PHILIPS TEA6886HL

INTEGRATED CIRCUITS
DATA SHEET
TEA6886HL
Up-level Car radio Analog Signal
Processor (CASP)
Product specification
File under Integrated Circuits, IC01
2000 Nov 21
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
CONTENTS
1
FEATURES
1.1
1.2
1.3
1.4
General
Stereo decoder and noise blanking
Weak signal processing
Audio pre-amplifier
2
GENERAL DESCRIPTION
3
ORDERING INFORMATION
4
QUICK REFERENCE DATA
5
BLOCK DIAGRAM
6
PINNING
7
FUNCTIONAL DESCRIPTION
7.1
7.2
7.3
7.4
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8
Stereo decoder
FM noise blanker
AM noise blanker
Multipath/fading detection and weak signal
control
Tone/volume control
Source selector
Loudness
Volume 1
Treble
Bass
Volume 2
RSA selector
Chime adder
8
LIMITING VALUES
9
THERMAL CHARACTERISTICS
10
CHARACTERISTICS
11
I2C-BUS PROTOCOL
2000 Nov 21
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15
11.16
Read mode: 1st data byte
Read mode: 2nd data byte
Subaddress byte for write
Write mode: subaddress 0H
Write mode: subaddress 1H
Write mode: subaddress 2H
Write mode: subaddress 3H
Write mode: subaddress 4H
Write mode: subaddress 5H
Write mode: subaddress 6H
Write mode: subaddress 7H
Write mode: subaddress 8H
Write mode: subaddress 9H
Write mode: subaddress AH
Write mode: subaddress BH
Write mode: subaddress CH
12
INTERNAL CIRCUITRY
13
TEST CIRCUIT
14
PACKAGE OUTLINE
15
SOLDERING
15.1
Introduction to soldering surface mount
packages
Reflow soldering
Wave soldering
Manual soldering
Suitability of surface mount IC packages for
wave and reflow soldering methods
15.2
15.3
15.4
15.5
2
16
DATA SHEET STATUS
17
DEFINITIONS
18
DISCLAIMERS
19
PURCHASE OF PHILIPS I2C COMPONENTS
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
1
TEA6886HL
FEATURES
1.1
General
• I2C-bus compatible
• Digital alignment/adjustment via I2C-bus:
– FM noise blanker sensitivity
• Volume 1 control from +20 to −56 dB in 1 dB steps;
programmable 20 dB loudness control included
– FM stereo noise canceller
– FM High Cut Control (HCC)
• Volume 2 control from 0 to −56 dB in 1 dB steps,
−56, −58.5, −62, −68 dB and mute
– FM stereo separation.
• FM audio processing hold for RDS updating; holds the
detectors for the FM weak signal processing in their
present state
• Programmable loudness control with bass boost as well
as bass and treble boost
• FM bandwidth limiting; limits the bandwidth of the FM
audio signal with external capacitors
• Bass control from −18 to +18 dB in 2 dB steps with
selectable characteristic
• Treble control from −14 to +14 dB in 2 dB steps
• AM stereo input; AM stereo audio can be fed in at the
pins for the de-emphasis capacitors; this will provide
8 dB of gain to the AM audio.
1.2
• Analog Step Interpolation (ASI) minimizes pops by
smoothing out the transitions in the audio signal when a
switch is made
• Audio Blend Control (ABC) minimizes pops by
automatically incrementing the volume and loudness
controls through each step between their present
settings and the new settings
Stereo decoder and noise blanking
• FM stereo decoder
• Accepts FM multiplex signals and AM audio at input
• Rear Seat Audio (RSA) can select different sources for
the front and rear speakers
• Pilot detector and pilot canceller
• De-emphasis selectable between 75 and 50 µs
• Chime input: can be sent to any audio output, at any
volume level
• AM noise blanker: impulse noise detector and an audio
hold.
1.3
• Chime adder circuit: chime input can also be summed
with left front and/or right front audio, or be turned off.
Weak signal processing
• FM weak signal processing: six signal condition
detectors, soft mute, stereo noise canceller (blend), and
high cut control (roll-off).
1.4
2
The TEA6886HL is a monolithic bipolar integrated circuit
providing the stereo decoder function and ignition noise
blanking facility combined with source selector and
tone/volume control for AM/FM car radio applications. The
device operates with a power supply voltage range from
7.8 to 9.2 V and a typical current consumption of 40 mA.
Audio pre-amplifier
• Source selector for 6 sources: 2 stereo inputs external
(channels A and B), 1 symmetrical stereo input
(channel C), 1 symmetrical mono input (D), 1 internal
stereo input (AM or FM), and 1 chime/diagnostic mono
input
3
GENERAL DESCRIPTION
ORDERING INFORMATION
PACKAGE
TYPE
NUMBER
NAME
TEA6886HL
LQFP80
2000 Nov 21
DESCRIPTION
plastic low profile quad flat package; 80 leads; body 12 × 12 × 1.4 mm
3
VERSION
SOT315-1
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
4
TEA6886HL
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VCC
supply voltage
7.8
8.5
9.2
V
ICC
supply current
32
40
48
mA
Stereo decoder path
S/N
signal-to-noise ratio
−
78
−
dB
THD
total harmonic distortion
−
0.1
−
%
αcs
channel separation
40
−
−
dB
Vo(rms)
output voltage level at ROPO and
LOPO (RMS value)
FM: 91% modulation;
AM: 100% modulation;
fmod = 400 Hz
840
950
1060
mV
Tone volume control
Vo(max)(rms)
maximum output voltage level at LF,
LR, RF and RR (RMS value)
VCC = 8.5 V; THD ≤ 0.1%
2000
−
−
mV
Gv
voltage gain
1 dB steps
−112
−
+20
dB
Gstep(vol)
step resolution (volume)
−
1
−
dB
Gbass
bass control
−18
−
+18
dB
Gtreble
treble control
−14
−
+14
dB
−
2
−
dB
Gstep(treble, bass) step resolution (bass and treble)
(S+N)/N
signal-plus-noise to noise ratio
Vo = 2.0 V; Gv = 0 dB;
unweighted
−
107
−
dB
THD
total harmonic distortion
Vo(rms) = 1.0 V; Gv = 0 dB
−
0.01
−
%
RR100
ripple rejection
Vripple < 200 mV (RMS);
f = 100 Hz; Gv = 0 dB
−
70
−
dB
CMRR
common mode rejection ratio
differential stereo input
48
53
−
dB
2000 Nov 21
4
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
5
TEA6886HL
BLOCK DIAGRAM
handbook, full pagewidth
fref
(75.4 kHz)
from
NICE
(AFSAMPLE)
470 kΩ
10
nF
100
nF
68 kΩ
6.8 nF
AM
mono
input
FMHOLD
33 nF 220 kΩ
AMHIN
65
TMUTE
66
MPXRDS
67
TSNC
68
82 kΩ MPXIN
69
10 nF FMNCAP
70
220 nF
10 nF
PHASE
TUSN2
TWBAM2
Iref
AMHCAP
54
53
52
A
trigger sensitivity
120 kHz
HIGH-PASS
AMPLIFIER
AM
GATE
NOISE
AND
INTERFERENCE
DETECTOR
FM
PULSE
FORMER
B
test
PULSE
SEPARATOR
AVERAGE
DETECTOR
(MUTE/HCC)
60 kHz
HIGH-PASS
AND
USN
DETECTOR
pilot
ind.
STEREO
DECODER
PLL
PEAK
DETECTOR
(SNC)
detector
hold
38 kHz
19 kHz
sensitivity
220
nF
fref
55
10 µF
MPX
input
22
nF
58 57 56
AGC
AMNBIN
100
kΩ
59
63
64
100
nF
PILOT
from
NICE
(FMHOLD)
6.8 nF
AFSAMPLE
100 nF
C
R IN 182 kΩ
100 kΩ
33 pF
INPUT BUFFER
AND
80 kHz
LOW-PASS
start/
slope
sep.adj.
mute slope
DEEML
71
3.3 nF
DEEMR
72
2.7 nF
FMLBUF
73
2.7 nF
FMRBUF
74
4.7 nF
TWBAM1
75
4.7 nF
TUSN1
76
SDAQ
detector
reset
TEA6886HL
E
SNC
38 kHz
AVERAGE
DETECTOR
(WBAM1)
FM BUFFER
AND
FM NB-GATES
HCC
50/75 µs
DE-EMPHASIS
AND
AM STEREO INPUT
STEREO
DECODER
OUTPUT
start/
slope
detector
hold
BUS
AVERAGE
DETECTOR
(USN1)
LEVEL
ADC
(6-BIT)
de-emphasis
switch
detector hold
I2C-BUS
AND
CONTROL LOGIC
bus controls
I2C-bus
to NICE
D
PEAK
DETECTOR
(USN2)
MATRIX
AND
SOFT-MUTE
mute start
3.3 nF
PEAK
DETECTOR
(WBAM2)
V/I
CONVERTER
77
detector reset
LEVEL
INPUT
BUFFER
test
F
20 kHz
BAND-PASS
AND
AMWB
DETECTOR
G
sensitivity
7
DGND
8
TBL
6
SCL
LEVEL
5
SDA
4
SCLQ
H
3
22 kΩ
10 nF
MHB818
22 kΩ
I2C-bus
to NICE
from AM/FM
level detector
I2C-bus
VDD(5 V)
Fig.1 Block diagram (continued in Fig.2).
2000 Nov 21
5
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
handbook, full pagewidth
3.3
kΩ
330
pF
10
nF
220
nF
AMPCAP
LTC
LBI
LBO
LF
LR
ASICAP
RR
15 nF
AMHOLD
220
nF
51
50
49
48
47
46
45
44
43
A
CHIME ADDER
(G = −20 dB)
AND
SWITCH
B
BUS
CHIME ADDER
(G = −20 dB)
AND
SWITCH
BUS
37 RF
AM
PULSE
FORMER
BUS
PEAK
TO
AVERAGE
DETECTOR
VOLUME 2
LEFT
FRONT
BUS
BUS
REAR
SEAT
AUDIO
SWITCH
VOLUME 2
LEFT
REAR
BUS
BUS
VOLUME 2
RIGHT
REAR
VOLUME 2
RIGHT
FRONT
220 nF
36 RBO
ANALOG STEP
INTERPOLATION
(ASI)
LEFT
TREBLE
BAND
BUS
BUS
3.3 kΩ
220 nF
35 RBI
ASI
ABC
BUS
WBAM
ADC
(3-bit)
RIGHT
BASS
BAND
ASI
D
LEFT
BASS
BAND
ABC
C
RIGHT
TREBLE
BAND
BUS
34 RTC
10 nF
BUS
E
BUS
USN
ADC
(3-bit)
VOLUME 1
LEFT
AUDIO
BLEND CONTROL
(ABC)
VOLUME 1
RIGHT
LOUDNESS
LEFT
ASI/ABC
control
LOUDNESS
RIGHT
BUS
33 RLN
68 nF
4.7 kΩ
43 kΩ
680 nF
32 ROPI
BUS
31 ROPO
TEA6886HL
BUS
BUS
CKVR
220 nF
CKIL
30 ALI
100
29 AMNCAP nF
INTERNAL
POWER
SUPPLY
220 nF
CKIR
28 ARI
27 VHS
BUS
CVHS
220 nF
47 µF
F
SOURCE SELECTOR
AND
REAR SEAT AUDIO SELECTOR
G
26 MONOP
100 nF
25 MONOC
100 nF
24 CLIP
1 µF
23 CCOM
1 µF
100 nF
CKVL
43 kΩ
680 pF
15
16
17
18
19
ADR
BLI
SCAP
CRIP
68
nF
14
BRI
13
LOPO
12
LOPI
11
LLN
10
AGND
VCC
9
CHIME
H
220
nF
220nF
CELFI
22 µF
MHB819
1 µF
220 nF
4.7 kΩ
VCC
(+8.5 V)
Fig.2 Block diagram (continued from Fig.1).
2000 Nov 21
6
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
6
TEA6886HL
PINNING
SYMBOL
PIN
DESCRIPTION
n.c.
1
not connected
n.c.
2
not connected
SCLQ
3
clock output (to TEA6840H)
LEVEL
4
FM and AM level input (from TEA6840H)
SCL
5
I2C-bus clock input
SDA
6
I2C-bus data input/output
DGND
7
digital ground
TBL
8
time constant for FM modulation detector
VCC
9
supply voltage
CHIME
10
chime tone input
AGND
11
analog ground
LLN
12
loudness left network
LOPI
13
left option port input (terminal impedance typical 100 kΩ)
LOPO
14
left option port output
BRI
15
channel B right stereo input (terminal impedance typical 100 kΩ)
ADR
16
address select input
BLI
17
channel B left stereo input (terminal impedance typical 100 kΩ)
SCAP
18
supply filter capacitor
CRIP
19
channel C right symmetrical input (terminal impedance typical 30 kΩ)
n.c.
20
not connected
n.c.
21
not connected
n.c.
22
not connected
CCOM
23
channel C common input (terminal impedance typical 30 kΩ)
CLIP
24
channel C left symmetrical input (terminal impedance typical 30 kΩ)
MONOC
25
mono common input (terminal impedance typical 30 kΩ)
MONOP
26
mono symmetrical input (terminal impedance typical 30 kΩ)
VHS
27
half supply filter capacitor
ARI
28
channel A right stereo input (terminal impedance typical 100 kΩ)
AMNCAP
29
peak-to-average detector capacitor for AM noise blanker
ALI
30
channel A left stereo input (terminal impedance typical 100 kΩ)
ROPO
31
right option port output
ROPI
32
right option port input (terminal impedance typical 100 kΩ)
RLN
33
loudness right network
RTC
34
right treble capacitor
RBI
35
right bass network input
RBO
36
right bass network output
RF
37
right front output
n.c.
38
not connected
n.c.
39
not connected
n.c.
40
not connected
2000 Nov 21
7
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
SYMBOL
n.c.
TEA6886HL
PIN
41
DESCRIPTION
not connected
n.c.
42
not connected
RR
43
right rear output
ASICAP
44
analog step interpolate capacitor
LR
45
left rear output
LF
46
left front output
LBO
47
left bass network output
LBI
48
left bass network input
LTC
49
left treble capacitor
AMPCAP
50
AM blanking time capacitor
AMHOLD
51
AM noise blanker flag
AMHCAP
52
AM noise blanker hold capacitor
Iref
53
temperature independent reference current
TWBAM2
54
time constant for AM wideband peak detector
TUSN2
55
time constant for ultrasonic noise peak detector
PHASE
56
phase detector
fref
57
frequency reference input (75.4 kHz from TEA6840H)
PILOT
58
pilot on/off output
AFSAMPLE
59
reset for multipath detector (from TEA6840H for RDS update)
n.c.
60
not connected
n.c.
61
not connected
n.c.
62
not connected
FMHOLD
63
FM audio processing hold input (from TEA6840H for RDS update)
AMHIN
64
AM signal input (from TEA6840H)
AMNBIN
65
AM noise blanker input (from TEA6840H)
TMUTE
66
time constant for soft mute
MPXRDS
67
unmuted MPX input (from TEA6840H for RDS update)
TSNC
68
time constant for stereo noise canceller
MPXIN
69
MPX input (from TEA6840H)
FMNCAP
70
FM noise detector capacitor
DEEML
71
left de-emphasis capacitor
DEEMR
72
right de-emphasis capacitor
FMLBUF
73
left AM/FM audio buffer capacitor
FMRBUF
74
right AM/FM audio buffer capacitor
TWBAM1
75
time constant for AM wideband average detector
TUSN1
76
time constant for ultrasonic noise average detector
SDAQ
77
data input/output (to TEA6840H)
n.c.
78
not connected
n.c.
79
not connected
n.c.
80
not connected
2000 Nov 21
8
Philips Semiconductors
Product specification
61 n.c.
62 n.c.
63 FMHOLD
64 AMHIN
65 AMNBIN
66 TMUTE
67 MPXRDS
68 TSNC
69 MPXIN
71 DEEML
70 FMNCAP
TEA6886HL
72 DEEMR
73 FMLBUF
74 FMRBUF
75 TWBAM1
76 TUSN1
77 SDAQ
78 n.c.
