PHILIPS SA620

Philips Semiconductors RF Communications Products
Product specification
Low voltage LNA, mixer and VCO — 1GHz
DESCRIPTION
SA620
FEATURES
The SA620 is a combined RF amplifier, VCO
with tracking bandpass filter and mixer
designed for high-performance low-power
communication systems from 800-1200MHz.
The low-noise preamplifier has a 1.6dB noise
figure at 900MHz with 11.5dB gain and an
IP3 intercept of -3dBm at the input. The gain
is stabilized by on-chip compensation to vary
less than ±0.2dB over -40 to +85°C
temperature range. The wide-dynamic-range
mixer has an 9dB noise figure and IP3 of
–6dBm at the input at 900MHz. An external
LO can be used in place of the internal VCO
for improved mixer input IP3 and a 3mA
reduction in current. The chip incorporates a
through-mode option so the RF amplifier can
be disabled and replaced by an attenuator
(S21 = –7.5dB). This is useful for improving
the overall dynamic range of the receiver
when in an overload situation. The nominal
current drawn from a single 3V supply is
10.4mA and 7.2mA in the thru-mode.
Additionally, the VCO and Mixer can be
powered down to further reduce the supply
current to 1.2mA.
• Low current consumption: 10.4mA nominal,
PIN CONFIGURATION
DK Package
7.2mA with thru-mode activated
20 VCC
LNA ENABLE 1
• Outstanding noise figure: 1.6dB for the
amplifier and 9dB for the mixer at 900MHz
• Excellent gain stability versus temperature
and supply voltage
• Switchable overload capability
• Independent LNA, mixer and VCO power
LNA GND 2
19 LNA GND
LNA IN 3
18 LNA OUT
LNA GND 4
17 LNA BIAS
5
16 MIXER IN
LNA GND
OSC GND 6
7
14 MIXER BYPASS
OSC PWRDN
8
13 MIXER OUT
down capability
• Internal VCO automatic leveling loop
• Monotonic VCO frequency vs control
15 MIXER GND
MIXER PWRDN
OSC1 9
12 OSC GND
OSC2 10
11 VCO OUT
voltage
APPLICATIONS
• 900MHz cellular front-end
• 900MHz cordless front-end
• Spread spectrum receivers
• RF data links
• UHF frequency conversion
• Portable radio
ORDERING INFORMATION
DESCRIPTION
TEMPERATURE RANGE
ORDER CODE
DWG #
-40 to +85°C
SA620DK
1563
20-Pin Plastic Shrink Small Outline Package (Surface-mount, SSOP)
BLOCK DIAGRAM
VCC
LNA
GND
LNA
OUT
LNA
BIAS
20
19
18
17
MIXER
IN
MIXER
GND
MIXER
BYPASS
MIXER
OUT
OSC
GND
VCO
OUT
16
15
14
13
12
11
RF
IF
LO
1
LNA
ENABLE
December 15, 1993
2
LNA
GND
3
LNA IN
TRACKING
BANDPASS
FILTER
AUTOMATIC
LEVELING
LOOP
LNA
4
LNA
GND
5
LNA
GND
VCO
6
7
8
9
OSC
GND
MIXER
PWRDN
OSC
PWRDN
OSC1
2
10
OSC2
853-1725 11658
Philips Semiconductors RF Communications Products
Product specification
Low voltage LNA, mixer and VCO — 1GHz
SA620
ABSOLUTE MAXIMUM RATINGS
SYMBOL
PARAMETER
voltage1
VCC
Supply
VIN
Voltage applied to any other pin
PD
Power dissipation, TA = 25°C (still
20-Pin Plastic SSOP
RATING
UNITS
-0.3 to +6
V
-0.3 to (VCC + 0.3)
V
980
mW
air)2
TJMAX
Maximum operating junction temperature
150
°C
PMAX
Maximum power input/output
+20
dBm
TSTG
Storage temperature range
–65 to +150
°C
NOTE:
1. Transients exceeding 8V on VCC pin may damage product.
2. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance,
θJA: 20-Pin SSOP = 110°C/W
RECOMMENDED OPERATING CONDITIONS
SYMBOL
VCC
PARAMETER
RATING
UNITS
Supply voltage
2.7 to 5.5
V
TA
Operating ambient temperature range
-40 to +85
°C
TJ
Operating junction temperature
-40 to +105
°C
DC ELECTRICAL CHARACTERISTICS
VCC = +3V, TA = 25°C; unless otherwise stated.
