

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 Component PSoC 4 CyBoot V5.0 Datasheet.pdf

		
				 PSoC® Creator™
PSoC 4 System Reference Guide
cy_boot Component v5.0
Document Number: 001-96071, Rev. **
Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone (USA): 800.858.1810
Phone (Intl): 408.943.2600
http://www.cypress.com
Copyrights
© Cypress Semiconductor Corporation, 2015. The information contained herein is subject to change
without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any
circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license
under patent or other rights. Cypress products are not warranted nor intended to be used for medical,
life support, life-saving, critical control or safety applications, unless pursuant to an express written
agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical
components in life-support systems where a malfunction or failure may reasonably be expected to result
in significant injury to the user. The inclusion of Cypress products in life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against
all charges.
®
PSoC is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are
trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced
herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation
(Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and
compile the Cypress Source Code and derivative works for the sole purpose of creating custom
software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation,
compilation, or representation of this Source Code except as specified above is prohibited without the
express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right
to make changes without further notice to the materials described herein. Cypress does not assume any
liability arising out of the application or use of any product or circuit described herein. Cypress does not
authorize its products for use as critical components in life-support systems where a malfunction or
failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’
product in a life-support systems application implies that the manufacturer assumes all risk of such use
and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
2
Contents
1
Introduction .. 8
Conventions ... 9
References .. 9
Sample Firmware Source Code .. 9
Revision History ... 9
Migrating from Previous cy_boot Versions .. 10
2
Standard Types, APIs, and Defines .. 11
Base Types .. 11
Hardware Register Types .. 11
Compiler Defines ... 11
Return Codes... 12
Interrupt Types and Macros ... 12
Interrupt vector address type .. 12
Intrinsic Defines ... 12
Device Version Defines ... 13
Variable Attributes .. 13
Instance APIs ... 13
General APIs ... 13
Low Power APIs .. 14
PSoC Creator Generated Defines ... 15
Project Type .. 15
Chip Configuration Mode .. 16
Debugging Mode ... 16
Chip Protection Mode.. 16
Stack and Heap ... 16
Voltage Settings .. 16
System Clock Frequency .. 17
JTAG/Silicon ID ... 17
IP Block Information .. 18
3
Clocking .. 19
PSoC Creator Clocking Implementation .. 19
Overview ... 19
Clock Connectivity... 20
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
3
Contents
Clock Synchronization .. 20
Routed Clock Implementation ... 20
Using Asynchronous Clocks ... 24
Clock Crossing .. 24
Gated Clocks... 25
Fixed-Function Clocking ... 26
UDB-Based Clocking .. 26
Changing Clocks in Run-time ... 27
Low Voltage Analog Boost Clocks ... 27
APIs ... 28
void SetAnalogRoutingPumps(uint8 enabled) .. 28
void CySysClkImoStart(void) .. 28
void CySysClkImoStop(void) ... 28
void CySysClkIloStart(void) ... 28
void CySysClkWriteHfclkDirect (uint32 clkSelect) .. 29
void CySysClkWriteSysclkDiv (uint32 divider) .. 30
void CySysClkWriteImoFreq (uint32 freq) ... 31
External Crystal Oscillator (ECO) APIs ... 31
4
Power Management ... 33
Implementation .. 33
Clock Configuration (PSoC 4100 BLE / PSoC 4200 BLE).. 34
Power Management APIs ... 34
5
Interrupts... 38
APIs ... 38
CyGlobalIntEnable .. 38
CyGlobalIntDisable ... 38
uint32 CyDisableInts() ... 38
void CyEnableInts(uint32 mask) ... 38
void CyIntEnable(uint8 number) ... 38
void CyIntDisable(uint8 number)... 39
uint8 CyIntGetState(uint8 number) ... 39
cyisraddress CyIntSetVector(uint8 number, cyisraddress address) 39
cyisraddress CyIntGetVector(uint8 number) ... 39
cyisraddress CyIntSetSysVector(uint8 number, cyisraddress address) 40
cyisraddress CyIntGetSysVector(uint8 number) ... 40
void CyIntSetPriority(uint8 number, uint8 priority) .. 40
uint8 CyIntGetPriority(uint8 number) .. 41
void CyIntSetPending(uint8 number) .. 41
void CyIntClearPending(uint8 number) ... 41
6
Pins .. 42
PSoC 4 APIs .. 42
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
4
Introduction
CY_SYS_PINS_READ_PIN(portPS, pin) ... 42
CY_SYS_PINS_SET_PIN(portDR, pin) .. 42
CY_SYS_PINS_CLEAR_PIN(portDR, pin) ... 43