79 n.c.
handbook, full pagewidth
80 n.c.
Up-level Car radio Analog Signal
Processor (CASP)
n.c.
1
60 n.c.
n.c.
2
59 AFSAMPLE
SCLQ
3
58 PILOT
LEVEL
4
57 fref
SCL
5
56 PHASE
SDA
6
55 TUSN2
DGND
7
54 TWBAM2
TBL
8
53 Iref
VCC
9
52 AMHCAP
CHIME 10
51 AMHOLD
TEA6886HL
AGND 11
50 AMPCAP
LLN 12
49 LTC
LOPI 13
48 LBI
LOPO 14
47 LBO
BRI 15
46 LF
ADR 16
45 LR
BLI 17
44 ASICAP
Fig.3 Pin configuration.
2000 Nov 21
9
n.c. 40
n.c. 39
n.c. 38
RF 37
RBO 36
RBI 35
RTC 34
RLN 33
ROPI 32
ROPO 31
ALI 30
AMNCAP 29
ARI 28
VHS 27
MONOP 26
41 n.c.
MONOC 25
n.c. 20
CLIP 24
42 n.c.
CCOM 23
CRIP 19
n.c. 22
43 RR
n.c. 21
SCAP 18
MHB817
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
7
7.1
TEA6886HL
FUNCTIONAL DESCRIPTION
The single pole is defined by internal resistors and external
capacitors. Audio is fed from the gate circuits to the
switchable de-emphasis, where the demodulated AM
stereo signal can be fed in. After de-emphasis the signal
passes to the output buffers and is fed to the radio input of
the source selector. For HCC, the time constant of the
single pole contained in the output buffer can be changed
to higher values. This function is controlled by an average
detector contained in the multipath and fading detector.
Stereo decoder
The MPX input is the null-node of an operational amplifier
with internal feedback resistor. Adapting the stereo
decoder input to the level of the MPX signal, coming from
the FM demodulator output, is realized by the value of the
input series resistor RIN. To this input a second source
(AM detector output) can be fed by current addition.
The input amplifier is followed by an integrated 4th-order
Bessel low-pass filter with a cut-off frequency of 80 kHz.
It provides the necessary signal delay for FM noise
blanking and damping of high frequency interference at
the stereo decoder input.
7.2
The input of the ignition noise blanker is coupled to the
MPXRDS input signal and to the LEVEL input. Both
signals are fed via separate 120 kHz filters and rectifiers to
an adder circuit. The output signal of the adder circuit is fed
in parallel to the noise detector and the interference
detector. The noise detector is a negative peak detector.
Its output controls the trigger sensitivity (prevention of
false triggering at noisy input signals) and the gain of the
MPX high-pass filter. The output of the interference
detector, when receiving a steep pulse, fires a single-shot
trigger circuit, contained in the pulse former circuitry. The
time constant of the single-shot trigger circuit is defined by
an internal capacitor, and its output activates the blanking
gates in the audio.
The output signal of this filter is fed to the soft mute control
circuitry, the output is voltage-to-current converted and
then fed to the phase detector, pilot detector and pilot
canceller circuits, contained in the stereo decoder PLL
block. A PLL is used for regeneration of the 38 kHz
subcarrier. The fully integrated oscillator is adjusted by
means of a digital auxiliary PLL into the capture range of
the main PLL. The auxiliary PLL needs an external
reference frequency (75.4 kHz) which is provided by the
TEA6840H. The required 19 and 38 kHz signals are
generated by division of the oscillator output signal in a
logic circuit. The 19 kHz quadrature phase signal is fed to
the 19 kHz phase detector, where it is compared with the
incoming pilot tone. The DC output signal of the phase
detector controls the oscillator (PLL).
7.3
AM noise blanker
The AM noise blanking pulse is derived from the AM audio
signal which is fed into pin AMNBIN with the help of a
peak-to-average comparator. The blanking time is set by a
pulse former with external capacitor. The blanking pulse is
fed to the gate in the AM audio path and out at pin
AMHOLD to operate the gate built into the external AM
stereo processor.
The pilot present detector is driven by an internally
generated in-phase 19 kHz signal. Its pilot dependent DC
output voltage is fed to a threshold switch, which activates
the pilot indicator bit and switches the stereo decoder to
stereo operation. The same DC voltage is used to control
the amplitude of an anti-phase internally generated 19 kHz
signal. The pilot tone is compensated by this anti-phase
19 kHz signal in the pilot canceller.
7.4
Multipath/fading detection and weak signal
control
For FM signal quality dependent controls there is a built-in
combination of six detectors. These detectors are driven
by the level information direct, by the AC components on
the level via a 20 kHz band-pass filter (AM wideband) or by
the high notes present at the FM demodulator output via a
60 kHz high-pass filter (ultrasonic noise). The relationship
between the DC level and the AC components is
programmable by the I2C-bus (2 bits each). The output of
the level buffer, AM wideband detector and ultrasonic
noise detector are analog-to-digital converted and
readable by the I2C-bus.
The pilot cancelled signal is fed to the matrix. There, the
side signal is demodulated and combined with the main
signal to the left and right audio channels. Compensation
for roll-off in the incoming MPX signal caused by the IF
filters and the FM demodulator is typically realized by an
external compensation network at pin MPXIN, individual
alignment is achieved by I2C-bus controlled amplification
of the side signal (DAA). A smooth mono-to-stereo
takeover is achieved by controlling the efficiency of the
matrix with the help of the SNC peak detector.
The matrix is followed by the FM noise suppression gates,
which are combined with FM single poles and High Cut
Control (HCC).
2000 Nov 21
FM noise blanker
10
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
7.5
For the period of fast RDS updating soft mute, SNC and
HCC can be put on hold. The AM wideband peak detector
and the ultrasonic noise peak detector are reset by a
switch signal delivered from the TEA6840H via pin
FMHOLD.
Tone/volume control
The tone/volume control part consists of the following
functions:
• Source selector
• Loudness
The six separate detecting circuits are as follows:
• Volume 1
1. The AM wideband noise peak detector is driven from
a 20 kHz band-pass filter connected to the level buffer
output. The time constant is defined by an external
capacitor connected to pin TWBAM2. The output
voltage of the detector is analog-to-digital converted
by a 3-bit ADC.
• Treble
• Bass
• Volume 2
• Rear Seat Audio (RSA) selector
• Chime adder
2. The AM wideband noise average detector is driven
from a 20 kHz band-pass filter connected to the level
buffer output. The time constant is defined by an
external capacitor connected to pin TWBAM1. The
output of the detector is connected to the Stereo Noise
Control (SNC) circuit.
• Analog step interpolation
• Audio blend control.
The stages loudness, volume 1, bass and volume 2
include the Analog Step Interpolation (ASI) function. This
minimizes pops by smoothing out the transitions in the
audio signal during switching. The transition time is
I2C-bus programmable in a range of 1 : 24 in four steps.
3. The ultrasonic noise peak detector is driven from a
60 kHz high-pass filter connected to the MPX signal
from pin MPXRDS. The time constant is defined by an
external capacitor connected to pin TUSN2. The
output voltage of the detector is analog-to-digital
converted by a 3-bit ADC.
The stages loudness, volume 1 and volume 2 also have
the Audio Blend Control (ABC) function. This minimizes
pops by automatically incrementing the volume and
loudness controls through each step between their present
settings and the new settings. The speed of the ABC
function is correlated with the transition time of the ASI
function.
4. The ultrasonic noise average detector is driven from a
60 kHz high-pass filter connected to the MPX signal
from pin MPXRDS. The time constant is defined by an
external capacitor connected to pin TUSN1. The
output of the detector is connected to soft mute control
and stereo noise control circuits.
All stages are controlled via the I2C-bus.
5. For soft mute and high cut control purposes an
average detector with an externally defined time
constant (TMUTE) is provided. The detector is driven
by level output only. Soft mute and high cut control can
be switched off via the I2C-bus.
7.5.1
SOURCE SELECTOR
The source selector allows the selection between
6 sources:
• 2 external stereo inputs (ALI, ARI, BLI and BRI)
• 1 external symmetrical stereo input (CLIP, CRIP and
CCOM)
6. The stereo noise control peak detector with an
externally defined time constant (TSNC) is driven by
DC level output, AM wideband and ultrasonic noise
outputs. It provides the stereo blend facility (SNC). The
starting point and slope of the stereo blend can be
chosen via the I2C-bus controlled reference voltage.
• 1 external symmetrical mono input (MONOP and
MONON)
• 1 internal stereo input (AM/FM)
• 1 chime/diagnostic mono input (CHIME).
A chime input signal can be sent to any audio output, at
any volume level, via the chime/diagnostic mono input.
2000 Nov 21
11
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
7.5.2
TEA6886HL
Figures 17 and 18 show the bass curves with an external
circuit of 2 × 220 nF capacitors and a resistor of 3.3 kΩ for
each channel with different values for BSYM. Figure 19
shows the bass curves with an external capacitor of 47 nF
for each channel and BSYM = 0, for boost and cut.
LOUDNESS
The output of the source selector is fed into the loudness
circuit via the external capacitor CKVL (between pins LOPO
and LOPI) and CKVR (between pins ROPO and ROPI).
Depending on the external circuits for the left and the right
channel, only a bass boost or bass and treble boost is
available. The external circuits illustrated in Figs 13 and 15
will produce the curves illustrated in Figs 14 and 16
(without the influence of CKVL and CKVR respectively).
7.5.3
7.5.6
The four volume 2 blocks are located at the end of the
tone/volume control. In addition to volume control (same
settings as volume 2) the balance and fader functions are
also performed by individual attenuation offsets for the four
attenuators. The control range of these attenuators is
56 dB in steps of 1 dB and the additional steps of
−58.5 dB, −62 dB, −68 dB, and a mute step.
VOLUME 1
The volume 1 control circuit follows the loudness circuit.
The control range of volume 1 is between +20 and −36 dB
in steps of 1 dB.
7.5.4
7.5.7
TREBLE
7.5.8
BASS
CHIME ADDER
The chime adder circuit enables the chime input signal to
be summed with the left front and/or right front audio, or be
turned off.
The bass control is the next stage. The characteristic of the
bass curves depends upon the external circuits connected
to pins LBO and LBI (left channel) and pins RBO and RBI
(right channel) and also upon the setting of bit BSYM (MSB
of the bass control byte). When BSYM = 1, an equalizer
characteristic is obtained and when BSYM = 0, a shelving
characteristic is obtained.
2000 Nov 21
RSA SELECTOR
The RSA selector provides the possibility to select an
alternative source for the rear channels. In this event rear
channels are only controlled by the volume 2 function.
The output signal of the volume 1 control circuit is fed into
the treble control stage. The control range is between
+14 and −14 dB in steps of 2 dB. Fig.20 shows the control
characteristic with external capacitors of 10 nF.
7.5.5
VOLUME 2
12
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
8 LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
−0.3
VCC
supply voltage
Vi
voltage at all pins (except SCL and SDA)
VCC ≤ 10 V
MAX.
UNIT
+10
V
VSS − 0.3 VCC
V
voltage at pins SCL and SDA
VSS − 0.3 9.7
V
Ptot
total power dissipation
−
480
mW
Tstg
storage temperature
−65
+150
°C
Tamb
ambient temperature
−40
+85
°C
Ves
electrostatic handling voltage for all pins
note 1
−200
+200
V
note 2
−2000
+2000
V
Notes
1. Machine model: R = 0 Ω, C = 200 pF.
2. Human body model: R = 1.5 kΩ, C = 100 pF.
9
THERMAL CHARACTERISTICS
SYMBOL
Rth(j-a)
2000 Nov 21
PARAMETER
CONDITIONS
thermal resistance from junction to ambient in free air
13
VALUE
UNIT
54
K/W
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
PARAMETER
VCC
supply voltage
CONDITIONS
MIN.
TYP.
MAX.
UNIT
7.8
8.5
9.2
V
ICC
supply current
VCC = 8.5 V
32
40
48
mA
VHS
half supply voltage
VCC = 8.5 V
3.75
4.25
4.75
V
Iref
reference current
VCC = 8.5 V; Rext = 100 kΩ
35
37
39
µA
Vi(MPX)(p-p)
MPX input signal (peak-to-peak value)
Ri = 182 kΩ
−
1.89
−
V
∆Vi(MPX)
overdrive margin of MPX input signal
THD = 1%
Ii
AF input current
Ii(max)
maximum AF input current
Vo(rms)
AF mono output signal (RMS value)
91% modulation without pilot
890
1000
1110
mV
∆Vout
AF mono channel balance
without pilot; VLOPO/VROPO
−1
−
+1
dB
αcs
channel separation
aligned setting of data byte 1, bit 0 to bit 3;
m = 30% modulation plus 9% pilot
40
47
70
dB
FM signal path
THD = 1%
14
L = 1; R = 0
L = 0; R = 1
THD
total harmonic distortion
6
−
−
dB
−
3.66
−
µA
7.32
−
−
µA
40
47
70
dB
−
0.1
0.3
%
L = 1; R = 0
−
0.1
0.3
%
L = 0; R = 1
−
0.1
0.3
%
Vi(MPX)(p-p) = 1.89 V; fmod = 1 kHz without pilot
Philips Semiconductors
SYMBOL
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
10 CHARACTERISTICS
FM part: input signal Vi(MPX)(p-p) = 1.89 V; m = 100% (∆f = ±75 kHz, fmod = 400 Hz); de-emphasis of 75 µs and series resistor at input RIN = 182 kΩ;
FM audio measurements are taken at pins LOPO and ROPO. Tone part: RS = 600 Ω; RL = 10 kΩ, AC-coupled; CL = 2.5 nF; CLK = square wave
(5 to 0 V) at 100 kHz; stereo source = A channel input; volume 1 attenuator = 0 dB; loudness = 0 dB, off; volume 2 attenuators = 0 dB; bass linear;
treble linear; input voltage = 1 V, f = 1 kHz. Tone part audio measurements are taken at RF and LF. VCC = 8.3 to 8.7 V; VSS = 0 V; Tamb = 25 °C; unless
otherwise specified. This IC shall not radiate noise in the audio system such that it disturbs any other circuit. This IC shall also not be susceptible to the
radiation of any other circuit.
Vi(MPX)(p-p) = 1.89 V; fmod = 5 kHz
f = 20 Hz to 15 kHz
75
78
−
dB
α19
pilot signal suppression
f = 19 kHz
40
50
−
dB
α38
subcarrier suppression
f = 38 kHz
35
50
−
dB
f = 57 kHz
40
−
−
dB
f = 76 kHz
50
60
−
dB
fmod = 10 kHz; note 1
−
60
−
dB
α57
α76
IM2
second order intermodulation for
fspur = 1 kHz
Product specification
signal-to-noise ratio
TEA6886HL
S/N
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
CONDITIONS
MIN.
TYP.
MAX.