SYMBOL
PARAMETER
TEST CONDITIONS
LIMITS
MIN
ICC
Supply current
TYP
UNITS
MAX
LNA enable input high
10.4
mA
LNA enable input low
7.2
mA
VCO power-down input low
7.4
mA
Mixer power-down input low
7.4
mA
Full chip power-down
1.2
mA
voltageNO TAG
VT
Enable logic threshold
1.2
1.5
1.8
V
VIH
Logic 1 level
RF amp on
VIL
Logic 0 level
RF amp off
2.0
VCC
V
–0.3
0.8
V
IIL
Enable input current
Enable = 0.4V
-1
IIH
Enable input current
Enable = 2.4V
-1
0
1
µA
0
1
µA
VLNA–IN
LNA input bias voltage
Enable = 2.4V
0.78
V
VLNA–OU
LNA output bias voltage
Enable = 2.4V
2.1
V
LNA bias voltage
Enable = 2.4V
2.1
V
0.94
V
T
VB
VMX–IN
Mixer RF input bias voltage
NOTE:
1. The ENABLE input must be connected to a valid logic level for proper operation of the SA620 LNA.
December 15, 1993
3
Philips Semiconductors RF Communications Products
Product specification
Low voltage LNA, mixer and VCO — 1GHz
SA620
AC ELECTRICAL CHARACTERISTICS
VCC = +3V, TA = 25°C; Enable = +3V; unless otherwise stated.
SYMBOL
PARAMETER
S21
Amplifier gain
S21
Amplifier gain in through mode
TEST CONDITIONS
LIMITS
UNITS
-3σ
TYP
+3σ
900MHz
10
11.5
13
dB
Enable = 0.4V, 900MHz
-9
-7.5
-6
dB
∆S21/∆T
Gain temperature sensitivity in pwr-dwn mode
900MHz
-0.014
dB/°C
∆S21/∆T
Gain temperature sensitivity enabled
900MHz
0.003
dB/°C
∆S21/∆f
Gain frequency variation
800MHz - 1.2GHz
0.01
dB/MHz
900MHz
-20
dB
900MHz
-10
dB
S12
S11
S22
Amplifier reverse isolation
Amplifier input
match1
900MHz
-12
dB
Amplifier input 1dB gain compression
900MHz
-16
dBm
IP3
Amplifier input third order intercept
900MHz
-4.5
-3
-1.5
dBm
NF
Amplifier noise figure
900MHz
1.3
1.6
1.9
dB
tON
Amplifier turn-on time (Enable Lo → Hi)
tOFF
Amplifier turn-off time (Enable Hi → Lo)
P-1dB
Amplifier output
match1
See Figure 1
50
µs
See Figure 1
5
µs
VGC
Mixer voltage conversion gain: RP = RL = 1kΩ,
fS = 0.9GHz, fLO = 0.8GHz,
fIF = 100MHz
PGC
Mixer power conversion gain: RP = RL = 1kΩ,
fS = 0.9GHz, fLO = 0.8GHz,
fIF = 100MHz
S11M
Mixer input match1
900MHz
NFM
Mixer SSB noise figure
900MHz
P-1dB
Mixer input 1dB gain compression
IP3M
Mixer input third order intercept
IP2INT
Mixer input second order intercept
900MHz
12
PRFM-IF
Mixer RF feedthrough
900MHz
-20
dB
PLO-IF
LO feedthrough to IF
900MHz
-25
dBm
PLO-RFM
LO to mixer input feedthrough
900MHz
-30
dBm
PLO-RF
LO to LNA input feedthrough
900MHz
-45
dBm
VCO buffer out
900MHz
-16
dBm
PVCO
16
17.5
dB
1.5
3
4.5
dB
-10
7.5
900MHz
f2–f1 = 1MHz, 900MHz
9
VCO phase noise
Offset = 60kHz
NOTE:
