PHILIPS 74LVC2G07GM

INTEGRATED CIRCUITS
DATA SHEET
74LVC2G07
Buffers with open-drain outputs
Product specification
Supersedes data of 2004 Mar 19
2004 Sep 08
Philips Semiconductors
Product specification
Buffers with open-drain outputs
74LVC2G07
FEATURES
DESCRIPTION
• Wide supply voltage range from 1.65 V to 5.5 V
The 74LVC2G07 is a high-performance, low-power,
low-voltage, Si-gate CMOS device superior to most
advanced CMOS compatible TTL families.
• 5 V tolerant input/output for interfacing with 5 V logic
• High noise immunity
Input can be driven from either 3.3 V or 5 V devices. This
feature allows the use of this device in a mixed
3.3 V and 5 V environment.
• Complies with JEDEC standard:
– JESD8-7 (1.65 V to 1.95 V)
– JESD8-5 (2.3 V to 2.7 V)
Schmitt trigger action at all inputs makes the circuit tolerant
for slower input rise and fall time.
– JESD8B/JESD36 (2.7 V to 3.6 V).
• −24 mA output drive (VCC = 3.0 V)
This device is fully specified for partial power-down
applications using Ioff. The Ioff circuitry disables the output,
preventing the damaging backflow current through the
device when it is powered down.
• CMOS low power consumption
• Latch-up performance exceeds 250 mA
• Direct interface with TTL levels
• Inputs accept voltages up to 5 V
The 74LVC2G07 provides two non-inverting buffers.
• Multiple package options
The output of the device is an open drain and can be
connected to other open-drain outputs to implement
active-LOW wired-OR or active-HIGH wired-AND
functions.
• ESD protection:
– HBM EIA/JESD22-A114-B exceeds 2000 V
– MM EIA/JESD22-A115-A exceeds 200 V.
• Specified from −40 °C to +85 °C and −40 °C to +125 °C.
QUICK REFERENCE DATA
GND = 0 V; Tamb = 25 °C.
SYMBOL
tPLZ/tPZL
PARAMETER
CONDITIONS
propagation delay input nA to output nY VCC = 1.8 V; CL = 30 pF; RL = 1 kΩ
CI
input capacitance
CPD
power dissipation capacitance per gate
UNIT
3.5
ns
VCC = 2.5 V; CL = 30 pF; RL = 500 Ω 2.4
ns
VCC = 2.7 V; CL = 50 pF; RL = 500 Ω 2.3
ns
VCC = 3.3 V; CL = 50 pF; RL = 500 Ω 2.6
ns
VCC = 5.0 V; CL = 50 pF; RL = 500 Ω 1.5
ns
2.5
pF
6.5
pF
VCC = 3.3 V; notes 1 and 2
Notes
1. CPD is used to determine the dynamic power dissipation (PD in µW).
PD = CPD × VCC2 × fi × N + ∑(CL × VCC2 × fo) where:
fi = input frequency in MHz;
fo = output frequency in MHz;
CL = output load capacitance in pF;
VCC = supply voltage in Volts;
N = total load switching outputs;
∑(CL × VCC2 × fo) = sum of outputs.
2. The condition is VI = GND to VCC.
2004 Sep 08
TYPICAL
2
Philips Semiconductors
Product specification
Buffers with open-drain outputs
74LVC2G07
FUNCTION TABLE
See note 1.
INPUT
OUTPUT
nA
nY
L
L
H
Z
Note
1. H = HIGH voltage level;
L = LOW voltage level;
Z = high-impedance OFF-state.
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
TEMPERATURE RANGE
PINS
PACKAGE
MATERIAL
CODE
MARKING
74LVC2G07GW
−40 °C to +125 °C
6
SC-88
plastic
SOT363
V7
74LVC2G07GV
−40 °C to +125 °C
6
SC-74
plastic
SOT457
V07
74LVC2G07GM
−40 °C to +125 °C
6
XSON6
plastic
SOT886
V7
PINNING
PIN
SYMBOL
DESCRIPTION
1
1A
data input
2
GND
ground (0 V)
3
2A
data input
4
2Y
data output
5
VCC
supply voltage
6
1Y
data output
07
1A
1
GND
2
2A
3
07
6
1Y
5
VCC
4
2Y
1A
1
6
1Y
GND
2
5
VCC
2A
3
4
2Y
001aab670
001aab671
Transparent top view
Fig.1 Pin configuration SC-88 and SC-74.
2004 Sep 08
Fig.2 Pin configuration XSON6.