UNIT
IM3
third order intermodulation for fspur = 1 kHz
fmod = 13 kHz; note 1
−
58
−
dB
α57(RDS)
traffic radio (RDS)
f = 57 kHz; note 2
−
70
−
dB
α67
Subsidiary Communication Authorization
(SCA)
f = 67 kHz; note 3
70
−
−
dB
α114
Adjacent Channel Interference (ACI)
f = 114 kHz; note 4
−
80
−
dB
α190
f = 190 kHz; note 4
−
70
−
dB
PSRR
power supply ripple rejection
f = 100 Hz; Vripple = 100 mV (RMS)
−
30
−
dB
RSDEEML;
RSDEEMR
de-emphasis output source resistance
data byte 3, bit 5 = 1; 75 µs
20
22.7
25.4
kΩ
data byte 3, bit 5 = 0; 50 µs
13.4
15.2
17
kΩ
IFMLBUF;
IFMRBUF
current capacity of FM buffer
VFMLBUF,FMRBUF = 5.5 ±1 V
50
−
200
µA
PLL VCO
oscillator frequency
−
228
−
kHz
frequency range of free running oscillator
190
−
270
kHz
fref
reference frequency
−
75.4
−
kHz
Vi(fref)
reference frequency input voltage
30
100
500
mV
Zi(fref)
input impedance
100
−
−
kΩ
pilot threshold voltage for automatic
stereo on; STIN = 1
switching by pilot input voltage (RMS value) stereo off; STIN = 0
−
27
37
mV
9
22
−
mV
hys(pilot)
hysteresis of pilot threshold voltage
−
2
−
dB
VPILOT
switching voltage for external mono control
(PILOT)
0.3
−
0.7
V
195
245
295
mV
8
9
dB
100
120
kΩ
fosc
Philips Semiconductors
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
15
PLL pilot detector
Vi(pilot)(rms)
AM signal path
AMON = 1 and AMST = 0; Ri = 220 kΩ;
ViAM(mono) = 250 mV
Gv
AM stereo audio buffer voltage gain
subaddress 0H: AMON = 1 and AMST = 1; input
7
signal at pins DEEML or DEEMR; coupled with
220 nF; Vi(DEEML,DEEMR) = 200 mV; fi = 1 kHz; note 5
Ri(DEEML,DEEMR) input resistance for AM stereo left and right AMON = 1 and AMST = 1; note 6
80
Product specification
AC output voltage at LOPO and ROPO
TEA6886HL
VLOPO; VROPO
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Noise blanker
FM PART
20
30
40
µs
during AF suppression time
−
20
50
nA
charge current
no input signal; VFMNCAP = VFMNCAP(int) − 0.7 V
−16
−12.5
−9.5
µA
discharge current
no input signal; VFMNCAP = VFMNCAP(int) + 0.7 V
45
70
100
µA
tsup
interference suppression time
Ioffset
gate input offset current at pins during
suppression pulse duration
Ich(FMNCAP)
Idch(FMNCAP)
Trigger Threshold Control (TTC), dependency on MPX signal at MPXRDS input
VFMNCAP
trigger threshold variation voltage
Vi(MPXRDS) = 0 V
4.5
5
5.5
V
∆VFMNCAP
trigger threshold voltage
Vi(MPXRDS) = 10 mV; f = 120 kHz
15
40
80
mV
∆VTBL
trigger threshold variation with audio
frequency f = 15 kHz
Vi(MPXRDS) = 100 mV; f = 120 kHz
75
100
200
mV
Vi(MPXRDS) = 670 mV
−
500
−
mV
Philips Semiconductors
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
Trigger Threshold Control (TTC), dependency on level detector input signal
16
VFMNCAP
trigger threshold voltage
VLEVEL(AC) = 0 V
4.5
5
5.5
V
∆VFMNCAP
trigger threshold voltage as a function of
VLEVEL(AC)
VLEVEL(AC) = 10 mV; f = 120 kHz
−
0
−
mV
VLEVEL(AC) = 200 mV; f = 120 kHz
−
40
−
mV
NBS1 = 0; NBS0 = 0
−
60
−
mV
NBS1 = 0; NBS0 = 1
−
100
−
mV
NBS1 = 1; NBS0 = 0
−
150
−
mV
NBS1 = 1; NBS0 = 1
−
200
−
mV
NBS1 = 0; NBS0 = 0
−
250
−
mV
NBS1 = 0; NBS0 = 1
−
275
−
mV
NBS1 = 1; NBS0 = 0
−
300
−
mV
NBS1 = 1; NBS0 = 1
−
320
−
mV
Trigger sensitivity measurement with pulse (on MPX signal) at MPXRDS input
Vpulse
trigger sensitivity
tpulse = 10 µs; write mode; data byte 3, bits 6 and 7:
Trigger sensitivity measurement with pulse (on level signal) at AM/FM level input
Vpulse
trigger sensitivity
Product specification
TEA6886HL
tpulse = 10 µs; VLEVEL = 0.5 V; write mode;
data byte 3, bits 6 and 7:
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
CONDITIONS
MIN.
TYP.
MAX.
UNIT
AM PART
mmod
trigger threshold
−
140
−
%
VAMPCAP(AC)
AF voltage at AMHCAP
ViAM(mono) = 50 mV (RMS); f = 1 kHz
16
22
30
mV
αAMGATE
attenuation of blanking gate
ViAM(mono) = 50 mV (RMS); gate open: internal
voltage; gate closed: VAMHOLD(DC) = 4 V; note 7
−60
−70
−80
dB
tsup(AMHOLD)
suppression time at AMHOLD
tpulse = 10 µs; repetition rate = 50 Hz; Vpulse = 1.7 V
(AMNBIN); VLEVEL = 0.5 V
400
500
600
µs
V(AMNCAP)DC
detector voltage; Vext(AMNBIN)DC − 0.7 V
VAMNBIN(AC) = 0 V; V(LEVEL)DC = 3.5 V
3
3.5
4
V
fAMHOLD
trigger sensitivity
tpulse = 10 µs; repetition rate = 50 Hz; Vpulse = 1.7 V
(AMNBIN); VLEVEL = 4 V
45
50
55
Hz
Ioffset
gate input offset current at pins during
suppression pulse duration
during AF suppression time
−50
0
+50
nA
Muting average detector (TMUTE); see Fig.12
17
Vi(LEVEL)
input voltage on LEVEL
0.5
−
4
V
Gv
voltage gain LEVEL to TMUTE
−
0
−
dB
∆VTMUTE
offset between TMUTE and LEVEL
−
1.5
−
V
∆VTMUTE/K
temperature dependence at TMUTE
−
3.3
−
mV/K
Philips Semiconductors
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
MUTING AVERAGE DETECTOR TIME CONSTANT
Ich(TMUTE)
TMUTE charge current
−
−0.2
−
µA
Idch(TMUTE)
TMUTE discharge current
−
0.2
−
µA
VO
DC output voltage
2
−
5
V
TEST CONDITION
Ich(test)
capacitor charge current
data byte 6, bit 7 = 1
−
−12
−
µA
Idch(test)
capacitor discharge current
data byte 6, bit 7 = 1
−
12
−
µA
AWS1 = 1; AWS0 = 1
−
4.10
−
V
AWS1 = 1; AWS0 = 0
−
3.60
−
V
AWS1 = 0; AWS0 = 1
−
3.00
−
V
AWS1 = 0; AWS0 = 0
−
2.35
−
V
AM wideband average detector (TWBAM1); see Fig.6
VTWBAM1
Product specification
VLEVEL(AC) = 400 mV; VLEVEL(DC) = 3.5 V; fi = 24 kHz;
write mode; data byte 1, bits 4 and 5:
TEA6886HL
DC voltage at TWBAM1 with respect to
AGND
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
VO
DC voltage coefficient
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VLEVEL(AC) = 400 mV; VLEVEL(DC) = 3.5 V; fi = 24 kHz;
write mode; note 8; data byte 1, bits 4 and 5:
AWS1 = 1; AWS0 = 1
0.69
0.82
0.98
AWS1 = 1; AWS0 = 0
0.60
0.72
0.86
AWS1 = 0; AWS0 = 1
0.50
0.60
0.71
AWS1 = 0; AWS0 = 0
0.40
0.47
0.56
1.5
−
5.5
V
DC output voltage
AM WIDEBAND AVERAGE DETECTOR TIME CONSTANT
Ich(TWBAM1)
TWBAM1 charge current
−19.5
−15
−11.5
µA
Idch(TWBAM1)
TWBAM1 discharge current
11.5
15
19.5
µA
USS1 = 1; USS0 = 1
−
4.25
−
V
USS1 = 1; USS0 = 0
−
4.00
−
V
USS1 = 0; USS0 = 1
−
3.50
−
V
USS1 = 0; USS0 = 0
−
2.60
−
V
USS1 = 1; USS0 = 1
0.71
0.85
1.00
USS1 = 1; USS0 = 0
0.67
0.80
0.95
USS1 = 0; USS0 = 1
0.60
0.70
0.85
USS1 = 0; USS0 = 0
0.44
0.52
0.62
1.5
−
5.5
V
Ultrasonic noise average detector (TUSN1); see Fig.5
VTUSN1
DC voltage at TUSN1 with respect to
AGND
18
VCTUSN1
VO
DC voltage coefficient
DC output voltage
VMPXRDS(AC) = 350 mV; VLEVEL(DC) = 3.5 V;
fi = 80 kHz; write mode; data byte 1, bits 6 and 7:
Philips Semiconductors
VCTWBAM1
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
VMPXRDS(AC) = 350 mV; VLEVEL(DC) = 3.5 V;
fi = 80 kHz; write mode; note 9; data byte 1,
bits 6 and 7:
ULTRASONIC NOISE AVERAGE DETECTOR TIME CONSTANT
−19.5
−15
−11.5
µA
Idch(TUSN1)
TUSN1 discharge current
11.5
15
19.5
µA
Product specification
TUSN1 charge current
TEA6886HL
Ich(TUSN1)
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Peak detector for stereo noise control (TSNC)
DEPENDENCY ON LEVEL VOLTAGE; see Fig.12
VLEVEL
input voltage
G
gain LEVEL to TSNC
VTSNC
DC voltage at TSNC referred to DC level
voltage at LEVEL
−
4.75
V
−
0
−
dB
1.75
2.00
2.25
V
without MPXRDS and LEVEL (AC) input
V(LEVEL)DC = 0.5 V
V(LEVEL)DC = 3.5 V
∆VTSNC/K
0.5
4.50
5.00
5.50
V
−
3.3
−
mV/K
USS1 = 1; USS0 = 1
−
4.25
−
V
USS1 = 1; USS0 = 0
−
4.00
−
V
USS1 = 0; USS0 = 1
−
3.50
−
V
USS1 = 0; USS0 = 0
−
2.60
−
V
USS1 = 1; USS0 = 1
0.71
0.85
1.00
USS1 = 1; USS0 = 0
0.67
0.80
0.95
USS1 = 0; USS0 = 1
0.60
0.70
0.85
USS1 = 0; USS0 = 0
0.40
0.52
0.62
2
−
5
temperature dependence at TSNC
DEPENDENCY ON ULTRASONIC NOISE; see Fig.5
VTSNC
19
VCTSNC
VO
DC voltage at TSNC w.r.t. AGND
DC voltage coefficient
DC output voltage
VMPXRDS(AC) = 350 mV; V(LEVEL)DC = 3.5 V;
fi = 80 kHz; write mode; data byte 1, bits 6 and 7:
Philips Semiconductors
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
VMPXRDS(AC) = 350 mV; V(LEVEL)DC = 3.5 V;
fi = 80 kHz; write mode; note 10; data byte 1,
bits 6 and 7:
V
Product specification
TEA6886HL
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
CONDITIONS
MIN.
TYP.
MAX.
UNIT
DEPENDENCY ON AM WIDEBAND NOISE; see Fig.6
VTSNC
VCTSNC
VO
DC voltage at TSNC
DC voltage coefficient
VLEVEL(AC) = 400 mV; VLEVEL(DC) = 3.5 V; fi = 24 kHz;
write mode; data byte 1, bits 4 and 5:
AWS1 = 1; AWS0 = 1
−
4.10
−
V
AWS1 = 1; AWS0 = 0
−
3.60
−
V
AWS1 = 0; AWS0 = 1
−
3.00
−
V
AWS1 = 0; AWS0 = 0
−
2.35
−
V
AWS1 = 1; AWS0 = 1
0.69
0.82
0.98
−
AWS1 = 1; AWS0 = 0
0.60
0.72
0.86
−
AWS1 = 0; AWS0 = 1
0.50
0.60
0.71
−
AWS1 = 0; AWS0 = 0
0.40
0.47
0.56
−
1.5
−
5.5
V
VLEVEL(AC) = 400 mV; VLEVEL(DC) = 3.5 V; fi = 24 kHz;
write mode; note 11; data byte 1, bits 4 and 5:
DC output voltage
Philips Semiconductors
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
DETECTOR TIME CONSTANT
20
Ich(TSNC)
TSNC charge current
−
−2.5
−
µA
Idch(TSNC)
TSNC discharge current
−
65
−
µA
TEST CONDITION
Ich(test)
charge current for testing
data byte 6, bit 7 = 1; V(LEVEL)DC = 2 V;
V(TSNC)DC = 2.8 V
−
−1.5
−
mA
Idch(test)
discharge current for testing
data byte 6, bit 7 = 1; V(LEVEL)DC = 2 V;
V(TSNC)DC = 4.2 V
−
200
−
µA
Product specification
TEA6886HL
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Ultrasonic noise peak detector (TUSN2); see Fig.5
VTUSN2
VCTUSN2
VO
DC voltage at TUSN2 w.r.t. AGND
DC voltage coefficient
VMPXRDS(AC) = 350 mV; V(LEVEL)DC = 3.5 V;
fi = 80 kHz; write mode; data byte 1, bits 6 and 7:
USS1 = 1; USS0 = 1
−
4.25
−
V
USS1 = 1; USS0 = 0
−
4.00
−
V
USS1 = 0; USS0 = 1
−
3.50
−
V
USS1 = 0; USS0 = 0
−
2.60
−
V
USS1 = 1; USS0 = 1
0.71
0.85
1.00
USS1 = 1; USS0 = 0
0.67
0.80
0.95
USS1 = 0; USS0 = 1
0.60
0.70
0.85
USS1 = 0; USS0 = 0
0.40
0.52
0.62
1.5
−
5.5
V
VMPXRDS(AC) = 350 mV; V(LEVEL)DC = 3.5 V;
fi = 80 kHz; write mode; note 12; data byte 1,
bits 6 and 7:
DC output voltage
Philips Semiconductors
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
21
DETECTOR TIME CONSTANT
Ich(TUSN2)
TUSN2 charge current
−
−1.6
−
µA
Idch(TUSN2)
TUSN2 discharge current
−
21
−
µA
AWS1 = 1; AWS0 = 1
−
4.10
−
V
AWS1 = 1; AWS0 = 0
−
3.60
−
V
AWS1 = 0; AWS0 = 1
−
3.00
−
V
AWS1 = 0; AWS0 = 0
−
2.35
−
V
AWS1 = 1; AWS0 = 1
0.69
0.82
0.98
AWS1 = 1; AWS0 = 0
0.60
0.72
0.86
AWS1 = 0; AWS0 = 1
0.50
0.60
0.71
AWS1 = 0; AWS0 = 0
0.40
0.47
0.56
2
−
5
AM wideband peak detector (TWBAM2); see Fig.6
VTWBAM2
VCTWBAM2
DC voltage coefficient
VLEVEL(AC) = 400 mV; VLEVEL(DC) = 3.5 V; fi = 24 kHz;
write mode; note 13; data byte 1, bits 4 and 5:
V
Product specification
DC output voltage
VLEVEL(AC) = 400 mV; VLEVEL(DC) = 3.5 V; fi = 24 kHz;
write mode; data byte 1, bits 4 and 5:
TEA6886HL
VO
DC voltage at TWBAM2 with respect to
AGND
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
CONDITIONS
MIN.
TYP.
MAX.