1. Simple L/C elements are needed to achieve specified return loss.
4
dB
10.5
-13
-7.5
-6
300
(min)
VCO frequency range
December 15, 1993
14.5
dBm
-4.5
dBm
dBm
1200
(max)
-105
dB
MHz
dBc/Hz
Philips Semiconductors RF Communications Products
Product specification
Low voltage LNA, mixer and VCO — 1GHz
SA620
LNA ENABLE
C22
C23
1µF
C1
100pF
LNA IN
4.7nH
535 mils
R6
R = 9k x (VCC – 1)
0.44µF/(VCC–1)
L1
56nH
C19
100pF
VCC
C21
0.1µF
C2
1.8pF
C20
w = 15 mils
L = 260 mils
C3
0.1µF
C4
C5
3.9pF
10µF
VCC
L3
2.7nH
C6
GND
L2
2.7nH
100pF
D1
SMV 1204 - 099
Alpha Industries
V_CONTROL
(0 to VCC)
LNA OUT
C18
2.2pF
w = 15 mils
L = 260 mils
1
2
3
4
5
6
7
8
9
10
LNA ENABLE
LNA GND
LNA IN
LNA GND
LNA GND
Vcc
LNA GND
LNA OUT
LNA BIAS
MIXER IN
MIXER GND
MIXER BYPASS
MIXER OUT
OSC GND
VCO OUT
OSC GND
MIXER PD
OSC PD
OSC1
OSC2
20
19
18
17
16
15
14
13
12
11
C16
5.6pF
4.7nH
535 mils
C13
C14
1-5pF
VCC
12pF
C15
0.1µF
L4
150nH
C9
100pF
4.7nH
535 mils
R2
100pF
w = 15 mils
L = 160 mils
SA620
VCO OUT
(50Ω)
MIXER IN
C17
100pF
R3
22Ω
MIXER OUT
(1kΩ, 83MHz)
C10
100pF
10kΩ
R1
10kΩ
C7
3.3pF
4.7nH
535 mils
C11
1000pF
R4
1kΩ
VCC
C12
10pF
MIXER OUT
(50Ω, 83MHz)
R5
51Ω
C8
0.1µF
Figure 1. A Complete LNA, Mixer and VCO
CIRCUIT TECHNOLOGY
LNA
Impedance Match: Intrinsic return loss at the
input and output ports is 7dB and 9dB,
respectively. With no external matching, the
associated LNA gain is ≈10dB and the noise
figure is ≈1.4dB. However, the return loss
can be improved at 900MHz using suggested
L/C elements (Figure NO TAG) as the LNA is
unconditionally stable.
Noise Match: The LNA achieves 1.6dB
noise figure at 900MHz when S11 = -10dB.
Further improvements in S11 will slightly
increase the NF and S21.
Thru-Mode: A series switch can be activated
to feed RF signals from LNA input to output
with an attenuator (S21 = –7.5dB). As a
result, the power handling is greatly improved
and current consumption is decreased by
3.2mA as well. However, if this mode is not
required, C23 and R6 can be deleted.
Temperature Compensation: The LNA has
a built-in temperature compensation scheme
to reduce the gain drift to 0.003dB/°C from
–40°C to +85°C.
Supply Voltage Compensation: Unique
circuitry provides gain stabilization over wide
supply voltage range. The gain changes no
more than 0.5dB when VCC increases from
3V to 5V.
December 15, 1993
Mixer
Input Match: The mixer is configured for
maximum gain and best noise figure. The
user needs to supply L/C elements to
achieve this performance.
Mixer Bypass: To optimize the IP3 of the
mixer input, one must adjust the value of C14
for the given board layout. The value
typically lies between 1 and 5pF. Once a
value if selected, a fixed capacitor can be
used. Further improvements in mixer IP3 can
be achieved by inserting a resistive loss at
the mixer input, at the expense of system
gain and noise figure.
Tracking Bandpass Filter: At the LO input
port of the mixer there is a second-order
bandpass filter (approx. 50MHz bandwidth)
which will track the VCO center frequency.
The result is the elimination of low frequency
noise injected into the mixer LO port without
the need for an external LO filter.
Power Down: The mixer can be disabled by
connecting Pin 7 to ground. If a Schottky
diode is connected between Pin 1 (cathode)
and Pin 7 (anode), the LNA disable signal will
control both LNA and mixer simultaneously
When the mixer is disabled, 3mA is saved.
Test Port: Resistor R5 can be substituted
with an external test port of 50Ω input
impedance. Since R5 and MIXER OUT have
5
the same output power, the result is a direct
power gain measurement.
