PHILIPS NE531N

Philips Semiconductors Linear Products
Product specification
High slew rate operational amplifier
NE/SE531
DESCRIPTION
PIN CONFIGURATIONS
The 531 is a fast slewing high performance operational amplifier
which retains DC performance equal to the best general purpose
types while providing far superior large-signal AC performance. A
unique input stage design allows the amplifier to have a large-signal
response nearly identical to its small-signal response. The amplifier
is compensated for truly negligible overshoot with a single capacitor.
In applications where fast settling and superior large-signal
bandwidths are required, the amplifier out-performs conventional
designs which have much better small-signal response. Also,
because the small-signal response is not extended, no special
precautions need be taken with circuit board layout to achieve
stability. The high gain, simple compensation, and excellent stability
of this amplifier allow its use in a wide variety of instrumentation
applications.
N, FE Packages
OFFSET NULL
1
INVERTING INPUT
2
NON–INVERTING INPUT
3
V–
4
8
–
+
FREQ. COMP.
7
V+
6
OUTPUT
5
OFFSET
• Same low drift offset null circuitry as µA741
• Small-signal bandwidth 1MHz
• Large-signal bandwidth 500kHz
• True op amp DC characteristics make the 531 the ideal answer to
FEATURES
• 35V/µs slew rate at unity gain
• Pin-for-pin replacement for µA709, µA748, or LM101
• Compensated with a single capacitor
all slew rate limited operational amplifier applications
ORDERING INFORMATION
DESCRIPTION
8-Pin Plastic Dual In-Line Package (DIP)
TEMPERATURE RANGE
ORDER CODE
DWG #
0 to +70°C
NE531N
0404B
8-Pin Ceramic Dual In-Line Package (CERDIP)
-55°C to +125°C
SE531FE
0580A
8-Pin Ceramic Dual In-Line Package (CERDIP)
0°C to +70°C
NE531FE
0580A
ABSOLUTE MAXIMUM RATINGS
SYMBOL
PARAMETER
RATING
UNIT
±22
V
FE package
780
mW
N package
1160
mW
Differential input voltage
±15
V
Common-mode input voltage2
±15
V
Voltage between offset null and V-
±0.5
V
NE531
0 to +70
°C
SE531
-55 to +125
°C
-65 to +150
°C
300
°C
VS
Supply voltage
PD MAX
Maximum power dissipation
TA=25°C (still-air)1
VCM
TA
Operating ambient temperature range
TSTG
Storage temperature range
TSOLD
Lead soldering temperature (10sec max)
Output short-circuit duration3
indefinite
NOTES:
1. The following derating factors should be applied above 25°C:
FE package at 6.2mW/°C
N package at 9.3mW/°C
2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
3. Short-circuit may be to ground or either supply. Rating applies to +125°C case temperature or to +75°C ambient temperature.
August 31, 1994
70
853-0809 13721
Philips Semiconductors Linear Products
Product specification
High slew rate operational amplifier
NE/SE531
EQUIVALENT SCHEMATIC
INPUT
+
3
INPUT
Q1
Q6
Q19
R20
.33
2
Q2
Q5
R1
Q20
R4
R14
10
R15
100
Q23
Q3
Q28
Q6
Q25
R2
.2
R3
2.2
R5
.2
R8
2.2
R24
.04
Q27
Q38
OUTPUT
Q7
q8
R16
10
Q22
Q21
Q11
Q29
Q12
R18
.33
Q13 Q14
R17
10
Q31
Q32
Q33
Q15
R10
6.5
Q18
R7
6.5
Q23
Q17
Q34
Q24
1
Q19
OFFSET
ADJUST
4
R11
1.5
R8
7.8
R12
.17
R9
1.8
R13
1.6
R27
6.5
R10
6.5
V
5
6
OFFSET ADJUST
August 31, 1994
71
FREQUENCY
COMPENSATION
R28
.04
Q30
Q35
Q9
Q10
R22
3.3
Q37
R21
.2
Philips Semiconductors Linear Products
Product specification
High slew rate operational amplifier
NE/SE531
DC ELECTRICAL CHARACTERISTICS
VS=±15V, unless otherwise specified.