UNIT
DETECTOR TIME CONSTANT
Ich(TWBAM2)
TWBAM2 charge current
−
−1.6
−
µA
Idch(TWBAM2)
TWBAM2 discharge current
−
21
−
µA
−0.5
0
+0.5
dB
MST1 = 0; MST0 = 0; VTMUTE = 0.42VTUSN1
without AC
3
6
9
dB
MST1 = 0; MST0 = 1; VTMUTE = 0.45VTUSN1
without AC
3
6
9
dB
MST1 = 1; MST0 = 0; VTMUTE = 0.47VTUSN1
without AC
3
6
9
dB
MST1 = 1; MST0 = 1; VTMUTE = 0.49VTUSN1
without AC
3
6
9
dB
MSL1 = 0; MSL0 = 0; VTMUTE(DC) = 0.35VTUSN1
without AC
7
10
13
dB
MSL1 = 0; MSL0 = 1; VTMUTE(DC) = 0.38VTUSN1
without AC
7
10
13
dB
MSL1 = 1; MSL0 = 0; VTMUTE(DC) = 0.39VTUSN1
without AC
7
10
13
dB
MSL1 = 1; MSL0 = 1; VTMUTE(DC) = 0.395VTUSN1
without AC
7
10
13
dB
Soft mute; see Figs 7 and 4
α0dB
attenuation at LOPO and ROPO
VTMUTE = 3.5 V; VTUSN1 = 3.5 V
α6dB
start of muting; AC attenuation at
LOPO and ROPO
see Fig.4; write mode; data byte 0, bits 0 and 1;
MSL0 = 1; MSL1 = 1
22
α10dB
AC attenuation for setting of mute slope at
LOPO and ROPO
Philips Semiconductors
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
MST1 = 0; MST0 = 0; see Fig.7
Product specification
TEA6886HL
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Stereo Noise Control (SNC)
αcs(start)
αcs(slope)
start of channel separation
slope of channel separation
23
aligned at L = 1 and R = 0;
data byte 2, SST[3:0] = 1111; VTSNC or VTUSN1 or
VTWBAM1 = 0.63VTUSN1 without AC; see note 14 and
Fig.9
4.5
6
7.5
dB
aligned at L = 1 and R = 0;
data byte 2, SST[3:0] = 1000; VTSNC or VTUSN1 or
VTWBAM1 = 0.70VTUSN1 without AC; see note 14 and
Fig.9
4.5
6
7.5
dB
aligned at L = 1 and R = 0;
data byte 2, SST[3:0] = 0000; VTSNC or VTUSN1 or
VTWBAM1 = 0.74VTUSN1 without AC; see note 14 and
Fig.9
4.5
6
7.5
dB
SSL1 = 0; SSL0 = 0
3
5
7
dB
SSL1 = 0; SSL0 = 1
5
7
9
dB
SSL1 = 1; SSL0 = 0
11
13
15
dB
aligned at L = 1 and R = 0;
data byte 2, SST[3:0] = 1000; VTSNC = 0.72VTUSN1
without AC; see note 15 and Fig.8; data byte 2,
bits 4 and 5:
Philips Semiconductors
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
SSL1 = 1; SSL0 = 1 (not defined)
Product specification
TEA6886HL
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
CONDITIONS
MIN.
TYP.
MAX.
UNIT
High Cut Control (HCC)
αHCC(start)
αHCC(slope)
AC attenuation for start of HCC
AC attenuation for slope of HCC
24
αHCC(max)
maximum HCC attenuation
AF = 10 kHz; VMPXIN = 200 mV; HSL1 = 1;
HSL0 = 0; data byte 0, SMUT = 0 and MONO = 1;
write mode; see note 16 and Fig.10; data byte 3,
bits 2 and 3:
HST1 = 1; HST0 = 1; V(LEVEL)DC = 1.00 V
1.5
3
4.5
dB
HST1 = 1; HST0 = 0; V(LEVEL)DC = 1.25 V
1.5
3
4.5
dB
HST1 = 0; HST0 = 1; V(LEVEL)DC = 1.50 V
1.5
3
4.5
dB
HST1 = 0; HST0 = 0; V(LEVEL)DC = 1.75 V
1.5
3
4.5
dB
HSL1 = 1; HSL0 = 1
5.5
7.5
9.5
dB
HSL1 = 1; HSL0 = 0
4
6
8
dB
HSL1 = 0; HSL0 = 1
2
4
6
dB
HSL1 = 0; HSL0 = 0
1
3
5
dB
8
10
14.5
dB
CFMLBUF, CFMRBUF = 680 pF; data byte 3, bit 4 = 0 8
10
14.5
dB
AF = 10 kHz; VMPXIN = 200 mV;
CFMLBUF, CFMRBUF = 2.7 nF; HST1 = 1; HST0 = 1;
data byte 0, SMUT = 0 and MONO = 1; see note 16
and Fig.11; data byte 3, bits 0 and 1:
Philips Semiconductors
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
AF = 10 kHz; VTMUTE = 2 V; data byte 0, SMUT = 0
and MONO = 1; data byte 3, bit 1 = bit 0 = 1
CFMLBUF, CFMRBUF = 2.7 nF; data byte 3, bit 4 = 1
Product specification
TEA6886HL
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Analog-to-digital converters
LEVEL ANALOG-TO-DIGITAL CONVERTER (6-BIT)
VLEVEL(min)
lower limit of conversion range
−
740
−
mV
VLEVEL(max)
upper limit of conversion range
−
3.4
−
V
∆VLEVEL
bit resolution
−
42.5
−
mV
ULTRASONIC NOISE ANALOG-TO-DIGITAL CONVERTER (3-BIT)
VTUSN(min)
lower limit of conversion range
−
2.1
−
V
VTUSN(max)
upper limit of conversion range
−
4
−
V
∆VTUSN
bit resolution
−
320
−
mV
AM WIDEBAND NOISE ANALOG-TO-DIGITAL CONVERTER (3-BIT)
VTWBAM(min)
lower limit of conversion range
−
2.1
−
V
VTWBAM(max)
upper limit of conversion range
−
4
−
V
∆VTWBAM
bit resolution
−
320
−
mV
Philips Semiconductors
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
Tone/volume control
25
Gv(max)
maximum voltage gain
RS ≤ 10 Ω; RL ≥ 10 MΩ
19
20
21
dB
Gv(signal)
signal voltage gain
Tamb = 25 °C
−0.75
0
+0.75
dB
Tamb = −40 to +85 °C
−1
0
+1
dB
THD ≤ 0.5%
−
2000
−
mV
THD = 1%; Gv = 3 dB
2300
−
−
mV
RL = 2 kΩ; CL = 10 nF; THD = 1%
2000
−
−
mV
50
Vo(rms)
output voltage level
Vi(rms)
input sensitivity
Vo = 500 mV; Gv = 20 dB
−
−
mV
fro
roll-off frequency
high frequency (−1 dB)
20000 −
−
Hz
low frequency (−1 dB)
−
35
45
Hz
low frequency (−3 dB)
−
20
25
Hz
low frequency (−1 dB)
−
18
23
Hz
low frequency (−3 dB)
−
10
13
Hz
74
80
−
dB
input A; CKIL = CKIR = 100 nF;
CKVL = CKVR = 220 nF
channel separation
Vi = 1 V; frequency range 250 Hz to 20 kHz
Product specification
αcs
TEA6886HL
input C; CKICL = CKICR = 1 µF;
CKVL = CKVR = 220 nF
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
total harmonic distortion
26
chime adder total harmonic distortion
PSRR
CONDITIONS
MIN.
TYP.
MAX.
UNIT
valid for input channel A, B or C; same for all 4
outputs refer to inputs
Vi(rms) = 1 V; f = 1 kHz;
volume 1 attenuator: −6 dB; equalizer bands flat
−
0.05
0.1
%
Vi(rms) = 2 V; f = 1 kHz; VCC = 8.3 V;
volume 1 attenuator: −13 dB; equalizer bands flat
−
0.1
0.3
%
Vi(rms) = 2 V; f = 1 kHz; VCC = 8.5 V;
volume 1 attenuator: 0 dB; equalizer bands flat
−
0.05
0.1
%
Vi(rms) = 1 V; f = 1 kHz; VCC = 8.3 V;
volume 1 attenuator: 0 dB; equalizer bands flat
−
0.01
0.1
%
Vi(rms) = 2.3 V; f = 1 kHz; VCC = 9 V;
volume 1 attenuator: −13 dB; equalizer bands flat
−
0.13
0.3
%
Vi(rms) = 1 V; f = 20 Hz to 20 kHz;
volume 1 attenuator: −6 dB; equalizer bands flat
−
0.05
0.2
%
Vi(rms) = 2 V; f = 20 Hz to 20 kHz; VCC = 8.3 V;
volume 1 attenuator: −13 dB; equalizer bands flat
−
0.1
0.3
%
Vi(rms) = 2.3 V; f = 20 Hz to 20 kHz; VCC = 9 V;
volume 1 attenuator: −13 dB; equalizer bands flat
−
0.1
0.3
%
Vi(rms) = 0.5 V; f = 25 Hz; volume 1
attenuator: 0 dB; equalizer bass boost: +8 dB
−
0.1
0.2
%
Vi(rms) = 0.5 V; f = 4 kHz; volume 1
attenuator: 0 dB; equalizer treble boost: +8 dB
−
0.15
0.3
%
Vi(rms) = 0.5 V; f = 1 kHz; VCC = 8.5 V;
no input signal at input A
−
0.04
0.1
%
f = 20 to 100 Hz
35
46
−
dB
f = 1 to 20 kHz
50
65
−
dB
f = 1 kHz
50
75
−
dB
Philips Semiconductors
THD
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
power supply ripple rejection CVHS = 47 µF; stereo source: A, B, C or mono;
CSCAP = 22 µF
VCC = 8.5 V + 0.2 V (RMS)
Product specification
TEA6886HL
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
CMRR
noise voltage CCIR-ARM weighted
(RMS value) without input signal and
shorted AF inputs
input common mode rejection
CONDITIONS
MIN.
TYP.
MAX.
UNIT
27
volume 1 attenuator: +20 dB
−
65
100
µV
volume 1 attenuator: +20 dB; symmetrical input
−
100
140
µV
volume 1 attenuator: 0 dB
−
10
14
µV
volume 1 attenuator: 0 dB; symmetrical input
−
12.5
18
µV
volume 1 attenuator: 0 dB;
bass and treble boost: 6 dB
−
16
25
µV
volume 1 attenuator: 0 dB;
bass and treble boost: 6 dB; symmetrical input
−
22
32
µV
volume 1 attenuator: −9 dB
−
9
14
µV
minimum volume; volume 1 attenuator: −18 dB;
loudness: −20 dB; volume 2 attenuator: −22 dB
−
5
8
µV
mute selected: data byte 8, AMUT = 1
−
3.5
5
µV
volume setting: −20 dB; volume 1 attenuator:
−10 dB; loudness: −10 dB; A-weighted
−
5.7
8
µV
C channel input; Vi(rms) = 1 V; f = 20 Hz to 20 kHz on 48
CLIP, CRIP and CCOM
53
−
dB
C channel input; Vi(rms) = 1 V; f = 1 kHz on CLIP,
CRIP and CCOM
48
53
−
dB
C channel input; Vi(rms) = 1 V; f = 20 Hz to 20 kHz on 63
CLIP, CRIP and CCOM; volume attenuator: −15 dB
68
−
dB
source = mono input
40
45
−
dB
crosstalk between bus inputs and signal
outputs
clock frequency = 50 kHz;
repetition burst rate = 300 Hz; total initialization;
note 17
−
110
−
dB
tABC
Audio Blend Control (ABC) step time
CASICAP = 22 nF; write mode; data byte 4,
bits 6 and 7:
ASI1 = 0; ASI0 = 0
−
0.83
−
ms
ASI1 = 0; ASI0 = 1
−
3.33
−
ms
ASI1 = 1; ASI0 = 0
−
8.33
−
ms
ASI1 = 1; ASI0 = 1
−
20
−
ms
Product specification
mono input common mode rejection
TEA6886HL
CMRRmono
αct
Philips Semiconductors
Vnoise(rms)
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Source selector
Zi(stereo)
stereo input impedance (A and B input)
80
100
120
kΩ
Zi(sym)
symmetrical input impedance
(C and mono input)
24
30
36
kΩ
Zi(CHIME)
CHIME input impedance (chime input)
80
100
120
kΩ
Zo
output impedance at ROPO and LOPO
−
80
100
Ω
RL
output load resistance at ROPO and LOPO
10
−
−
kΩ
CL
output load capacitance at ROPO and
LOPO
0
−
2500
pF
Gv
source selector voltage gain
αS
input isolation of one selected source to
any other input
Vi(rms)
maximum input voltage (RMS value)
28
−0.2
0
+0.2
dB
f = 1 kHz
90
105
−
dB
f = 12.5 kHz
80
95
−
dB
f = 20 Hz to 20 kHz
75
90
−
dB
THD < 0.5%; VCC = 8.5 V
2.0
2.15
−
V
THD < 0.5%; VCC = 7.8 V
1.8
1.9
−
V
80
100
120
kΩ
Philips Semiconductors
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
Loudness control
Zi
input impedance at ROPI and LOPI
Gloudness
loudness control, maximum gain
f = 1 kHz; loudness on/off
−0.2
0
+0.2
dB
loudness control, minimum gain
f = 1 kHz; loudness on/off
−18.5
−20
−21.5
dB
∆Gloudness
gain, loudness on referred to loudness off
f = 1 kHz; Gloudness = −20 dB
−1.5
0
+1.5
dB
Gstep
step resolution gain
f = 1 kHz
−
1
−
dB
step error between any adjoining step
f = 1 kHz
−
−
0.5
dB
maximum loudness boost; without
influence of coupling capacitors
compared to 1 kHz; loudness on
f = 30 Hz
17
18.5
19
dB
f = 10 kHz
4
5
6
dB
f = 30 Hz
−1
−
0
dB
f = 10 kHz
LBmax
compared to 1 kHz; loudness off
0
dB
14
15.5
dB
fref = 30 Hz; fmeas = 300 Hz; bass and treble boost
12
13.5
15
dB
Product specification
−
12.5
TEA6886HL
−1
fref = 30 Hz; fmeas = 300 Hz; bass boost only
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Volume 1 control
Gv
voltage gain
−36
−
+20
dB
Gstep
step resolution gain
−
1
−
dB
step error between any adjoining step
−
−
0.5
dB
∆Ga
attenuator gain set error
Gv = +20 to −36 dB
−1
0
+1
dB
∆Gtrack
gain tracking error
Gv = +20 to −36 dB
−
0
1
dB
treble gain control, maximum boost
f = 10 kHz; Vi(rms) = 200 mV
13
14
15
dB
maximum attenuation
f = 10 kHz
13
14
15
dB
step resolution gain
f = 10 kHz
−
2
−
dB
step error between any adjoining step
f = 10 kHz
−
−
0.5
dB
bass gain control, maximum boost
external T-filter; f = 60 Hz; BSYB = 1;
Vi(rms) = 200 mV
16
18
20
dB
maximum attenuation
external T-filter; f = 60 Hz; BSYC = 0
16
18
20
dB
external T-filter; f = 60 Hz; BSYC = 1
13
14.4
15.5
dB
Treble control
Gtreble
Gstep
Bass control
Gbass
29
Gstep
step resolution gain
f = 60 Hz; boost; BSYB = 1
−
2
−
dB
f = 60 Hz; cut; BSYC = 0
−
2
−
dB
f = 60 Hz; cut; BSYC = 1
1.2
1.6
1.9
dB
step error between any adjoining step
f = 60 Hz
−
−
0.5
dB
fc
centre frequency
Cbass = 2 × 220 nF; Rbass = 3.3 kΩ
50
60
70
Hz
Qe
equalizer quality factor
Vi(rms) = 200 mV; boost = 12 dB
0.8
0.9
1.1
EQbow
equalizer bowing
Vi(rms) = 200 mV; bass and treble boost = 12 dB;
reference flat frequency response
−
2.1
3.3
dB
−68
−
0
dB
Philips Semiconductors
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
Volume 2 control
Gv
Gv = 0 to −56 dB
−
1
−
dB
Gv = 0 to −56 dB
−
−
0.5
dB
−
−58.5
−
dB
−
−62
−
dB
−
−68
−
dB
additional steps
Product specification
step resolution
step error between any adjoining step
TEA6886HL
Gstep
voltage gain
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
αmute
mute attenuation
∆Ga
attenuator gain set error
CONDITIONS
MIN.
100
TYP.
110
MAX.