3
Philips Semiconductors
Product specification
Buffers with open-drain outputs
74LVC2G07
handbook, halfpage
handbook, halfpage
1
1A
1Y
6
3
2A
2Y
4
1A
2A
1
6
3
4
MNB092
1Y
2Y
MNB093
Fig.3 Logic symbol.
Fig.4 IEEE/IEC logic symbol.
RECOMMENDED OPERATING CONDITIONS
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VCC
supply voltage
1.65
5.5
V
VI
input voltage
0
5.5
V
VO
output voltage
active mode
0
VCC
V
VCC = 0 V; Power-down mode
0
5.5
V
Tamb
operating ambient temperature
−40
+125
°C
tr, tf
input rise and fall times
VCC = 1.65 V to 2.7 V
0
20
ns/V
VCC = 2.7 V to 5.5 V
0
10
ns/V
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).
SYMBOL
PARAMETER
CONDITIONS
MIN.
−0.5
MAX.
VCC
supply voltage
IIK
input diode current
VI < 0 V
−
−50
mA
VI
input voltage
note 1
−0.5
+6.5
V
IOK
output diode current
VO < 0 V
−
−50
mA
VO
output voltage
active mode; notes 1 and 2
−0.5
+6.5
V
Power-down mode; notes 1 and 2 −0.5
+6.5
V
50
mA
IO
output source or sink current
VO = 0 V to 6.5 V
−
+6.5
UNIT
V
ICC, IGND
VCC or GND current
−
±100
mA
Tstg
storage temperature
−65
+150
°C
Ptot
power dissipation
−
300
mW
Tamb = −40 °C to +125 °C
Notes
1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. When VCC = 0 V (Power-down mode), the output voltage can be 5.5 V in normal operation.
2004 Sep 08
4
Philips Semiconductors
Product specification
Buffers with open-drain outputs
74LVC2G07
DC CHARACTERISTICS
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
VCC (V)
OTHER
Tamb = −40 °C to +85 °C; note 1
VIH
VIL
VOL
HIGH-level input voltage
LOW-level input voltage
1.65 to 1.95
0.65 × VCC
−
−
V
2.3 to 2.7
1.7
−
−
V
2.7 to 3.6
2.0
−
−
V
4.5 to 5.5
0.7 × VCC
−
−
V
1.65 to 1.95
−
−
0.35 × VCC
V
2.3 to 2.7
−
−
0.7
V
2.7 to 3.6
−
−
0.8
V
4.5 to 5.5
−
−
0.3 × VCC
V
LOW-level output voltage VI = VIH or VIL
IO = 100 µA
1.65 to 5.5
−
−
0.1
V
IO = 4 mA
1.65
−
−
0.45
V
IO = 8 mA
2.3
−
−
0.3
V
IO = 12 mA
2.7
−
−
0.4
V
IO = 24 mA
3.0
−
−
0.55
V
IO = 32 mA
4.5
−
−
0.55
V
1.65 to 5.5
−
±0.1
±5
µA
ILI
input leakage current
IOZ
output OFF-state current VI = VIH or VIL;
VO = VCC or GND
5.5
−
±0.1
±10
µA
Ioff
power OFF leakage
current
0
−
±0.1
±10
µA
ICC
quiescent supply current VI = VCC or GND;
IO = 0 A
5.5
−
0.1
10
µA
∆ICC
additional quiescent
supply current per pin
2.3 to 5.5
−
5
500
µA
2004 Sep 08
VI = 5.5 V or GND
VI or VO = 5.5 V
VI = VCC − 0.6 V;
IO = 0 A
5
Philips Semiconductors
Product specification
Buffers with open-drain outputs
74LVC2G07
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
OTHER
TYP.
MAX.
