V;
current
Tj = 175˚C
Tj = 175˚C
MIN.
TYP. MAX. UNIT
100
89
2.0
1.0
-
3.0
12
2
0.05
-
4.0
6
15
41
100
10
500
V
V
V
V
V
mΩ
mΩ
nA
µA
µA
Qg(tot)
Qgs
Qgd
Total gate charge
Gate-source charge
Gate-drain (Miller) charge
ID = 75 A; VDD = 80 V; VGS = 10 V
-
109
20
50
-
nC
nC
nC
td on
tr
td off
tf
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
VDD = 50 V; RD = 1.8 Ω;
VGS = 10 V; RG = 5.6 Ω
Resistive load
-
30
80
150
95
-
ns
ns
ns
ns
Ld
Ld
Ls
Internal drain inductance
Internal drain inductance
Internal source inductance
Measured from tab to centre of die
Measured from drain lead to centre of die
Measured from source lead to source
bond pad
-
3.5
4.5
7.5
-
nH
nH
nH
Ciss
Coss
Crss
Input capacitance
Output capacitance
Feedback capacitance
VGS = 0 V; VDS = 25 V; f = 1 MHz
-
4720
650
380
-
pF
pF
pF
August 1999
2
Rev 1.100
Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
PSMN015-100B, PSMN015-100P
REVERSE DIODE LIMITING VALUES AND CHARACTERISTICS
Tj = 25˚C unless otherwise specified
SYMBOL PARAMETER
IS
VSD
Continuous source current
(body diode)
Pulsed source current (body
diode)
Diode forward voltage
trr
Qrr
Reverse recovery time
Reverse recovery charge
ISM
August 1999
CONDITIONS
MIN.
TYP. MAX. UNIT
-
-
75
A
-
-
240
A
IF = 25 A; VGS = 0 V
-
0.8
1.2
V
IF = 20 A; -dIF/dt = 100 A/µs;
VGS = 0 V; VR = 30 V
-
90
0.3
-
ns
µC
3
Rev 1.100
Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
PSMN015-100B, PSMN015-100P
Normalised Power Derating, PD (%)
1
100
Transient thermal impedance, Zth j-mb (K/W)
D = 0.5
90
80
0.2
0.1
70
0.1
60
0.05
50
P
D
0.02
40
0.01
D = tp/T
tp
30
single pulse
20
T
10
0.001
1E-06
0
0
25
50
75
100
125
Mounting Base temperature, Tmb (C)
150
175
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00
Pulse width, tp (s)
Fig.1. Normalised power dissipation.
PD% = 100⋅PD/PD 25 ˚C = f(Tmb)
Fig.4. Transient thermal impedance.
Zth j-mb = f(t); parameter D = tp/T
Drain Current, ID (A)
50
Normalised Current Derating, ID (%)
100
VGS = 15V
45
90
10 V
Tj = 25 C
5V
40
80
35
70
4.6 V
30
60
50
25
40
20
30
15
4.2 V
20
10
4V
10
4.4 V
3.8 V
5
0
0
25
50
75
100
125
Mounting Base temperature, Tmb (C)
150
3.6 V
0
175
0
Fig.2. Normalised continuous drain current.
ID% = 100⋅ID/ID 25 ˚C = f(Tmb)
0.4
1.6
1.8
2
Drain-Source On Resistance, RDS(on) (Ohms)
0.05
RDS(on) = VDS/ ID
4V
0.045
4.2 V
4.4 V
4.6 V
Tj = 25 C
0.04
tp = 10 us
100
0.6
0.8
1
1.2
1.4
Drain-Source Voltage, VDS (V)
Fig.5. Typical output characteristics, Tj = 25 ˚C.
ID = f(VDS); parameter VGS
Peak Pulsed Drain Current, IDM (A)
1000
0.2
0.035
0.03
100 us
0.025
D.C.
10
5V
0.02
1 ms
0.015
10 ms
10 V
0.01
100 ms
VGS = 15V
0.005
1
0
1
10
100
Drain-Source Voltage, VDS (V)
1000
0
Fig.3. Safe operating area. Tmb = 25 ˚C
ID & IDM = f(VDS); IDM single pulse; parameter tp
August 1999
5
10
15
20
25
30
Drain Current, ID (A)
35
40
45
50
Fig.6. Typical on-state resistance, Tj = 25 ˚C.
RDS(ON) = f(VGS)
4
Rev 1.100
Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
PSMN015-100B, PSMN015-100P
Drain current, ID (A)
4.5
80
VDS > ID X RDS(ON)
70
Threshold Voltage, VGS(TO) (V)
4
maximum
3.5
60
typical
3
50
2.5
40
minimum
2
30
175 C
1.5
20
1
Tj = 25 C
10
0.5
0
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
-60
-40
-20
Gate-source voltage, VGS (V)
20
40
60
80
100 120 140 160 180
Junction Temperature, Tj (C)
Fig.7. Typical transfer characteristics.
ID = f(VGS); parameter Tj
80
0
Fig.10. Gate threshold voltage.