UNIT
−
dB
f = 20 Hz to 20 kHz
75
85
−
dB
Gv = 0 to −32 dB
−1
−
+1
dB
Gv = −32 to −68 dB
−2
−
+2
dB
Gv = 0 to −56 dB
∆Gtrack
gain tracking error
−
0
1
dB
Zo
output impedance
−
80
120
Ω
RL
output load resistance
2
−
−
kΩ
Co(L)
output load capacitance
0
−
10
nF
Ro(L)
DC load resistance at output to ground
4.7
−
−
kΩ
Chime adder
Gv(CHIME)
chime adder voltage gain
Vi(rms) = 1 V; chime input; chime adder on
−21
−20
−19
dB
Vi(CHIME)(rms)
maximum chime input voltage (sine wave)
main output voltage Vo(rms) < 1.5 V; chime input;
chime adder on
2.0
−
−
V
k
factor for Vi(CHIME) to avoid internal clipping k × Vi(CHIME)(p-p) < 5.7 V − Vo(p-p)
0.22
0.25
0.28
Philips Semiconductors
PARAMETER
Up-level Car radio Analog Signal
Processor (CASP)
2000 Nov 21
SYMBOL
Digital part (SDA, SDAQ, SCL, SCLQ, FMHOLD, AFSAMPLE); note 18
30
VIH
HIGH-level input voltage
3
5
9.7
V
VIL
LOW-level input voltage
−0.3
+0.3
+1.5
V
−10
−
+10
µA
−10
−
+10
µA
−
−
0.4
V
IIH
HIGH-level input current
IIL
LOW-level input current
VOL
LOW-level output voltage SDA
VCC = 0 to 9.5 V
IL = 3 mA
Digital part (SDAQ and SCLQ); note 18
Io(sink)
output sink current
−
−
600
µA
Rpu
pull-up resistance
−
−
22
kΩ
CL
load capacitance
−
−
20
pF
Digital part (ADR); note 18
3
−
VCC
V
LOW-level input voltage
−0.3
−
+1.5
V
IIH
HIGH-level input current
−
−
150
µA
IIL
LOW-level input current
−80
−
−
µA
Product specification
HIGH-level input voltage
TEA6886HL
VIH
VIL
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
Notes to the characteristics
1. Intermodulation suppression; Beat Frequency Components (BFC):
V o(signal) ( at 1 kHz )
a) IM2 = ----------------------------------------------------- ; f = ( 2 × 10 kHz ) – 19 kHz
V o(spurious) ( at 1 kHz ) s
V o(signal) ( at 1 kHz )
b) IM3 = ----------------------------------------------------- ; f = ( 3 × 13 kHz ) – 38 kHz
V o(spurious) ( at 1 kHz ) s
c) measured with 91% mono signal; fmod = 10 kHz or 13 kHz; 9% pilot signal.
2. RDS suppression:
V o(signal) ( at 1 kHz )
α 57(RDS) = -------------------------------------------------------------------------V o(spurious) ( at 1 kHz ± 23 Hz )
a) measured with 91% stereo signal; fmod = 1 kHz; 9% pilot signal; 5% RDS subcarrier
(fs = 57 kHz; fmod = 23 Hz; AM m = 0.6).
3. Subsidiary Communication Authorization (SCA):
V o(signal) ( at 1 kHz )
α 67 = ----------------------------------------------------- ; f = ( 2 × 38 kHz ) – 67 kHz
V o(spurious) ( at 9 kHz ) s
a) measured with 81% mono signal; fmod = 1 kHz; 9% pilot signal; 10% SCA subcarrier (fs = 67 kHz, unmodulated).
4. Adjacent Channel Interference (ACI):
V o(signal) ( at 1 kHz )
α 114 = ----------------------------------------------------- ; f = 110 kHz – ( 3 × 38 kHz )
V o(spurious) ( at 4 kHz ) s
V o(signal) ( at 1 kHz )
a) α 190 = ----------------------------------------------------- ; f = 186 kHz – ( 5 × 38 kHz )
V o(spurious) ( at 4 kHz ) s
b) measured with 90% mono signal; fmod = 1 kHz; 9% pilot signal; 1% spurious signal
(fs = 110 kHz or 186 kHz, unmodulated).
5. AM stereo audio buffer gain:
V ROPO
V LOPO
G = 20 log ------------------- ; G = 20 log -------------------V DEEML
V DEEMR
6. Input resistance for AM stereo left and right:
∆V DEEML,DEEMR
R i(DEEML,DEEMR) = ----------------------------------------∆I i(DEEML,DEEMR)
7. Attenuation of blanking gate:
V AMPCAP at gate open
α AMGATE = 20 log ----------------------------------------------------------V AMPCAP at gate close
8. TWBAM1 DC voltage coefficient:
V TWBAM1 with AC voltage at LEVEL
VC TWBAM1 = --------------------------------------------------------------------------------------------V TWBAM1 without AC voltage
9. TUSN1 DC voltage coefficient:
V TUSN1 with AC voltage at MPXRDS
VC TUSN1 = -----------------------------------------------------------------------------------------------V TUSN1 without AC voltage
2000 Nov 21
31
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
10. TSNC DC voltage coefficient:
V TSNC with AC voltage at MPXRDS
VC TSNC = --------------------------------------------------------------------------------------------V TSNC without AC voltage
11. TSNC DC voltage coefficient:
V TSNC with AC voltage at LEVEL
VC TSNC = -------------------------------------------------------------------------------------V TSNC without AC voltage
12. TUSN2 DC voltage coefficient:
V TUSN2 with AC voltage at MPXRDS
VC TUSN2 = -----------------------------------------------------------------------------------------------V TUSN2 without AC voltage
13. TWBAM2 DC voltage coefficient:
V TWBAM2 with AC voltage at LEVEL
VC TWBAM2 = --------------------------------------------------------------------------------------------V TWBAM2 without AC voltage
14. Start of channel separation:
V LOPO(AC)
α cs(start) = 20log -------------------------V ROPO(AC)
15. Slope of channel separation:
V LOPO(AC)
α cs(slope) = 20log -------------------------V ROPO(AC)
16. AC attenuation for start and slope of HCC:
V LOPO,ROPO
α HCC(10 kHz) = 20log ---------------------------------------------------------------------------------------------V LOPO,ROPO without High Cut active
17. Crosstalk between bus inputs and signal outputs:
V bus(p-p)
α ct = 20log --------------------V o(rms)
18. The characteristics are in accordance with the I2C-bus specification. This specification, “The I2C-bus and how to use
it”, can be ordered using the code 9398 393 40011.
2000 Nov 21
32
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
11 I2C-BUS PROTOCOL
Table 1
S(1)
Write mode
CHIP ADDRESS (write)
Table 2
S(1)
A(2)
SUBADDRESS
A(2)
DATA BYTE(S)
A(2)
P(3)
A(2)
DATA BYTE 1
A(2)
DATA BYTE 2
A(2)
P(3)
Read mode
CHIP ADDRESS (read)
Notes
1. S = START condition.
2. A = acknowledge.
3. P = STOP condition.
Table 3
Chip address byte
CHIP ADDRESS
0
0
1
1
READ/WRITE
0
0/1(1)
0
R/W(2)
Notes
1. Defined by address pin ADR.
2. 0 = receiver and 1 = transmitter.
11.1
Read mode: 1st data byte
Table 4
Format of 1st data byte
7
6
5
4
3
2
1
0
STIN
RDSU
LVL5
LVL4
LVL3
LVL2
LVL1
LVL0
Table 5
Description of 1st data byte bits
BIT
SYMBOL
DESCRIPTION
7
STIN
Stereo indicator. This bit indicates if a pilot signal has been detected. If STIN = 0, then
no pilot signal has been detected. If STIN = 1, then a pilot signal has been detected.
6
RDSU
Measure mode. This bit selects the measure mode for the RDS flags. If RDSU = 0,
then continuous mode is selected. If RDSU = 1, then RDS update mode is selected.
5 to 0
LVL[5:0]
2000 Nov 21
ADC voltage level. These 6 bits determine the ADC voltage level; see Table 6.
33
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
Table 6
TEA6886HL
Level setting ADC
VLEVEL (V)
LVL5
LVL4
LVL3
LVL2
LVL1
LVL0
3.600
1
1
1
1
1
1
3.553
1
1
1
1
1
0
3.506
1
1
1
1
0
1
3.460
1
1
1
1
0
0
3.413
1
1
1
0
1
1
3.366
1
1
1
0
1
0
3.319
1
1
1
0
0
1
3.272
1
1
1
0
0
0
3.225
1
1
0
1
1
1
3.179
1
1
0
1
1
0
3.132
1
1
0
1
0
1
3.085
1
1
0
1
0
0
3.038
1
1
0
0
1
1
2.991
1
1
0
0
1
0
2.944
1
1
0
0
0
1
2.898
1
1
0
0
0
0
2.851
1
0
1
1
1
1
2.804
1
0
1
1
1
0
2.757
1
0
1
1
0
1
2.710
1
0
1
1
0
0
2.663
1
0
1
0
1
1
2.617
1
0
1
0
1
0
2.570
1
0
1
0
0
1
2.523
1
0
1
0
0
0
2.476
1
0
0
1
1
1
2.429
1
0
0
1
1
0
2.383
1
0
0
1
0
1
2.336
1
0
0
1
0
0
2.289
1
0
0
0
1
1
2.242
1
0
0
0
1
0
2.195
1
0
0
0
0
1
2.148
1
0
0
0
0
0
2.102
0
1
1
1
1
1
2.055
0
1
1
1
1
0
2.008
0
1
1
1
0
1
1.961
0
1
1
1
0
0
1.914
0
1
1
0
1
1
1.867
0
1
1
0
1
0
1.821
0
1
1
0
0
1
1.774
0
1
1
0
0
0
2000 Nov 21
34
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
11.2
TEA6886HL
VLEVEL (V)
LVL5
LVL4
LVL3
LVL2
LVL1
LVL0
1.727
0
1
0
1
1
1
1.680
0
1
0
1
1
0
1.633
0
1
0
1
0
1
1.587
0
1
0
1
0
0
1.540
0
1
0
0
1
1
1.493
0
1
0
0
1
0
1.446
0
1
0
0
0
1
1.399
0
1
0
0
0
0
1.352
0
0
1
1
1
1
1.306
0
0
1
1
1
0
1.259
0
0
1
1
0
1
1.212
0
0
1
1
0
0
1.165
0
0
1
0
1
1
1.118
0
0
1
0
1
0
1.071
0
0
1
0
0
1
1.025
0
0
1
0
0
0
0.978
0
0
0
1
1
1
0.931
0
0
0
1
1
0
0.884
0
0
0
1
0
1
0.837
0
0
0
1
0
0
0.790
0
0
0
0
1
1
0.744
0
0
0
0
1
0
0.697
0
0
0
0
0
1
0.650
0
0
0
0
0
0
Read mode: 2nd data byte
Table 7
Format of 2nd data byte
7
6
5
4
3
2
1
0
−
USN2
USN1
USN0
−
WBA2
WBA1
WBA0
Table 8
Description of 2nd data byte
BIT
SYMBOL
7
−
6
USN2
5
USN1
4
USN0
3
−
2
WBA2
1
WBA1
0
WBA0
2000 Nov 21
DESCRIPTION
This bit is not used and must be set to logic 1.
Ultrasonic noise ADC. These 3 bits select the voltage level for the ultrasonic noise
ADC; see Table 9.
This bit is not used and must be set to logic 1.
AM wideband noise ADC. These 3 bits select the voltage level for the AM wideband
ADC; see Table 10.
35
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
Table 9
TEA6886HL
Ultrasonic noise ADC
VTUSN2 (V)
USN2
USN1
USN0
4.500
1
1
1
4.157
1
1
0
3.814
1
0
1
3.471
1
0
0
3.129
0
1
1
2.786
0
1
0
2.443
0
0
1
2.100
0
0
0
VTWBAM2 (V)
WBA2
WBA1
WBA0
4.500
1
1
1
4.157
1
1
0
3.814
1
0
1
3.471
1
0
0
3.129
0
1
1
2.786
0
1
0
2.443
0
0
1
2.100
0
0
0
Table 10 AM wideband noise ADC
11.3
Subaddress byte for write
Table 11 Format for subaddress byte
7
6
5
4
3
2
1
0
AIOF
BOUT
−
−
SAD3
SAD2
SAD1
SAD0
Table 12 Description of subaddress byte
BIT
SYMBOL
DESCRIPTION
7
AIOF
Auto-increment control. This bit controls the auto-increment function. If AIOF = 0, then
the auto-increment is on. If AIOF = 1, then auto-increment is off.
6
BOUT
I2C-bus output control. This bit enables/disables the I2C-bus output SDAQ and SCLQ
to the TEA6840H. If BOUT = 0, then the I2C-bus output is disabled. If BOUT = 1, then
the I2C-bus output is enabled.
5
−
4
−
3
SAD3
2
SAD2
1
SAD1
0
SAD0
2000 Nov 21
These 2 bits are not used; both must be set to logic 0.
Data byte select. These 4 bits select which data byte is to be addressed; see Table 13.
36
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
Table 13 Selection of data byte
ADDRESSED DATA BYTE
MNEMONIC
SAD3
SAD2
SAD1
SAD0
Alignment 0
ALGN0
0
0
0
0
Alignment 1
ALGN1
0
0
0
1
Alignment 2
ALGN2
0
0
1
0
Alignment 3
ALGN3
0
0
1
1
ASI time source selector
SSEL
0
1
0
0
Bass control
BASS
0
1
0
1
Treble control
TRBL
0
1
1
0
Loudness control
LOUD
0
1
1
1
Volume 1
VOLU1
1
0
0
0
Volume 2, left front
VOL2_LF
1
0
0
1
Volume 2, right front
VOL2_RF
1
0
1
0
Volume 2, left rear
VOL2_LR
1
0
1
1
Volume 2, right rear
VOL2_RR
1
1
0
0
Not used(1)
−
1
1
0
1
Not
used(1)
−
1
1
1
0
Not
used(1)
−
1
1
1
1
Note
1. Not tested; function not guaranteed.
11.4
Write mode: subaddress 0H
Table 14 Format of data byte Alignment 0 (ALGN0)
7
6
5
4
3
2
1
0
AMON
AMST
SEAR
SMUT
MMUT
MONO
MST1
MST0
Table 15 Description of ALGN0 bits
BIT
SYMBOL
7
AMON
6
AMST
5
SEAR
Search mode selection. If SEAR = 0, then mute and SNC detectors normal. If
SEAR = 1, then mute and SNC detectors fast.
4
SMUT
Soft mute enable. If SMUT = 0, then soft mute off. If SMUT = 1, then soft mute
enabled.
3
MMUT
Muting of MPX output. If MMUT = 0, then MPX output not muted. If MMUT = 1, then
MPX output muted.
2
MONO
Stereo decoder mode selection. If MONO = 0, then Stereo mode selected. If
MONO = 1, then Mono mode selected.
1
MST1
Start of muting. These 2 bits determine the value of VTMUTE; see Table 17 and Fig.4.
0
MST0
2000 Nov 21
DESCRIPTION
AM/FM mode selection. These 2 bits select the AM/FM mode and source; see
Table 16.
37
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
Table 16 Setting of AM/FM mode
SELECTED MODE
AMON
AMST
AM stereo mode, note 1
1
1
AM mode, active input AMHIN
1
0
Not allowed
0
1
FM mode, active input MPXIN
0
0
Note
1. MPX input (MPXIN) and AM input (AMHIN) muted, stereo decoder in mono mode and de-emphasis terminals
(DEEML and DEEMR) are audio signal inputs.
Table 17 Setting of start of muting (αMUTE = 6 dB)
2000 Nov 21
VTMUTE (V)
MST1
MST0
2.45
1
1
2.30
1
0
2.15
0
1
2.00
0
0
38
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
MHB413
0
handbook, full pagewidth
αMUTE
(dB)
(1)
(2)
(3)
(4)
10
20
1.0
1.5
2.0
2.5
3.0
VTMUTE (V)
VTUSN1 (V)
Data byte ALGN2: MSL0 = 1, MSL1 = 1
Data byte ALGN0
CURVE
MST1
MST0
(1)
0
0
(2)
0
1
(3)
1
0
(4)
1
1
Fig.4 Soft mute attenuation as a function of VTMUTE and VTUSN1 input voltage (fixed slope).
2000 Nov 21
39
3.5
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
11.5
TEA6886HL
Write mode: subaddress 1H
Table 18 Format of data byte Alignment 1 (ALGN1)
7
6
5
4
3
2
1
0
USS1
USS0
AWS1
AWS0
CHS3
CHS2
CHS1
CHS0
Table 19 Description of ALGN1 bits
BIT
SYMBOL
7
USS1
6
USS0
5
AWS1
4
AWS0
3
CHS3
2
CHS2
1
CHS1
0
CHS0
DESCRIPTION
Ultrasonic noise sensitivity. These 2 bits determine the ultrasonic noise sensitivity
levels; see Table 20 and Fig.5.
AM wideband sensitivity. These 2 bits determine the AM wideband sensitivity levels;
see Table 21 and Fig.6.