SYMBOL
VOS
PARAMETER
Offset voltage
∆VOS
IOS
Offset current
TEST CONDITIONS
SE531
Min
Typ
Max
RS≤10kΩ, TA=25°C
RS310kΩ, over temp
2.0
5.0
6.0
Over temp
10
TA=25°C
TA=High
TA=Low
30
∆IOS
Over temp
0.4
300
IBIAS
T=25°C
TA=High
TA=Low
Input bias current
∆IBIAS
Over temp
VCM
Common-mode voltage range
CMRR
Common-mode rejection ratio
TA=25°C
TA=25°C,
Input resistance
VOUT
Output voltage swing
ICC
Supply current
PD
Power consumption
Power supply rejection ratio
ROUT
Output resistance
6.0
7.5
400
UNIT
mV
mV
µV/°C
200
200
300
0.4
nA
nA
nA
nA/°C
1500
1500
2000
2
nA
nA
nA
nA/°C
±10
V
100
dB
20
MΩ
90
dB
20
±13
±10
±13
V
TA=25°C
7.0
10
mA
TMAX
7.0
10
mA
TA=25°C
210
RS≤10kΩ, TA=25°C
PSRR
2.0
500
500
1500
70
±10
Max
50
2
70
Typ
200
200
500
±10
TA=25°C
RL≥10kΩ, over temp
Min
10
RS≤10kΩ
Over temp RS≤10kΩ
RIN
NE531
10
RS≤10kΩ, over temp
10
TA=25°C
75
TA=25°C,
RL≥10kΩ, VOUT=±10V
RL≥10kΩ, VOUT=±10V,
over temp
AVOL
Large-signal voltage gain
VINN
Input noise voltage
25°C f=1kHz
ISC
Short-circuit current
25°C
50
mW
150
µV/V
µV/V
150
100
20
25
75
Ω
60
V/mV
15
20
5
300
15
V/mV
20
45
5
Max
Min
15
nV/√Hz
45
mA
AC ELECTRICAL CHARACTERISTICS
TA=25°C VS=+15V, unless otherwise specified.1
SYMBOL
PARAMETER
TEST CONDITIONS
SE531
Min
Typ
NE531
Typ
Max
UNIT
BW
Full power bandwidth
500
500
kHz
tS
Settling time (1%)
(0.1%)
AV=+1, VIN=±10V
1.5
2.5
1.5
2.5
µs
µs
Large-signal overshoot
AV=+1, VIN=±10V
2
2
%
Small-signal overshoot
AV=+1, VIN=400mV
5
5
%
tR
Small-signal rise time
AV=+1, VIN=400mV
300
300
ns
SR
Slew rate
AV=100
35
35
V/µs
AV=10
35
35
V/µs
AV=1 (non-inverting)
20
30
30
V/µs
AV=1 (inverting)
25
35
35
V/µs
NOTES:
1. All AC testing is performed in the transient response test circuit.
August 31, 1994
72
Philips Semiconductors Linear Products
Product specification
High slew rate operational amplifier
NE/SE531
TEST LOAD CIRCUITS
V+
V+
2
–
3
100pF
7
7
2
+
1
5
8
–
6
EIN
3
51Ω
EOUT
+
4
30pf
4
10K
2KΩ
50Ω
V–
V–
Offset Null Circuit
Transient Response Circuit
TYPICAL PERFORMANCE CHARACTERISTICS VS = +15V, TA = +255C, unless otherwise specified.
Input Offset Curent as a Function
of Ambient Temperature
Input Bias Curent as a Function
of Ambient Temperature
Input Bias Curent as a Function
of Supply Voltage
1000
160
120
120
100
80
60
40
INPUT BIAS CURRENT – nA
800
INPUT BIAS CURRENT -nA
600
400
200
100
–20
20
60
100
0
140
–60
–20
TEMPERATURE - C
90
+60
CC = 2pF
+
531
–
+40
OUT
V
Rf =
50kΩ
Ri
+30
+20
+10
AV = 100, Ri = 5000Ω
CC = 2pF
AV = 10, Ri = 5.50Ω,
CC = 10pF
0
–10
AV = 10, Ri = 00,0Ω
10K
100K
1M
FREQUENCY – Hz
August 31, 1994
10M
5
120
300
15
110
275
100
250
GAIN
CC = 100PF
90
45
60
80
75
PHASE
70
90
60
105
50
120
135
40
150
20
165
10
0
10M
180
30
1
10
100
1K
10K 100K 1M
FREQUENCY – Hz
73
10
15
20
SUPPLY VOLTAGE – +V
25
Power Consumption as a Function
of Supply Voltage
0
30
PHASE IN DEGREES
+50
CC
80
140
Open-Loop Phase Response and
Voltage Gain as a Function of
Ambient Temperature
Closed Loop Non-Inverting Voltage Gain
as a Function of Frequency
AV = 1000,
Ri = 50Ω
20
60
100
TEMPERATURE - C
CONSUMPTION —mW
0
–60
VOLTAGE DRAIN – dB
110
20
VOLTAGE GAIN — dB
INPUT OFFSET CURRENT -nA
140
225
200
175
150
125
100
75
50
5V
10
15
20
SUPPLY VOLTAGE — +V
25
Philips Semiconductors Linear Products
Product specification
High slew rate operational amplifier
NE/SE531
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
VS = +15V, TA = 25°C, unless otherwise specified.