UNIT
VCC (V)
Tamb = −40 °C to +125 °C
VIH
VIL
VOL
HIGH-level input voltage
LOW-level input voltage
1.65 to 1.95
0.65 × VCC
−
−
V
2.3 to 2.7
1.7
−
−
V
2.7 to 3.6
2.0
−
−
V
4.5 to 5.5
0.7 × VCC
−
−
V
1.65 to 1.95
−
−
0.35 × VCC
V
2.3 to 2.7
−
−
0.7
V
2.7 to 3.6
−
−
0.8
V
4.5 to 5.5
−
−
0.3 × VCC
V
IO = 100 µA
1.65 to 5.5
−
−
0.1
V
IO = 4 mA
1.65
−
−
0.70
V
IO = 8 mA
2.3
−
−
0.45
V
IO = 12 mA
2.7
−
−
0.60
V
IO = 24 mA
3.0
−
−
0.80
V
IO = 32 mA
4.5
−
−
0.80
V
LOW-level output voltage VI = VIH or VIL
ILI
input leakage current
1.65 to 5.5
−
−
±20
µA
IOZ
output OFF-state current VI = VIH or VIL;
VO = VCC or GND
5.5
−
−
±10
µA
Ioff
power OFF leakage
current
0
−
−
±20
µA
ICC
quiescent supply current VI = VCC or GND;
IO = 0 A
5.5
−
−
40
µA
∆ICC
additional quiescent
supply current per pin
2.3 to 5.5
−
−
5000
µA
VI = 5.5 V or GND
VI or VO = 5.5 V
VI = VCC − 0.6 V;
IO = 0 A
Note
1. All typical values are measured at VCC = 3.3 V and Tamb = 25 °C.
2004 Sep 08
6
Philips Semiconductors
Product specification
Buffers with open-drain outputs
74LVC2G07
AC CHARACTERISTICS
GND = 0 V.
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
VCC (V)
WAVEFORMS
Tamb = −40 °C to +85 °C; note 1
tPLZ/tPZL
propagation delay input nA to
output nY
see Figs 5 and 6
1.65 to 1.95
1.0
3.5
6.7
ns
2.3 to 2.7
0.5
2.4
4.3
ns
2.7
1.0
2.3
4.2
ns
3.0 to 3.6
0.5
2.6
3.7
ns
4.5 to 5.5
0.5
1.5
2.9
ns
Tamb = −40 °C to +125 °C
tPLZ/tPZL
propagation delay input nA to
output nY
see Figs 5 and 6
1.65 to 1.95
1.0
3.5
8.4
ns
2.3 to 2.7
0.5
2.4
5.5
ns
2.7
1.0
2.3
5.3
ns
3.0 to 3.6
0.5
2.6
4.7
ns
4.5 to 5.5
0.5
1.5
3.7
ns
Note
1. All typical values are measured at Tamb = 25 °C and at VCC = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.
AC WAVEFORMS
VI
VM
nA input
GND
t PLZ
t PZL
VCC
nY output
VM
VX
VOL
mna528
INPUT
VCC
VM
VX
VI
tr = tf
0.5 × VCC
VOL + 0.15 V
VCC
≤ 2.0 ns
2.3 V to 2.7 V
0.5 × VCC
VOL + 0.15 V
VCC
≤ 2.0 ns
2.7 V
1.5 V
VOL + 0.3 V
2.7 V
≤ 2.5 ns
3.0 V to 3.6 V
1.5 V
VOL + 0.3 V
2.7 V
≤ 2.5 ns
4.5 V to 5.5 V
0.5 × VCC
VOL + 0.3 V
VCC
≤ 2.5 ns
1.65 V to 1.95 V
VOL and VOH are typical output voltage drop that occur with the output load.
Fig.5 Input nA to output nY propagation delays.
2004 Sep 08
7
Philips Semiconductors
Product specification
Buffers with open-drain outputs
74LVC2G07
VEXT
VCC
VI
PULSE
GENERATOR
RL
VO
D.U.T.
CL
RT
RL
mna616
VCC
VI
CL
RL
VEXT
tPZL/tPLZ
1.65 V to 1.95 V
VCC
30 pF
1 kΩ
2 × VCC
2.3 V to 2.7 V
VCC
30 pF
500 Ω
2 × VCC
2.7 V
2.7 V
50 pF
500 Ω
6V
3.0 V to 3.6 V
2.7 V
50 pF
500 Ω
6V
4.5 V to 5.5 V
VCC
50 pF
500 Ω
2 × VCC
Definitions for test circuit:
RL = Load resistor.
CL = Load capacitance including jig and probe capacitance.
RT = Termination resistance should be equal to the output impedance Zo of the pulse generator.
Fig.6 Load circuitry for switching times.