Channel separation alignment. These 4 bits select the channel separation alignment;
see Table 22.
Table 20 Setting of ultrasonic noise sensitivity (VMPXRDS(AC) = 350 mV)
SLOPE (V/V)
USS1
USS0
−2.1
1
1
−2.9
1
0
−4.4
0
1
−6.8
0
0
2000 Nov 21
40
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
MHB411
6
handbook,
full pagewidth
V
TUSN2
VTUSN1
VTSNC
(V)
5
(1)
4
(2)
(3)
3
(4)
2
1
0
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
VMPXRDS (80kHz) (V)
Data byte ALGN1
CURVE
USS1
USS0
(1)
1
1
(2)
1
0
(3)
0
1
(4)
0
0
Fig.5
Ultrasonic noise peak and average detector output voltage as a function of MPX signal input, and stereo
noise control peak detector output voltage as a function of MPX signal input.
2000 Nov 21
41
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
Table 21 Setting of AM wideband sensitivity (VLEVEL(AC) = 400 mV)
SLOPE (V/V)
AWS1
AWS0
−2.2
1
1
−3.3
1
0
−4.9
0
1
−6.5
0
0
MHB410
6
full pagewidth
Vhandbook,
TWBAM2
VTWBAM1
VTSNC
(V)
5
(1)
4
(2)
(3)
3
(4)
2
1
0
0
200
400
600
800
1000
VLEVELAC(24kHz)p-p (mV)
Data byte ALGN1
CURVE
AWS1
AWS0
(1)
1
1
(2)
1
0
(3)
0
1
(4)
0
0
Fig.6
AM wideband peak and average detector output voltage as a function of level AC signal input, and stereo
noise control peak detector output voltage as a function of level AC signal input.
2000 Nov 21
42
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
Table 22 Setting of channel separation alignment
CHANNEL SEPARATION ALIGNMENT
CHS3
CHS2
CHS1
CHS0
Not used(1)
1
1
1
1
Not
used(1)
1
1
1
0
Not
used(1)
1
1
0
1
Not used(1)
1
1
0
0
Not
used(1)
1
0
1
1
Not
used(1)
1
0
1
0
Setting 9, minimum gain of side signal
1
0
0
1
Setting 8
1
0
0
0
Setting 7
0
1
1
1
Setting 6
0
1
1
0
Setting 5
0
1
0
1
Setting 4
0
1
0
0
Setting 3
0
0
1
1
Setting 2
0
0
1
0
Setting 1
0
0
0
1
Setting 0, maximum gain of side signal
0
0
0
0
Note
1. Not tested; function not guaranteed.
11.6
Write mode: subaddress 2H
Table 23 Format of data byte Alignment 2 (ALGN2)
7
6
5
4
3
2
1
0
MSL1
MSL0
SSL1
SSL0
SST3
SST2
SST1
SST0
Table 24 Description of ALGN2 bits
BIT
SYMBOL
7
MSL1
6
MSL0
5
SSL1
4
SSL0
3
SST3
2
SST2
1
SST1
0
SST0
2000 Nov 21
DESCRIPTION
Soft mute slope alignment. These 2 bits determine the value of VTMUTE(DC);
see Table 25 and Fig.7.
Stereo noise control slope alignment. These 2 bits determine the value of αcs;
see Table 26 and Fig.8.
Stereo noise control start alignment. These 4 bits determine the stereo noise control
start alignment; see Table 27 and Fig.9.
43
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
Table 25 Setting of soft mute slope alignment
VTMUTE(DC)
MSL1
MSL0
0.395VTUSN1 without AC
1
1
0.390VTUSN1 without AC
1
0
0.380VTUSN1 without AC
0
1
0.350VTUSN1 without AC
0
0
MHB412
0
handbook, full pagewidth
αMUTE
(dB)
10
(1)
(2)
(3)
20
(4)
30
40
1.0
1.5
2.0
2.5
3.0
VTUSN1 (V)
VTMUTE (V)
Data byte ALGN0: MST0 = 0, MST1 = 0
Data byte ALGN2
CURVE
MSL1
MSL0
(1)
0
0
(2)
0
1
(3)
1
0
(4)
1
1
Fig.7 Soft mute attenuation as a function of input voltages VTUSN1 and VTMUTE (fixed start).
2000 Nov 21
44
3.5
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
Table 26 Setting of stereo noise control slope alignment (VTSNC = 0.72VTUSN1 without AC)
αcs (dB)
SSL1
SSL0
Not defined
1
1
13
1
0
7
0
1
5
0
0
MHB414
50
handbook, full pagewidth
αcs
(dB)
40
30
20
(1)
(2)
(3)
10
0
2.5
3.0
3.5
4.0
VTSNC (V)
Data byte ALGN2: SST = 1000
Data byte ALGN2
CURVE
SSL0
SSL1
(1)
0
1
(2)
1
0
(3)
0
0
Fig.8 Channel separation as a function of voltage at pins TSNC, TWBAM1 and TUSN1 (fixed start).
2000 Nov 21
45
4.5
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
Table 27 Setting of stereo noise control start alignment (αcs = 6 dB)
START ALIGNMENT
SST3
SST2
SST1
SST0
VTSNC = 0.63VTUSN1 without AC
1
1
1
1
VTSNC
1
1
1
0
VTSNC
1
1
0
1
VTSNC
1
1
0
0
VTSNC
1
0
1
1
VTSNC
1
0
1
0
VTSNC
1
0
0
1
VTSNC = 0.70VTUSN1 without AC
1
0
0
0
VTSNC
0
1
1
1
VTSNC
0
1
1
0
VTSNC
0
1
0
1
VTSNC
0
1
0
0
VTSNC
0
0
1
1
VTSNC
0
0
1
0
VTSNC
0
0
0
1
VTSNC = 0.74VTUSN1 without AC
0
0
0
0
2000 Nov 21
46
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
MHB415
50
handbook, full pagewidth
αcs
(dB)
40
30
(1)
(2)
(3)
20
10
0
2.5
3.0
3.5
4.0
VTSNC (V)
4.5
Data byte ALGN2: SSL1 = 0, SSL0 = 1
Data byte ALGN2
CURVE
SST3
SST2
SST1
SST0
(1)
0
0
0
0
(2)
1
0
0
0
(3)
1
1
1
1
Fig.9 Channel separation as a function of voltage at pins TSNC, TWBAM1 and TUSN1 (fixed slope).
2000 Nov 21
47
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
11.7
TEA6886HL
Write mode: subaddress 3H
Table 28 Format of data byte Alignment 3 (ALGN3)
7
6
5
4
3
2
1
0
NBS1
NBS0
DE75
HCCS
HST1
HST0
HSL1
HSL0
Table 29 Description of ALGN3 bits
BIT
SYMBOL
DESCRIPTION
7
NBS1
6
NBS0
5
DE75
De-emphasis. If DE75 = 1, then de-emphasis is 75 µs. If DE75 = 1, then de-emphasis
is 50 µs.
4
HCCS
HCC control switch. With static roll-off: HCCS = 1, CFMLBUF = CFMRBUF = 2.7 nF.
Without static roll-off: HCCS = 0, CFMLBUF = CFMRBUF = 680 pF.
3
HST1
2
HST0
HCC start alignment. These 2 bits determine the alignment for the start of high cut
control; see Table 31 and Fig.10.
1
HSL1
0
HSL0
Noise blanker sensitivity. These 2 bits determine the noise blanker sensitivity levels;
see Table 30.
HCC slope alignment. These 2 bits determine the alignment for the slope of high cut
control; see Table 32 and Fig.11.
Table 30 Setting of noise blanker sensitivity
Vpulse(p)(MPX) (mV)
Vpulse(p)(level) (mV)
NBS1
NBS0
12
110
1
1
24
120
1
0
60
150
0
1
120
200
0
0
Table 31 Setting of alignment for start of high cut control (α10kHz = 3 dB)
V(3-10)DC (V)
HST1
HST0
1.30
1
1
1.45
1
0
1.90
0
1
2.10
0
0
2000 Nov 21
48
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
MHB417
0
handbook, full pagewidth
α10kHz
(dB)
−2
−4
(1)
(2)
(3)
(4)
−6
−8
−10
−12
2
1
3
Data byte ALGN3: HSL1 = 1, HSL0 = 0
Data byte ALGN3
CURVE
HST1
HST0
(1)
1
1
(2)
1
0
(3)
0
1
(4)
0
0
Fig.10 High cut control as a function of VTMUTE (fixed slope).
2000 Nov 21
49
VTMUTE (V)
4
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
Table 32 Setting of alignment for slope of high cut control (VTMUTE = 2.4 V)
α10kHz (dB)
HSL1
HSL0
7.5
1
1
6.0
1
0
4.0
0
1
3.0
0
0
MHB416
0
handbook, full pagewidth
α10kHz
(dB)
−2
−4
−6
−8
(1)
(2)
(3) (4)
−10
−12
2
1
3
Data byte ALGN3: HST1 = 1, HST0 = 1
Data byte ALGN3
CURVE
HSL1
HSL0
(1)
0
0
(2)
0
1
(3)
1
0
(4)
1
1
Fig.11 High cut control as a function of VTMUTE (fixed start).
2000 Nov 21
50
VTMUTE (V)
4
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
11.8
TEA6886HL
Write mode: subaddress 4H
Table 33 Format of data byte Source Selector (SSEL)
7
6
5
4
3
2
1
0
ASI1
ASI0
RSA2
RSA1
RSA0
MSS2
MSS1
MSS0
Table 34 Description of SSEL bits
BIT
SYMBOL
7
ASI1
6
ASI0
5
RSA2
4
RSA1
3
RSA0
2
MSS2
1
MSS1
0
MSS0
DESCRIPTION
ASI/ABC speed selection. These 2 bits select the ASI/ABC speed (time per step);
see Table 35.
Rear seat audio selector. These 3 bits select the source for the rear outputs;
see Table 36.
Main source selector. These 3 bits select the source for the main control part;
see Table 37.
Table 35 ASI/ABC speed selection (CASICAP = 15 nF)
ASI/ABC SPEED (ms)
ASI1
ASI0
20
1
1
8.33
1
0
3.33
0
1
0.83
0
0
Table 36 Selected source for rear outputs
SELECTED SOURCE
RSA2
RSA1
RSA0
channel(1)
1
1
1
Internal, main channel(1)
1
1
0
channel(1)
1
0
1
Internal, main channel
1
0
0
AM/FM (internal)
0
1
1
Input A (stereo)
0
1
0
Input B (stereo)
0
0
1
Input C (stereo,
symmetrical)
0
0
0
Internal, main
Internal, main
Note
1. Not tested; function not guaranteed.
2000 Nov 21
51
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
Table 37 Selected source for main control part
SELECTED SOURCE
MSS2
MSS1
MSS0
Chime input(1)
1
1
1
input(1)
1
1
0
Chime input
1
0
1
Input D (mono,
symmetrical)
1
0
0
AM/FM (internal)
0
1
1
Input A (stereo)
0
1
0
Input B (stereo)
0
0
1
Input C (stereo,
symmetrical)
0
0
0
Chime
Note
1. Not tested; function not guaranteed.
11.9
Write mode: subaddress 5H
Table 38 Format of data byte Bass control (BASS)
7
6
5
4
3
2
1
0
BSYC
−
BSYB
BAS4
BAS3
BAS2
BAS1
BAS0
Table 39 Description of BASS bits
BIT
SYMBOL
7
BSYC
DESCRIPTION
Bass filter mode for cut. If BSYC = 0, then shelving characteristic selected.
If BSYC = 1, then band-pass filter characteristic selected.
6
−
5
BSYB
Bass filter mode for boost. If BSYB = 0, then shelving characteristic selected.
If BSYB = 1, then band-pass filter characteristic selected.
4
BAS4
Bass control. These 5 bits determine the bass control level; see Table 40.
3
BAS3
2
BAS2
1
BAS1
0
BAS0
2000 Nov 21
This bit is not used and must be set to logic 0.
52
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
Table 40 Setting of bass control level
BASS CONTROL (dB)
BAS4
BAS3
BAS2
BAS1
BAS0
+18(1)
1
1
1
1
1
+18(1)
1
1
1
1
0
+18(1)
1
1
1
0
1
+18(1)
1
1
1
0
0
+18(1)
1
1
0
1
1
+18
1
1
0
1
0
+16
1
1
0
0
1
+14
1
1
0
0
0
+12
1
0
1
1
1
+10
1
0
1
1
0
+8
1
0
1
0
1
+6
1
0
1
0
0
+4
1
0
0
1
1
+2
1
0
0
1
0
+0
1
0
0
0
1
−0
1
0
0
0
0
−2 (−1.8)
0
1
1
1
1
−4 (−3.6)
0
1
1
1
0
−6 (−5.4)
0
1
1
0
1
−8 (−7.1)
0
1
1
0
0
−10 (−8.7)
0
1
0
1
1
−12 (−10.3)
0
1
0
1
0
−14 (−11.7)
0
1
0
0
1
−16 (−13.1)
0
1
0
0
0
−18 (−14.4)
0
0
1
1
1
−18 (−14.4)(1)
0
0
1
1
0
−18 (−14.4)(1)
0
0
1
0
1
−18
(−14.4)(1)
0
0
1
0
0
−18
(−14.4)(1)
0
0
0
1
1
−18 (−14.4)(1)
0
0
0
1
0
−18
(−14.4)(1)
0
0
0
0
1
−18
(−14.4)(1)
0
0
0
0
0
Note
1. Not tested; function not guaranteed.
2000 Nov 21
53
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
11.10 Write mode: subaddress 6H
Table 41 Format of data byte Treble control (TRBL)
7
6
5
4
3
2
1
0
HSTM
−
−
−
TRE3
TRE2
TRE1
TRE0
Table 42 Description of TRBL bits
BIT
SYMBOL
7
HSTM
6
−
5
−
4
−
3
TRE3
2
TRE2
1
TRE1
0
TRE0
DESCRIPTION
Test mode muting average and SNC peak detector. If HSTM = 0, then normal
operation. If HSTM = 1, then increased detector currents.
These 3 bits are not used; each must be set to logic 0.
Treble control. These 4 bits determine the treble control level; see Table 43.
Table 43 Setting of treble control level
TREBLE CONTROL (dB)
TRE3
TRE2
TRE1
TRE0
+14
1
1
1
1
+12
1
1
1
0
+10
1
1
0
1
+8
1
1
0
0
+6
1
0
1
1
+4
1
0
1
0
+2
1
0
0
1
+0
1
0
0
0
−0
0
1
1
1
−2
0
1
1
0
−4
0
1
0
1
−6
0
1
0
0
2000 Nov 21
−8
0
0
1
1
−10
0
0
1
0
−12
0
0
0
1
−14
0
0
0
0
54
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
11.11 Write mode: subaddress 7H
Table 44 Format of data byte Loudness control (LOUD)
7
6
5
4
3
2
1
0
LOFF
−
−
LSN4
LSN3
LSN2
LSN1
LSN0
Table 45 Description of LOUD bits
BIT
SYMBOL
7
LOFF
6
−
5
−
4
LSN4
3
LSN3
2
LSN2
1
LSN1
0
LSN0
DESCRIPTION
Loudness switch control. If LOFF = 0, then the loudness switch is on. If LOFF = 1,
then loudness switch is off.
These 2 bits are not used, each must be set to logic 0.
Loudness control. These 5 bits determine the attenuation of the loudness block;
see Table 46.