VCO
Automatic Leveling Loop: An on-chip
detector and loop amplifier will adjust VCO
bias current to regulate the VCO amplitude
regardless of the Q-factor (>10) of the
resonator and varactor diode. However, the
real current reduction will not occur until the
VCO frequency falls below 500MHz. For a
typical resonator the steady-state current is
3mA at 800MHz.
Buffered VCO Output: The VCO OUT (Pin
11) signal can drive an external prescaler
directly (see also the Philips SA7025 low
voltage, fractional-N synthesizer). The
extracted signal levels need to be limited to
–16dBm or less to maintain mixer IIP3.
Phase Noise: If close-in phase noise is not
critical, or if an external synthesizer is used,
C4 (Pin 8) can be decreased to a lower
value.
Power-Down: The VCO can be disabled by
connecting Pin 8 to ground. If a Schottky
diode is connected between Pin 1 (cathode)
and Pin 8 (anode), the LNA disable signal will
control both LNA and VCO simultaneously.
When the VCO is disabled, 3mA is saved.
Philips Semiconductors RF Communications Products
Product specification
Low voltage LNA, mixer and VCO — 1GHz
SA620
TYPICAL PERFORMANCE CHARACTERISTICS
CH1
S11
1
U
FS
4:
30.707 Ω
-24.89 Ω
5.86 pF
1100.000 000 MHz
1:
2:
3:
START
CH1
S22
800.000 000
1
U
MHz
FS
STOP
4:
39.811 Ω
1200.000 000
-22.93 Ω
33.184 Ω
-39.105 Ω
800 MHz
31.879 Ω
-33.66 Ω
900 MHz
30.594 Ω
-28.695 Ω
1 GHz
MHz
6.31 pF
1100.000 000 MHz
1:
2:
3:
START
800.000 000
MHz
STOP
1200.000 000
Figure 2. LNA Input and Output Match (at Device Pin)
December 15, 1993
6
MHz
48.164 Ω
-35.754 Ω
800 MHz
44.574 Ω
-31.246 Ω
900 MHz
42.068 Ω
-25.799 Ω
1 GHz
Philips Semiconductors RF Communications Products
Product specification
Low voltage LNA, mixer and VCO — 1GHz
SA620
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
CH1
S21
4
U
FS
4:
-60.419 °
2.7788 U
1100.000 000 MHz
1:
3.8929U
-2.5227 °
800 MHz
2:
3.3016U
-22.365 °
900 MHz
3.0718U
-41.955 °
1 GHz
3:
CH1
START
800.000 000
S12
100 mU FS
MHz
STOP
4:
1200.000 000
MHz
92.09 mU
-82.944 °
1100.000 000 MHz
1:
77.911 mU
-41.727 °
800 MHz
2:
84.28 mU
-55.909 °
900 MHz
89.053 mU
-70.55 °
1 GHz
3:
START
800.000 000
MHz
STOP
1200.000 000
MHz
Figure 3. LNA Transmission and Isolation Characteristics (at Device Pin)
December 15, 1993
7
Philips Semiconductors RF Communications Products
Product specification
Low voltage LNA, mixer and VCO — 1GHz
SA620
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
CH1
S11
1
U
FS
4:
8.7959Ω
12.241Ω
1.7711 nH
1100.000 000 MHz
1:
2:
3:
START
800.000 000
MHz
STOP
Figure 4. Mixer RF Input Match (at Device Pin)
December 15, 1993
8
1200.000 000
MHz
7.2375 Ω
5.1895 Ω
800 MHz
7.8293 Ω
7.6104 Ω
900 MHz
8.1147 Ω
9.9258 Ω
1 GHz
Philips Semiconductors RF Communications Products
Product specification
Low voltage LNA, mixer and VCO — 1GHz
SA620
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
LNA Gain (S21) In Through Mode vs. Frequency