Power Consumption
as a Function of Ambient Temperature
Open-Loop Voltage Gain as a
Function of Supply Voltage
150
100
+15
110
+10
OUTPUT SWING — VOLTS
VOLTAGE GAIN —dB
L
200
115
100
95
90
V
50
0
–60
0
–5
–10
–20
+20
+60
+100
–15
80
+140
5
10
TEMPERATURE — Co
15
5
20
10
Output Voltage Swing as a
Function of Frequency
+15
15
SUPPLY VOLTAGE — +V
SUPPLY VOLTS — +V
Input Voltage Range
as a Function of Supply Voltage
Voltage Follower
Large-Signal Response
27
PEAK–TO–PEAK OUTPUT SWING — V
COMMON MODE RANGE — V
+5
85
+10
+5
0
–5
–10
–15
5
10
+10
21
100pF
–
531
+
18
IN
12
OUT
2K
9
6
0
–5
IN
–10
100pF
–
531
+
2K
OUT
30Pf
3
1K
3K
SUPPLY VOLTAGE — +V
10K
30K
100K
300K
0
1M
500 1000 1500 2000 2500 3000 3500
TIME — nsec
FREQUENCY, Hz
Voltage Follower
Transient Response
Unity Gain Inverting Amplifier Large-Signal
Response Function of Frequency
500
+15
400
+10
90%
300
200
IN
100pF
–
531
+
OUTPUT VOLTAGE — V
OUTPUT VOLTAGE —mV
+5
0
20
15
24
OUTPUT VOLTAGE — V
POWER CONSUMPTION — mW
250
Output Voltage Swing as a Function
of Supply Voltage
OUT
VIN = 400mV
100
+5
10K
0V
50pF
–
531
+
10K
IN
–5
OUT
5K
10%
–10
0
–15
0
200
400
600
800
1000
1200
0
1400
August 31, 1994
0.5
1.0
1.5
2.0
TIME — µsec
TIME — nsec
74
2.5
3.0
3.5
4.0
Philips Semiconductors Linear Products
Product specification
High slew rate operational amplifier
NE/SE531
TYPICAL APPLICATIONS
2pf
Pulse Response
High-Speed Inverter
10K
30pf
10K
IN
5.1K
531
OUT
0.5V/DIV
fo
V+
4.7K
200nsec/DIV
V–
High-Speed Inverter
(10MHz Bandwidth)
2V/DIV
Large-Signal Response Voltage-Follower
100pF
+
531
OUT
–
IN
0.5µs/DIV
f = 500KHz
Fast Settling Voltage-Follower
Response of 3-Pole Active
Butterworth Maximally Flat Filter
30K
0
100pF
10K
f0 – 1KHz
.022
10K
.056
–5
60dB/DECADE
531
ATTENUATION — dB
10K
.0032
–10
–15
–20
–25
Three-Pole Active Low-Pass Filter Butterworth
Maximally Flat Response1
100
300
1K
FREQUENCY — Hz
August 31, 1994
75
3K
10K
Philips Semiconductors Linear Products
Product specification
High slew rate operational amplifier
NE/SE531
TYPICAL APPLICATIONS (Continued)
Precision Rectifiers
10K 1%
10K
10K
IN
100pF
OUT
–
531
+
10K
100pF
IN
+
5.1K
531
1%
10K
–
100PF
a. Half-Wave
–
531
+
5.1K
OUT
b. Full-Wave
Sample-and-Hold
+15
AC Millivoltmeter
18K
100pF
IN
100K
+
531
–
100K
330pF
M
DIODES
IN914
SIGNAL
IN
470
–
531
+
OUTPUT
1µF
.0047
IN457
33K
IN/51A
100K
CDE#
30K
CD19
FD4725
IN457
RE
LOGIC IN
Q2
3N128
Q1
ZN3819
–
531
+
300K
10K
15MSEC
–15
August 31, 1994
76
–15
Philips Semiconductors Linear Products
Product specification
High slew rate operational amplifier
NE/SE531
swing of op amp A-1, and R1/R2 sets the triangle amplitude. The
frequency of oscillation in either case is:
CYCLIC A-TO-D CONVERTER
One interesting, but much ignored, A/D converter is the cyclic
converter. This consists of a chain of identical stages, each of which
senses the polarity of the input. The stage then subtracts VREF from
the input and doubles the remainder if the polarity was correct. In
Figure 1, the signal is full-wave rectified and the remainder of
VIN-VREF is doubled. A chain of these stages gives the gray code
equivalent of the input voltage in digitized form related to the
magnitude of VREF. Possessing high potential accuracy, the circuit
using NE531 devices settles in 5µs.
f 1
R2
4RC R1
(1)
The square wave will maintain 50% duty cycle even if the amplitude
of the oscillation is not symmetrical.
The use of the NE531 in this circuit will allow good square waves to
be generated to quite high frequencies. Since the amplifier A1 runs
open-loop, there is no need for compensation. The
triangle-generating amplifier must be compensated. The NE5535
device can be used as well, except for the lower frequency
response.
TRIANGLE AND SQUARE WAVE GENERATOR
The circuit in Figure 2 will generate precision triangle and square
waves. The output amplitude of the square wave is set by the output
+vcc
VREF
10K
LOGIC OUT
VOUT
VREF
0
–VIN
+
VIN
+
NE531
–
NE531
2K
VREF
–
20K
LOGOUT
10K
VIN
20K
VREF
a.
b.
Figure 1. Cyclic A-to-D Converter
August 31, 1994
77