Table 46 Attenuation of loudness block
ATTENUATION (dB)
LSN4
LSN3
LSN2
LSN1
LSN0
0
1
1
1
1
1
−1
1
1
1
1
0
−2
1
1
1
0
1
−3
1
1
1
0
0
−4
1
1
0
1
1
−5
1
1
0
1
0
−6
1
1
0
0
1
−7
1
1
0
0
0
−8
1
0
1
1
1
−9
1
0
1
1
0
−10
1
0
1
0
1
−11
1
0
1
0
0
−12
1
0
0
1
1
−13
1
0
0
1
0
−14
1
0
0
0
1
−15
1
0
0
0
0
−16
0
1
1
1
1
−17
0
1
1
1
0
−18
0
1
1
0
1
−19
0
1
1
0
0
−20
0
1
0
1
1
−20(1)
0
1
0
1
0
−20(1)
0
1
0
0
1
2000 Nov 21
55
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
ATTENUATION (dB)
LSN4
LSN3
LSN2
LSN1
LSN0
−20(1)
0
1
0
0
0
−20(1)
0
0
1
1
1
−20(1)
0
0
1
1
0
−20(1)
0
0
1
0
1
−20(1)
0
0
1
0
0
−20(1)
0
0
0
1
1
−20(1)
0
0
0
1
0
−20(1)
0
0
0
0
1
−20(1)
0
0
0
0
0
Note
1. Not tested; function not guaranteed.
11.12 Write mode: subaddress 8H
Table 47 Format of data byte Volume 1 control (VOLU1)
7
6
5
4
3
2
1
0
AMUT
−
VOL5
VOL4
VOL3
VOL2
VOL1
VOL0
Table 48 Description of VOLU1 bits
BIT
SYMBOL
DESCRIPTION
7
AMUT
Audio mute switch. If AMUT = 0, then there is no audio mute. If AMUT = 1, then audio
mute on.
6
−
5 to 0
VOL[5:0]
This bit is not used and must be set to logic 0.
Volume 1 control. These 6 bits determine the attenuation of volume 1 block;
see Table 49.
Table 49 Attenuation of volume 1 block
ATTENUATION (dB)
VOL5
VOL4
VOL3
VOL2
VOL1
VOL0
+20(1)
1
1
1
1
1
1
+20(1)
1
1
1
1
1
0
+20(1)
1
1
1
1
0
1
+20
1
1
1
1
0
0
+19
1
1
1
0
1
1
+18
1
1
1
0
1
0
+17
1
1
1
0
0
1
+16
1
1
1
0
0
0
+15
1
1
0
1
1
1
+14
1
1
0
1
1
0
+13
1
1
0
1
0
1
+12
1
1
0
1
0
0
+11
1
1
0
0
1
1
2000 Nov 21
56
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
ATTENUATION (dB)
VOL5
VOL4
VOL3
VOL2
VOL1
VOL0
+10
1
1
0
0
1
0
+9
1
1
0
0
0
1
+8
1
1
0
0
0
0
+7
1
0
1
1
1
1
+6
1
0
1
1
1
0
+5
1
0
1
1
0
1
+4
1
0
1
1
0
0
+3
1
0
1
0
1
1
+2
1
0
1
0
1
0
+1
1
0
1
0
0
1
0
1
0
1
0
0
0
−1
1
0
0
1
1
1
−2
1
0
0
1
1
0
−3
1
0
0
1
0
1
−4
1
0
0
1
0
0
−5
1
0
0
0
1
1
−6
1
0
0
0
1
0
−7
1
0
0
0
0
1
−8
1
0
0
0
0
0
−9
0
1
1
1
1
1
−10
0
1
1
1
1
0
−11
0
1
1
1
0
1
−12
0
1
1
1
0
0
−13
0
1
1
0
1
1
−14
0
1
1
0
1
0
−15
0
1
1
0
0
1
−16
0
1
1
0
0
0
−17
0
1
0
1
1
1
−18
0
1
0
1
1
0
−19
0
1
0
1
0
1
−20
0
1
0
1
0
0
−21
0
1
0
0
1
1
−22
0
1
0
0
1
0
−23
0
1
0
0
0
1
−24
0
1
0
0
0
0
−25
0
0
1
1
1
1
−26
0
0
1
1
1
0
−27
0
0
1
1
0
1
−28
0
0
1
1
0
0
−29
0
0
1
0
1
1
−30
0
0
1
0
1
0
2000 Nov 21
57
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
ATTENUATION (dB)
VOL5
VOL4
VOL3
VOL2
VOL1
VOL0
−31
0
0
1
0
0
1
−32
0
0
1
0
0
0
−33
0
0
0
1
1
1
−34
0
0
0
1
1
0
−35
0
0
0
1
0
1
−36
0
0
0
1
0
0
−36(1)
0
0
0
0
1
1
−36(1)
0
0
0
0
1
0
−36(1)
0
0
0
0
0
1
−36(1)
0
0
0
0
0
0
Note
1. Not tested; function not guaranteed.
11.13 Write mode: subaddress 9H
Table 50 Format of data byte Volume 2, left front (VOL2_LF)
7
6
5
4
3
2
1
0
CHML
−
VLF5
VLF4
VLF3
VLF2
VLF1
VLF0
Table 51 Description of VOL2_LF bits
BIT
SYMBOL
7
CHML
6
−
5 to 0
VLF[5:0]
2000 Nov 21
DESCRIPTION
Chime adder left front select. If CHML = 1, then chime on. If CHML = 0, then chime
off.
This bit is not used and must be set to logic 0.
Left front volume 2, balance and fader control. These 6 bits determine the
attenuation of volume 2 left front; see Table 52.
58
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
Table 52 Attenuation of volume 2 left front
ATTENUATION (dB)
VLF5
VLF4
VLF3
VLF2
VLF1
VLF0
0
1
1
1
1
1
1
−1
1
1
1
1
1
0
−2
1
1
1
1
0
1
−3
1
1
1
1
0
0
−4
1
1
1
0
1
1
−5
1
1
1
0
1
0
−6
1
1
1
0
0
1
−7
1
1
1
0
0
0
−8
1
1
0
1
1
1
−9
1
1
0
1
1
0
−10
1
1
0
1
0
1
−11
1
1
0
1
0
0
−12
1
1
0
0
1
1
−13
1
1
0
0
1
0
−14
1
1
0
0
0
1
−15
1
1
0
0
0
0
−16
1
0
1
1
1
1
−17
1
0
1
1
1
0
−18
1
0
1
1
0
1
−19
1
0
1
1
0
0
−20
1
0
1
0
1
1
−21
1
0
1
0
1
0
−22
1
0
1
0
0
1
−23
1
0
1
0
0
0
−24
1
0
0
1
1
1
−25
1
0
0
1
1
0
−26
1
0
0
1
0
1
−27
1
0
0
1
0
0
−28
1
0
0
0
1
1
−29
1
0
0
0
1
0
−30
1
0
0
0
0
1
−31
1
0
0
0
0
0
−32
0
1
1
1
1
1
−33
0
1
1
1
1
0
−34
0
1
1
1
0
1
−35
0
1
1
1
0
0
−36
0
1
1
0
1
1
−37
0
1
1
0
1
0
−38
0
1
1
0
0
1
−39
0
1
1
0
0
0
2000 Nov 21
59
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
ATTENUATION (dB)
VLF5
VLF4
VLF3
VLF2
VLF1
VLF0
−40
0
1
0
1
1
1
−41
0
1
0
1
1
0
−42
0
1
0
1
0
1
−43
0
1
0
1
0
0
−44
0
1
0
0
1
1
−45
0
1
0
0
1
0
−46
0
1
0
0
0
1
−47
0
1
0
0
0
0
−48
0
0
1
1
1
1
−49
0
0
1
1
1
0
−50
0
0
1
1
0
1
−51
0
0
1
1
0
0
−52
0
0
1
0
1
1
−53
0
0
1
0
1
0
−54
0
0
1
0
0
1
−55
0
0
1
0
0
0
−56
0
0
0
1
1
1
−58.5
0
0
0
1
1
0
−62
0
0
0
1
0
1
−68
0
0
0
1
0
0
Mute left front
0
0
0
0
1
1
Mute left front(1)
0
0
0
0
1
0
Mute left front(1)
0
0
0
0
0
1
front(1)
0
0
0
0
0
0
Mute left
Note
1. Not tested; function not guaranteed.
2000 Nov 21
60
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
11.14 Write mode: subaddress AH
Table 53 Format of data byte Volume 2, right front (VOL2_RF)
7
6
5
4
3
2
1
0
CHMR
−
VRF5
VRF4
VRF3
VRF2
VRF1
VRF0
Table 54 Description of VOL2_RF bits
BIT
SYMBOL
DESCRIPTION
7
CHMR
Chime adder right front select. If CHMR = 1, then chime on. If CHMR = 0, then chime
off.
6
−
5 to 0
VRF[5:0]
This bit is not used and must be set to logic 0.
Right front volume 2, balance and fader control. These 6 bits determine the
attenuation of volume 2 right front; see Table 55.
Table 55 Attenuation of volume 2 right front
ATTENUATION (dB)
VRF5
VRF4
VRF3
VRF2
VRF1
VRF0
0
1
1
1
1
1
1
−1
1
1
1
1
1
0
−2
1
1
1
1
0
1
−3
1
1
1
1
0
0
−4
1
1
1
0
1
1
−5
1
1
1
0
1
0
−6
1
1
1
0
0
1
−7
1
1
1
0
0
0
−8
1
1
0
1
1
1
−9
1
1
0
1
1
0
−10
1
1
0
1
0
1
−11
1
1
0
1
0
0
−12
1
1
0
0
1
1
−13
1
1
0
0
1
0
−14
1
1
0
0
0
1
−15
1
1
0
0
0
0
−16
1
0
1
1
1
1
−17
1
0
1
1
1
0
−18
1
0
1
1
0
1
−19
1
0
1
1
0
0
−20
1
0
1
0
1
1
−21
1
0
1
0
1
0
−22
1
0
1
0
0
1
−23
1
0
1
0
0
0
−24
1
0
0
1
1
1
−25
1
0
0
1
1
0
−26
1
0
0
1
0
1
2000 Nov 21
61
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
ATTENUATION (dB)
VRF5
VRF4
VRF3
VRF2
VRF1
VRF0
−27
1
0
0
1
0
0
−28
1
0
0
0
1
1
−29
1
0
0
0
1
0
−30
1
0
0
0
0
1
−31
1
0
0
0
0
0
−32
0
1
1
1
1
1
−33
0
1
1
1
1
0
−34
0
1
1
1
0
1
−35
0
1
1
1
0
0
−36
0
1
1
0
1
1
−37
0
1
1
0
1
0
−38
0
1
1
0
0
1
−39
0
1
1
0
0
0
−40
0
1
0
1
1
1
−41
0
1
0
1
1
0
−42
0
1
0
1
0
1
−43
0
1
0
1
0
0
−44
0
1
0
0
1
1
−45
0
1
0
0
1
0
−46
0
1
0
0
0
1
−47
0
1
0
0
0
0
−48
0
0
1
1
1
1
−49
0
0
1
1
1
0
−50
0
0
1
1
0
1
−51
0
0
1
1
0
0
−52
0
0
1
0
1
1
−53
0
0
1
0
1
0
−54
0
0
1
0
0
1
−55
0
0
1
0
0
0
−56
0
0
0
1
1
1
−58.5
0
0
0
1
1
0
−62
0
0
0
1
0
1
−68
0
0
0
1
0
0
Mute right front
0
0
0
0
1
1
Mute right front(1)
0
0
0
0
1
0
Mute right front(1)
0
0
0
0
0
1
front(1)
0
0
0
0
0
0
Mute right
Note
1. Not tested; function not guaranteed.
2000 Nov 21
62
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
11.15 Write mode: subaddress BH
Table 56 Format of data byte Volume 2, left rear (VOL2_LR)
7
6
5
4
3
2
1
0
−
−
VLR5
VLR4
VLR3
VLR2
VLR1
VLR0
Table 57 Description of VOL2_LR bits
BIT
SYMBOL
7
−
6
−
5 to 0
VLR[5:0]
DESCRIPTION
These 2 bits are not used, each must be set to logic 0.
Left rear volume 2, balance and fader control. These 6 bits determine the attenuation
of volume 2 left rear; see Table 58.
Table 58 Attenuation of volume 2 left rear
ATTENUATION (dB)
VLR5
VLR4
VLR3
VLR2
VLR1
VLR0
0
1
1
1
1
1
1
−1
1
1
1
1
1
0
−2
1
1
1
1
0
1
−3
1
1
1
1
0
0
−4
1
1
1
0
1
1
−5
1
1
1
0
1
0
−6
1
1
1
0
0
1
−7
1
1
1
0
0
0
−8
1
1
0
1
1
1
−9
1
1
0
1
1
0
−10
1
1
0
1
0
1
−11
1
1
0
1
0
0
−12
1
1
0
0
1
1
−13
1
1
0
0
1
0
−14
1
1
0
0
0
1
−15
1
1
0
0
0
0
−16
1
0
1
1
1
1
−17
1
0
1
1
1
0
−18
1
0
1
1
0
1
−19
1
0
1
1
0
0
−20
1
0
1
0
1
1
−21
1
0
1
0
1
0
−22
1
0
1
0
0
1
−23
1
0
1
0
0
0
−24
1
0
0
1
1
1
−25
1
0
0
1
1
0
−26
1
0
0
1
0
1
−27
1
0
0
1
0
0
2000 Nov 21
63
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
ATTENUATION (dB)
VLR5
VLR4
VLR3
VLR2
VLR1
VLR0
−28
1
0
0
0
1
1
−29
1
0
0
0
1
0
−30
1
0
0
0
0
1
−31
1
0
0
0
0
0
−32
0
1
1
1
1
1
−33
0
1
1
1
1
0
−34
0
1
1
1
0
1
−35
0
1
1
1
0
0
−36
0
1
1
0
1
1
−37
0
1
1
0
1
0
−38
0
1
1
0
0
1
−39
0
1
1
0
0
0
−40
0
1
0
1
1
1
−41
0
1
0
1
1
0
−42
0
1
0
1
0
1
−43
0
1
0
1
0
0
−44
0
1
0
0
1
1
−45
0
1
0
0
1
0
−46
0
1
0
0
0
1
−47
0
1
0
0
0
0
−48
0
0
1
1
1
1
−49
0
0
1
1
1
0
−50
0
0
1
1
0
1
−51
0
0
1
1
0
0
−52
0
0
1
0
1
1
−53
0
0
1
0
1
0
−54
0
0
1
0
0
1
−55
0
0
1
0
0
0
−56
0
0
0
1
1
1
−58.5
0
0
0
1
1
0
−62
0
0
0
1
0
1
−68
0
0
0
1
0
0
Mute left rear
0
0
0
0
1
1
rear(1)
0
0
0
0
1
0
Mute left rear(1)
0
0
0
0
0
1
rear(1)
0
0
0
0
0
0
Mute left
Mute left
Note
1. Not tested; function not guaranteed.
2000 Nov 21
64
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
11.16 Write mode: subaddress CH
Table 59 Format of data byte Volume 2, right rear (VOL2_RR)
7
6
5
4
3
2
1
0
−
−
VRR5
VRR4
VRR3
VRR2
VRR1
VRR0
Table 60 Description of VOL2_RR bits
BIT
SYMBOL
7
−
6
−
5 to 0
VRR[5:0]
DESCRIPTION
These 2 bits are not used, each must be set to logic 0.
Right rear volume 2, balance and fader control. These 6 bits determine the
attenuation of volume 2 right rear, see Table 61.