VGS(TO) = f(Tj); conditions: ID = 1 mA; VDS = VGS
Transconductance, gfs (S)
Drain current, ID (A)
1.0E-01
VDS > ID X RDS(ON)
70
Tj = 25 C
1.0E-02
60
175 C
50
minimum
1.0E-03
40
typical
1.0E-04
30
maximum
20
1.0E-05
10
1.0E-06
0
0
5
0
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Drain current, ID (A)
Fig.8. Typical transconductance, Tj = 25 ˚C.
gfs = f(ID)
0.5
1
1.5
2
2.5
3
3.5
Gate-source voltage, VGS (V)
4
4.5
5
Fig.11. Sub-threshold drain current.
ID = f(VGS); Tj = 25 ˚C
Normalised On-state Resistance
2.9
2.7
2.5
2.3
2.1
1.9
1.7
1.5
1.3
1.1
0.9
0.7
0.5
Capacitances, Ciss, Coss, Crss (pF)
10000
Ciss
1000
Coss
Crss
100
-60
-40
-20
0
20 40 60 80 100 120 140 160 180
Junction temperature, Tj (C)
0.1
Fig.9. Normalised drain-source on-state resistance.
RDS(ON)/RDS(ON)25 ˚C = f(Tj)
August 1999
1
10
Drain-Source Voltage, VDS (V)
100
Fig.12. Typical capacitances, Ciss, Coss, Crss.
C = f(VDS); conditions: VGS = 0 V; f = 1 MHz
5
Rev 1.100
Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
PSMN015-100B, PSMN015-100P
Maximum Avalanche Current, IAS (A)
100
Gate-source voltage, VGS (V)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
ID = 75A
Tj = 25 C
25 C
VDD = 20 V
10
Tj prior to avalanche = 150 C
VDD = 80 V
0
10
20
30
40 50 60 70 80
Gate charge, QG (nC)
90
1
0.001
100 110 120
0.01
0.1
1
10
Avalanche time, tAV (ms)
Fig.13. Typical turn-on gate-charge characteristics
VGS = f(QG)
Fig.15. Maximum permissible non-repetitive
avalanche current (IAS) versus avalanche time (tAV);
unclamped inductive load
Source-Drain Diode Current, IF (A)
100
VGS = 0 V
90
80
70
175 C
60
50
Tj = 25 C
40
30
20
10
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
1.1 1.2 1.3 1.4 1.5
Source-Drain Voltage, VSDS (V)
Fig.14. Typical reverse diode current.
IF = f(VSDS); conditions: VGS = 0 V; parameter Tj
August 1999
6
Rev 1.100
Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
PSMN015-100B, PSMN015-100P
MECHANICAL DATA
Plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220
E
SOT78
A
A1
P
q
D1
D
L1
L2(1)
Q
b1
L
1
2
e
e
3
c
b
0
5
10 mm
scale
DIMENSIONS (mm are the original dimensions)
(1)
UNIT
A
A1
b
b1
c
D
D1
E
mm
4.5
4.1
1.39
1.27
0.9
0.7
1.3
1.0
0.7
0.4
15.8
15.2
6.4
5.9
10.3
9.7
e
L
L1
2.54
15.0
13.5
3.30
2.79
L2
max.
P
q
Q
3.0
3.8
3.6
3.0
2.7
2.6
2.2
Note
1. Terminals in this zone are not tinned.
OUTLINE
VERSION
SOT78
REFERENCES
IEC
JEDEC
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
97-06-11
TO-220
Fig.16. SOT78 (TO220AB); pin 2 connected to mounting base (Net mass:2g)
Notes
1. This product is supplied in anti-static packaging. The gate-source input must be protected against static
discharge during transport or handling.
2. Refer to mounting instructions for SOT78 (TO220AB) package.
3. Epoxy meets UL94 V0 at 1/8".
August 1999
7
Rev 1.100
Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
PSMN015-100B, PSMN015-100P
MECHANICAL DATA
Plastic single-ended surface mounted package (Philips version of D2-PAK); 3 leads
(one lead cropped)
SOT404
A
A1
E
mounting
base
D1
D
HD
2
Lp
1
3
c
b
e
e
Q
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
A1
b
c
mm
4.50
4.10
1.40
1.27
0.85
0.60
0.64
0.46
OUTLINE
VERSION
D
max.
D1
E
11
1.60
1.20
10.30
9.70
e
Lp
HD
Q
2.54
2.90
2.10
15.40
14.80
2.60
2.20
REFERENCES
IEC
JEDEC
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
98-12-14
99-06-25
SOT404
Fig.17. SOT404 surface mounting package. Centre pin connected to mounting base.
Notes
1. This product is supplied in anti-static packaging. The gate-source input must be protected against static
discharge during transport or handling.
2. Refer to SMD Footprint Design and Soldering Guidelines, Data Handbook SC18.
3. Epoxy meets UL94 V0 at 1/8".
August 1999
8
Rev 1.100
Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
PSMN015-100B, PSMN015-100P
MOUNTING INSTRUCTIONS
Dimensions in mm
11.5
9.0
17.5
2.0
3.8
5.08
Fig.18. SOT404 : soldering pattern for surface mounting.
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and
operation of the device at these or at any other conditions above those given in the Characteristics sections of
this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
 Philips Electronics N.V. 1999
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the
copyright owner.
The information presented in this document does not form part of any quotation or contract, it is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent or other
industrial or intellectual property rights.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices or systems where malfunction of these
products can be reasonably expected to result in personal injury. Philips customers using or selling these products
for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting
from such improper use or sale.
August 1999
9
Rev 1.100