(VCC = 3V)
CH1 S21
log MAG
Mixer RF Input Match vs. Frequency
(VCC = 3V)
CH1 S11
1 dB/ REF -5 dB
log MAG
2 dB/ REF -5 dB
-40°C
25°C
85°C
-40°C
25°C
85°C
START 800.000 000 MHz
START 800.000 000 MHz
STOP 1 200. 000 000 MHz
LNA Gain (S21) vs. Frequency
(VCC = 3V)
CH1 S21
log MAG
STOP 1 200. 000 000 MHz
LNA Isolation (S12) vs. Frequency
(VCC = 3V)
CH1 S12
1 dB/ REF 10 dB
log MAG
5 dB/ REF -10 dB
85°C
25°C
-40°C
-40°C
25°C
85°C
START 800.000 000 MHz
CH1 S11
START 800.000 000 MHz
STOP 1 200. 000 000 MHz
LNA Input Match (S11) vs. Frequency
(VCC = 3V)
log MAG
STOP 1 200. 000 000 MHz
LNA Output Match (S22) vs. Frequency
(VCC = 3V)
CH1 S22
1 dB/ REF -10 dB
log MAG
3 dB/ REF -10 dB
-40°C
25°C
85°C
-40°C
25°C
85°C
START 800.000 000 MHz
December 15, 1993
START 800.000 000 MHz
STOP 1 200. 000 000 MHz
9
STOP 1 200. 000 000 MHz
Philips Semiconductors RF Communications Products
Product specification
Low voltage LNA, mixer and VCO — 1GHz
SA620
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
LNA Gain (Enabled) vs. Supply Voltage
LNA IP3 (Enabled) vs. Supply Voltage
14.00
TEMPERATURE (°C)
4.00
2.00
11.00
25
85
8.00
LNA IP3 (dB)
LNA GAIN (dB)
-40
0.00
-2.00
-4.00
-6.00
5.00
-8.00
2.5
3
3.5
4
4.5
5
5.5
-10.00
VCC (V)
2.5
LNA Gain (Disabled) vs. Supply Voltage
3.5
4
VCC (V)
4.5
5
5.5
LNA Noise Figure (Enabled) vs. Supply Voltage
0.00
2.50
TEMPERATURE (°C)
-40
-5.00
25
85
-10.00
2.00
LNA NF (dB)
LNA GAIN (dB)
3
1.50
1.00
0.50
-15.00
2.5
3
3.5
4
4.5
5
0.00
5.5
2.5
VCC (V)
3.5
4
4.5
5
5.5
VCC (V)
Mixer Power Gain vs. Supply Voltage
Mixer Noise Figure vs. Supply Voltage
TEMPERATURE (°C)
3.5
MIXER GAIN (dB)
3
3.0
-40
2.5
25
2.0
85
12.0
1.5
1.0
MIXER NF (dB)
11.0
10.0
9.0
8.0
0.5
7.0
0.0
2.5
3
3.5
4
4.5
5
5.5
6.0
VCC (V)
2.5
LO to RF In Leakage vs. Supply Voltage
4
VCC (V)
4.5
5
5.5
-30
-41
-31
TEMPERATURE (°C)
-42
-40
-43
25
-44
-45
85
-46
-47
-48
-49
LO TO MIXER IN (dBm)
LO TO MIXER IN (dBm)
3.5
LO to Mixer In Leakage vs. Supply Voltage
-40
-50
3
-32
-33
-34
-35
-36
-37
-38
-39
2.5
3
December 15, 1993
3.5
4
VCC (V)
4.5
5
-40
5.5
10
2.5
3
3.5
4
VCC (V)
4.5
5
5.5
Philips Semiconductors RF Communications Products
Product specification
Low voltage LNA, mixer and VCO — 1GHz
SA620
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Mixer RF Feedthrough Leakage vs. Supply Voltage
LO to IF Leakage vs. Supply Voltage
-15
-25
-40
-28
-29
25
-30
85
-31
-32
-33
-17
RF FEEDTHROUGH (dB)
-27
LO to IF (dBm)
-16
TEMPERATURE (°C)
-26
-18
-19
-20
-21
-22
-23
-24
-34
-25
-35
2.5
3
3.5
4
VCC (V)
4.5
5
2.5
5.5
3
3.5
4
VCC (V)
4.5
VCO Output Power vs. Supply Voltage
-10
-11
-12
TEMPERATURE (°C)
VCO OUT (dBm)
-13
-14
-40
-15
25
-16
85
-17
-18
-19
-20
2.5
December 15, 1993
3
3.5
4
VCC (V)
11
4.5
5
5.5
5
5.5
Philips Semiconductors RF Communications Products
Product specification
Low voltage LNA, mixer and VCO — 1GHz
December 15, 1993
12
SA620