Table 61 Attenuation of volume 2 right rear
ATTENUATION (dB)
VRR5
VRR4
VRR3
VRR2
VRR1
VRR0
0
1
1
1
1
1
1
−1
1
1
1
1
1
0
−2
1
1
1
1
0
1
−3
1
1
1
1
0
0
−4
1
1
1
0
1
1
−5
1
1
1
0
1
0
−6
1
1
1
0
0
1
−7
1
1
1
0
0
0
−8
1
1
0
1
1
1
−9
1
1
0
1
1
0
−10
1
1
0
1
0
1
−11
1
1
0
1
0
0
−12
1
1
0
0
1
1
−13
1
1
0
0
1
0
−14
1
1
0
0
0
1
−15
1
1
0
0
0
0
−16
1
0
1
1
1
1
−17
1
0
1
1
1
0
−18
1
0
1
1
0
1
−19
1
0
1
1
0
0
−20
1
0
1
0
1
1
−21
1
0
1
0
1
0
−22
1
0
1
0
0
1
−23
1
0
1
0
0
0
−24
1
0
0
1
1
1
−25
1
0
0
1
1
0
−26
1
0
0
1
0
1
−27
1
0
0
1
0
0
2000 Nov 21
65
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
ATTENUATION (dB)
VRR5
VRR4
VRR3
VRR2
VRR1
VRR0
−28
1
0
0
0
1
1
−29
1
0
0
0
1
0
−30
1
0
0
0
0
1
−31
1
0
0
0
0
0
−32
0
1
1
1
1
1
−33
0
1
1
1
1
0
−34
0
1
1
1
0
1
−35
0
1
1
1
0
0
−36
0
1
1
0
1
1
−37
0
1
1
0
1
0
−38
0
1
1
0
0
1
−39
0
1
1
0
0
0
−40
0
1
0
1
1
1
−41
0
1
0
1
1
0
−42
0
1
0
1
0
1
−43
0
1
0
1
0
0
−44
0
1
0
0
1
1
−45
0
1
0
0
1
0
−46
0
1
0
0
0
1
−47
0
1
0
0
0
0
−48
0
0
1
1
1
1
−49
0
0
1
1
1
0
−50
0
0
1
1
0
1
−51
0
0
1
1
0
0
−52
0
0
1
0
1
1
−53
0
0
1
0
1
0
−54
0
0
1
0
0
1
−55
0
0
1
0
0
0
−56
0
0
0
1
1
1
−58.5
0
0
0
1
1
0
−62
0
0
0
1
0
1
−68
0
0
0
1
0
0
Mute right rear
0
0
0
0
1
1
rear(1)
0
0
0
0
1
0
Mute right rear(1)
0
0
0
0
0
1
rear(1)
0
0
0
0
0
0
Mute right
Mute right
Note
1. Not tested; function not guaranteed.
2000 Nov 21
66
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
MHB409
6
handbook, full pagewidth
VTMUTE
(V)
5
4
3
2
1
0
1
2
3
4
VLEVEL (V)
5
Fig.12 Muting average detector (TMUTE) dependency on level (LEVEL) and stereo noise control peak detector
(TSNC) dependency on level (LEVEL).
CKVL
LOPI 13
220 nF
OP1
Ri
100 kΩ
Rloudness
45 kΩ
Vref
12
LLN
R2
5.1 kΩ
C3
100 nF
MHB873
Fig.13 External circuit for loudness with bass boost only.
2000 Nov 21
67
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
MHB420
0
handbook, full pagewidth
gain
(dB)
−5
−10
−15
−20
−25
−30
10
102
103
104
frequency (Hz)
Fig.14 Loudness with bass boost only without influence of coupling capacitors CKVL and CKVR.
CKVL
LOPI 13
220 nF
OP1
Ri
100 kΩ
Rloudness
45 kΩ
Vref
C2
R1
680 pF
43 kΩ
C3
12
LLN
68 nF
R2
4.7 kΩ
MHB874
Fig.15 External circuit for loudness with bass and treble boost.
2000 Nov 21
68
105
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
MHB421
0
handbook, full pagewidth
gain
(dB)
−5
−10
−15
−20
−25
−30
10
102
103
104
frequency (Hz)
105
Fig.16 Loudness with bass and treble boost without influence of coupling capacitors CKVL and CKVR.
MHB422
20
gain
(dB)
15
handbook, full pagewidth
10
5
0
−5
−10
−15
−20
10
102
103
frequency (Hz)
104
Fig.17 Bass curve with 2 × 220 nF and R = 3.3 kΩ external, BSYB = 1 for gain and BSYC = 0 for cut.
2000 Nov 21
69
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
MHB423
20
gain
(dB)
15
handbook, full pagewidth
10
5
0
−5
−10
−15
−20
10
102
103
104
frequency (Hz)
Fig.18 Bass curve with 2 × 220 nF and R = 3.3 kΩ external, BSYB = 1 and BSYC = 1.
MHB424
20
gain
(dB)
15
handbook, full pagewidth
10
5
0
−5
−10
−15
−20
10
102
103
frequency (Hz)
Fig.19 Bass curve with 1 × 47 nF external, between RBI and RBO, BSYB = 0 and BSYC = 0.
2000 Nov 21
70
104
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
MHB425
20
gain
(dB)
15
handbook, full pagewidth
10
5
0
−5
−10
−15
−20
10
102
103
Fig.20 Treble control characteristic.
2000 Nov 21
71
104
frequency (Hz)
105
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
12 INTERNAL CIRCUITRY
Table 62 Equivalent pin circuits
PIN
SYMBOL
1
n.c.
2
n.c.
3
SCLQ
EQUIVALENT CIRCUIT
3
MHB820
4
LEVEL
4
MHB821
5
SCL
5
MHB378
6
SDA
6
MHB822
7
DGND
8
TBL
8
MHB823
9
2000 Nov 21
VCC
72
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
PIN
10
TEA6886HL
SYMBOL
EQUIVALENT CIRCUIT
CHIME
10
MHB824
11
AGND
12
LLN
12
13
LOPI
MHB825
13
MHB826
14
LOPO
14
MHB827
15
BRI
15
MHB828
2000 Nov 21
73
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
PIN
16
TEA6886HL
SYMBOL
EQUIVALENT CIRCUIT
ADR
16
17
MHB829
BLI
17
MHB830
18
SCAP
18
MHB831
19
CRIP
19
MHB354
20
n.c.
21
n.c.
22
n.c.
23
CCOM
23
MHB832
2000 Nov 21
74
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
PIN
24
TEA6886HL
SYMBOL
EQUIVALENT CIRCUIT
CLIP
24
MHB358
25
MONOC
25
MHB833
26
MONOP
26
MHB359
27
VHS
27
MHB834
28
ARI
28
MHB360
2000 Nov 21
75
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
PIN
29
TEA6886HL
SYMBOL
EQUIVALENT CIRCUIT
AMNCAP
29
MHB835
30
ALI
30
MHB836
31
ROPO
31
MHB837
32
ROPI
32
MHB838
33
RLN
33
34
RTC
34
2000 Nov 21
MHB839
76
MHB840
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
PIN
TEA6886HL
SYMBOL
35
RBI
36
RBO
EQUIVALENT CIRCUIT
35
36
MHB841
37
RF
37
MHB370
38
n.c.
39
n.c.
40
n.c.
41
n.c.
42
n.c.
43
RR
43
MHB842
44
ASICAP
44
MHB843
45
LR
45
MHB844
2000 Nov 21
77
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
PIN
46
TEA6886HL
SYMBOL
EQUIVALENT CIRCUIT
LF
46
MHB845
47
LBO
48
LBI
48
47
MHB846
49
LTC
49
50
MHB847
AMPCAP
50
MHB848
51
AMHOLD
51
MHB849
2000 Nov 21
78
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
PIN
52
TEA6886HL
SYMBOL
EQUIVALENT CIRCUIT
AMHCAP
52
MHB850
53
Iref
53
54
MHB851
TWBAM2
54
MHB852
55
TUSN2
55
MHB853
56
PHASE
56
MHB854
2000 Nov 21
79
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
PIN
57
TEA6886HL
SYMBOL
EQUIVALENT CIRCUIT
fref
57
MHB855
58
PILOT
58
MHB856
59
AFSAMPLE
59
MHB857
60
n.c.
61
n.c.
62
n.c.
63
FMHOLD
63
MHB858
64
AMHIN
64
MHB859
2000 Nov 21
80
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
PIN
65
TEA6886HL
SYMBOL
EQUIVALENT CIRCUIT
AMNBIN
65
MHB860
66
TMUTE
66
MHB861
67
MPXRDS
67
MHB862
68
TSNC
68
MHB863
69
MPXIN
69
MHB864
2000 Nov 21
81
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
PIN
70
TEA6886HL
SYMBOL
EQUIVALENT CIRCUIT
FMNCAP
70
MHB865
71
DEEML
71
72
DEEMR
72
73
MHB867
FMLBUF
73
MHB868
74
FMRBUF
74
MHB869
2000 Nov 21
MHB866
82
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
PIN
75
TEA6886HL
SYMBOL
EQUIVALENT CIRCUIT
TWBAM1
75
MHB870
76
TUSN1
76
MHB871
77
SDAQ
77
MHB872
78
n.c.
79
n.c.
80
n.c.
2000 Nov 21
83
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
60
59
58
22
nF
10
nF
330
pF
56
55
54
53
52
51
50
49
22
µF
220
nF
100
kΩ
100
nF
57
100
nF
6.8
nF
LR
48
RR
22
µF
22
µF
15
nF
220
nF
47
ASICAP
46
45
44
43
42
41
61
40
62
39
63
38
64
37
100 nF
ROPI
FMHOLD
10 nF
22 µF
220 kΩ
AMHIN
RF
220 nF
10 nF
AMNBIN
TMUTE
220 nF
65
36
66
35
67
34
68
33
3.3 kΩ
220 nF
10 nF
10 nF
MPXRDS
TSNC
68 nF
10 µF
100 kΩ
680 pF
82 kΩ
MPXIN
32
69
1 µF
33 pF
4.7 kΩ
43 kΩ
220 nF
10 nF
31
70
TEA6886HL
3.3 nF
100 nF
Philips Semiconductors
470
kΩ
10
nF
LF
3.3
kΩ
Up-level Car radio Analog Signal
Processor (CASP)
jumper
AMHOLD
6.8
nF
100
nF
68
kΩ
test pin and STOCKO connector
TWBAM2
13 TEST CIRCUIT
coaxial connector (SMC)
TUSN2
dbook, full pagewidth
2000 Nov 21
fref
AFSAMPLE
ROPO
100 nF
30
71
84
3.3 nF
ALI
100 nF
72
29
73
28
74
27
75
26
100 nF
2.7 nF
ARI
47 µF
2.7 nF
TWBAM1
100 nF
4.7 nF
TUSN1
MONOP
100 nF
4.7 nF
MONOC
25
76
1 µF
SDAQ
CLIP
24
77
1 µF
to NICE
78
23
79
22
CCOM
SDA
5V
GND
80
SCL
21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
100 nF
SDA
LOPI
10 kΩ
5V
100
nF
SCL
8.5 V
GND
5V
330 µH
47
µF
100
nF
SCLQ LEVEL
68
nF
680
pF
43 kΩ
1 µF
100
nF
100
nF
100
nF
MHB875
4.7 kΩ
SCL
SDA DGND
CHIME AGND
Fig.21 Test circuit.
CRIP
22
µF
LOPO
BRI
BLI
Product specification
GND
220
nF
10
nF
TEA6886HL
10 kΩ
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
14 PACKAGE OUTLINE
LQFP80: plastic low profile quad flat package; 80 leads; body 12 x 12 x 1.4 mm
SOT315-1
c
y
X
A
60
41
40 Z E
61
e
E HE
A A2
(A 3)
A1
w M
θ
bp
L
pin 1 index
80
Lp
21
detail X
20
1
ZD
e
v M A
w M
bp
D
B
HD
v M B
0
5
10 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
mm
1.6
0.16
0.04
1.5
1.3
0.25
0.27
0.13
0.18
0.12
12.1
11.9
12.1
11.9
0.5
HD
HE
14.15 14.15
13.85 13.85
L
Lp
v
w
y
1.0
0.75
0.30
0.2
0.15
0.1
Z D (1) Z E (1)
θ
1.45
1.05
7
0o
1.45
1.05
o
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT315-1
136E15
MS-026
2000 Nov 21
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
99-12-27
00-01-19
85
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
• Use a double-wave soldering method comprising a
turbulent wave with high upward pressure followed by a
smooth laminar wave.
15 SOLDERING
15.1
Introduction to soldering surface mount
packages
• For packages with leads on two sides and a pitch (e):
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011).
– larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the
transport direction of the printed-circuit board;
– smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the
printed-circuit board.
There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering is not always suitable
for surface mount ICs, or for printed-circuit boards with
high population densities. In these situations reflow
soldering is often used.
15.2
The footprint must incorporate solder thieves at the
downstream end.
• For packages with leads on four sides, the footprint must
be placed at a 45° angle to the transport direction of the
printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
Reflow soldering
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Several methods exist for reflowing; for example,
infrared/convection heating in a conveyor type oven.
Throughput times (preheating, soldering and cooling) vary
between 100 and 200 seconds depending on heating
method.
Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Typical reflow peak temperatures range from
215 to 250 °C. The top-surface temperature of the
packages should preferable be kept below 230 °C.
15.3
15.4
Fix the component by first soldering two
diagonally-opposite end leads. Use a low voltage (24 V or
less) soldering iron applied to the flat part of the lead.
Contact time must be limited to 10 seconds at up to
300 °C.
Wave soldering
Conventional single wave soldering is not recommended
for surface mount devices (SMDs) or printed-circuit boards
with a high component density, as solder bridging and
non-wetting can present major problems.
When using a dedicated tool, all other leads can be
soldered in one operation within 2 to 5 seconds between
270 and 320 °C.
To overcome these problems the double-wave soldering
method was specifically developed.
If wave soldering is used the following conditions must be
observed for optimal results:
2000 Nov 21
Manual soldering
86
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
15.5
TEA6886HL
Suitability of surface mount IC packages for wave and reflow soldering methods
SOLDERING METHOD
PACKAGE
WAVE
BGA, LFBGA, SQFP, TFBGA
not suitable
suitable(2)
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS
not
PLCC(3), SO, SOJ
suitable
LQFP, QFP, TQFP
SSOP, TSSOP, VSO
REFLOW(1)
suitable
suitable
suitable
not
recommended(3)(4)
suitable
not
recommended(5)
suitable
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum
temperature (with respect to time) and body size of the package, there is a risk that internal or external package
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.
The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
2000 Nov 21
87
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
16 DATA SHEET STATUS
DATA SHEET STATUS
PRODUCT
STATUS
DEFINITIONS (1)
Objective specification
Development
This data sheet contains the design target or goal specifications for
product development. Specification may change in any manner without
notice.
Preliminary specification
Qualification
This data sheet contains preliminary data, and supplementary data will be
published at a later date. Philips Semiconductors reserves the right to
make changes at any time without notice in order to improve design and
supply the best possible product.
Product specification
Production
This data sheet contains final specifications. Philips Semiconductors
reserves the right to make changes at any time without notice in order to
improve design and supply the best possible product.
Note
1. Please consult the most recently issued data sheet before initiating or completing a design.
17 DEFINITIONS
18 DISCLAIMERS
Short-form specification  The data in a short-form
specification is extracted from a full data sheet with the
same type number and title. For detailed information see
the relevant data sheet or data handbook.
Life support applications  These products are not
designed for use in life support appliances, devices, or
systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips
Semiconductors customers using or selling these products
for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Limiting values definition  Limiting values given are in
accordance with the Absolute Maximum Rating System
(IEC 60134). Stress above one or more of the limiting
values may cause permanent damage to the device.
These are stress ratings only and operation of the device
at these or at any other conditions above those given in the
Characteristics sections of the specification is not implied.
Exposure to limiting values for extended periods may
affect device reliability.
Right to make changes  Philips Semiconductors
reserves the right to make changes, without notice, in the
products, including circuits, standard cells, and/or
software, described or contained herein in order to
improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for
the use of any of these products, conveys no licence or title
under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that
these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified.
Application information  Applications that are
described herein for any of these products are for
illustrative purposes only. Philips Semiconductors make
no representation or warranty that such applications will be
suitable for the specified use without further testing or
modification.
19 PURCHASE OF PHILIPS I2C COMPONENTS
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the
components in the I2C system provided the system conforms to the I2C specification defined by
Philips. This specification can be ordered using the code 9398 393 40011.
2000 Nov 21
88
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
NOTES
2000 Nov 21
89
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
NOTES
2000 Nov 21
90
Philips Semiconductors
Product specification
Up-level Car radio Analog Signal
Processor (CASP)
TEA6886HL
NOTES
2000 Nov 21
91
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),
Tel. +39 039 203 6838, Fax +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 22 5710 000, Fax. +48 22 5710 001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11 471 5401, Fax. +27 11 471 5398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260,
Tel. +66 2 361 7910, Fax. +66 2 398 3447
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 3341 299, Fax.+381 11 3342 553
For all other countries apply to: Philips Semiconductors,
Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,
The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
SCA 70
© Philips Electronics N.V. 2000
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
753503/25/01/pp92
Date of release: 2000
Nov 21
Document order number:
9397 750 07523