2004 Sep 08
8
Philips Semiconductors
Product specification
Buffers with open-drain outputs
74LVC2G07
PACKAGE OUTLINES
Plastic surface mounted package; 6 leads
SOT363
D
E
B
y
X
A
HE
6
v M A
4
5
Q
pin 1
index
A
A1
1
2
e1
3
bp
c
Lp
w M B
e
detail X
0
1
2 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
A1
max
bp
c
D
E
e
e1
HE
Lp
Q
v
w
y
mm
1.1
0.8
0.1
0.30
0.20
0.25
0.10
2.2
1.8
1.35
1.15
1.3
0.65
2.2
2.0
0.45
0.15
0.25
0.15
0.2
0.2
0.1
OUTLINE
VERSION
SOT363
2004 Sep 08
REFERENCES
IEC
JEDEC
EIAJ
SC-88
9
EUROPEAN
PROJECTION
ISSUE DATE
97-02-28
Philips Semiconductors
Product specification
Buffers with open-drain outputs
74LVC2G07
Plastic surface mounted package; 6 leads
SOT457
D
E
B
y
A
HE
6
X
v M A
4
5
Q
pin 1
index
A
A1
c
1
2
3
Lp
bp
e
w M B
detail X
0
1
2 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
A1
bp
c
D
E
e
HE
Lp
Q
v
w
y
mm
1.1
0.9
0.1
0.013
0.40
0.25
0.26
0.10
3.1
2.7
1.7
1.3
0.95
3.0
2.5
0.6
0.2
0.33
0.23
0.2
0.2
0.1
OUTLINE
VERSION
SOT457
2004 Sep 08
REFERENCES
IEC
JEDEC
EIAJ
SC-74
10
EUROPEAN
PROJECTION
ISSUE DATE
97-02-28
01-05-04
Philips Semiconductors
Product specification
Buffers with open-drain outputs
74LVC2G07
XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm
SOT886
b
1
2
3
4×
(2)
L
L1
e
6
5
e1
4
e1
6×
A
(2)
A1
D
E
terminal 1
index area
0
1
2 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A (1)
max
A1
max
b
D
E
e
e1
L
L1
mm
0.5
0.04
0.25
0.17
1.5
1.4
1.05
0.95
0.6
0.5
0.35
0.27
0.40
0.32
Notes
1. Including plating thickness.
2. Can be visible in some manufacturing processes.
OUTLINE
VERSION
SOT886
2004 Sep 08
REFERENCES
IEC
JEDEC
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
04-07-15
04-07-22
MO-252
11
Philips Semiconductors
Product specification
Buffers with open-drain outputs
74LVC2G07
DATA SHEET STATUS
LEVEL
DATA SHEET
STATUS(1)
PRODUCT
STATUS(2)(3)
Development
DEFINITION
I
Objective data
II
Preliminary data Qualification
This data sheet contains data from the preliminary specification.
Supplementary data will be published at a later date. Philips
Semiconductors reserves the right to change the specification without
notice, in order to improve the design and supply the best possible
product.
III
Product data
This data sheet contains data from the product specification. Philips
Semiconductors reserves the right to make changes at any time in order
to improve the design, manufacturing and supply. Relevant changes will
be communicated via a Customer Product/Process Change Notification
(CPCN).
Production
This data sheet contains data from the objective specification for product
development. Philips Semiconductors reserves the right to change the
specification in any manner without notice.
Notes
1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.
DEFINITIONS
DISCLAIMERS
Short-form specification  The data in a short-form
specification is extracted from a full data sheet with the
same type number and title. For detailed information see
the relevant data sheet or data handbook.
Life support applications  These products are not
designed for use in life support appliances, devices, or
systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips
Semiconductors customers using or selling these products
for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Limiting values definition  Limiting values given are in
accordance with the Absolute Maximum Rating System
(IEC 60134). Stress above one or more of the limiting
values may cause permanent damage to the device.
These are stress ratings only and operation of the device
at these or at any other conditions above those given in the
Characteristics sections of the specification is not implied.
Exposure to limiting values for extended periods may
affect device reliability.
Right to make changes  Philips Semiconductors
reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design
and/or performance. When the product is in full production
(status ‘Production’), relevant changes will be
communicated via a Customer Product/Process Change
Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these
products, conveys no licence or title under any patent,
copyright, or mask work right to these products, and
makes no representations or warranties that these
products are free from patent, copyright, or mask work
right infringement, unless otherwise specified.
Application information  Applications that are
described herein for any of these products are for
illustrative purposes only. Philips Semiconductors make
no representation or warranty that such applications will be
suitable for the specified use without further testing or
modification.
2004 Sep 08
12
Philips Semiconductors – a worldwide company
Contact information
For additional information please visit http://www.semiconductors.philips.com.
Fax: +31 40 27 24825
For sales offices addresses send e-mail to: [email protected].
SCA76
© Koninklijke Philips Electronics N.V. 2004
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
R20/03/pp13
Date of release: 2004
Sep 08
Document order number:
9397 750 13775