CY_SYS_PINS_SET_DRIVE_MODE(portPC, pin, mode) ... 43
CY_SYS_PINS_READ_DRIVE_MODE(portPC, pin) ... 44
7
Register Access ... 45
APIs ... 45
uint8 CY_GET_REG8(uint32 reg) ... 45
void CY_SET_REG8(uint32 reg, uint8 value) ... 45
uint16 CY_GET_REG16(uint32 reg)... 46
void CY_SET_REG16(uint32 reg, uint16 value) ... 46
uint32 CY_GET_REG24(uint32 reg)... 46
void CY_SET_REG24(uint32 reg, uint32 value) ... 46
uint32 CY_GET_REG32(uint32 reg)... 46
void CY_SET_REG32(uint32 reg, uint32 value) ... 46
uint8 CY_GET_XTND_REG8(uint32 reg) ... 47
void CY_SET_XTND_REG8(uint32 reg, uint8 value) ... 47
uint16 CY_GET_XTND_REG16(uint32 reg) ... 47
void CY_SET_XTND_REG16(uint32 reg, uint16 value) ... 47
uint32 CY_GET_XTND_REG24(uint32 reg) ... 47
void CY_SET_XTND_REG24(uint32 reg, uint32 value) ... 47
uint32 CY_GET_XTND_REG32(uint32 reg) ... 48
void CY_SET_XTND_REG32(uint32 reg, uint32 value) ... 48
Bit Field Manipulation .. 48
CY_GET_REG8_FIELD(registerName, bitFieldName) .. 49
CY_SET_REG8_FIELD(registerName, bitFieldName, value) .. 49
CY_CLEAR_REG8_FIELD(registerName, bitFieldName).. 50
CY_GET_REG16_FIELD(registerName, bitFieldName) .. 50
CY_SET_REG16_FIELD(registerName, bitFieldName, value) .. 51
CY_CLEAR_REG16_FIELD(registerName, bitFieldName) ... 51
CY_GET_REG32_FIELD(registerName, bitFieldName) .. 52
CY_SET_REG32_FIELD(registerName, bitFieldName, value) .. 52
CY_CLEAR_REG32_FIELD(registerName, bitFieldName) ... 53
CY_GET_FIELD(regValue, bitFieldName).. 53
CY_SET_FIELD(regValue, bitFieldName, value) ... 54
8
Flash .. 55
Memory Architecture .. 55
Working with Flash .. 55
APIs ... 56
uint32 CySysFlashWriteRow(uint32 rowNum, const uint8 rowData[]) 56
void CySysFlashSetWaitCycles(uint32 freq) .. 57
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
5
Contents
9
System Functions .. 58
General APIs.. 58
uint8 CyEnterCriticalSection(void) .. 58
void CyExitCriticalSection(uint8 savedIntrStatus) ... 58
void CYASSERT(uint32 expr) ... 58
void CyHalt(uint8 reason) ... 59
void CySoftwareReset(void) ... 59
void CyGetUniqueID(uint32* uniqueId) ... 59
CyDelay APIs ... 59
void CyDelay(uint32 milliseconds) .. 59
void CyDelayUs(uint16 microseconds) ... 60
void CyDelayFreq(uint32 freq) .. 60
void CyDelayCycles(uint32 cycles) ... 60
Voltage Detect APIs (PSoC 4100 / PSoC 4200 / PSoC 4100 BLE / PSoC 4200 BLE)........... 61
void CySysLvdEnable(uint32 threshold) ... 61
void CySysLvdDisable(void) ... 61
uint32 CySysLvdGetInterruptSource(void) ... 62
void CySysLvdClearInterrupt(void) ... 62
10
Startup and Linking.. 63
GCC Implementation... 64
Realview Implementation (applicable for MDK) .. 64
CMSIS Support ... 65
High-Level I/O Functions ... 66
The printf() Usage Model .. 66
Preservation of Reset Status ... 67
uint32 CySysGetResetReason(uint32 reason) ... 67
API Memory Usage ... 67
PSoC 4000 (GCC) .. 67
PSoC 4100/PSoC 4200 (GCC) ... 67
PSoC 4100 BLE/PSoC 4200 BLE (GCC) ... 68
PSoC 4100M/PSoC 4200M (GCC) ... 68
Performance .. 68
Functions Execution Time ... 68
Critical Sections Duration .. 68
11
MISRA Compliance .. 70
Verification Environment .. 70
Project Deviations .. 71
Documentation Related Rules ... 72
PSoC Creator Generated Sources Deviations .. 73
[]
cy_boot Component-Specific Deviations ... 74
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
6
Introduction
12
System Timer (SysTick) ... 76
Functional Description ... 76
APIs ... 76
Functions ... 76
Global Variables .. 80
13
cy_boot Component Changes .. 81
Version 5.0 ... 81
Version 4.20 ... 83
Version 4.11 ... 85
Version 4.10 ... 85
Version 4.0 ... 86
Version 3.40 and Older .. 87
Version 3.40 .. 87
Version 3.30 .. 87
Version 3.20 .. 88
Version 3.10 .. 88
Version 3.0 .. 89
Version 2.40 ... 90
Version 2.30 and Older .. 90
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
7
1
Introduction
This System Reference Guide describes functions supplied by the PSoC Creator cy_boot component.
The cy_boot component provides the system functionality for a project to give better access to chip
resources. The functions are not part of the component libraries but may be used by them. You can use
the function calls to reliably perform needed chip functions.
The cy_boot component is unique:

Included automatically into every project

Only a single instance can be present

No symbol representation

Not present in the Component Catalog (by default)
As the system component, cy_boot includes various pieces of library functionality. This guide is organized
by these functions:

Flash

Clocking

Power management

Startup code

Various library functions

Linker scripts
The cy_boot component presents an API that enables user firmware to accomplish the tasks described in
this guide. There are multiple major functional areas that are described separately.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
8
Introduction
Conventions
The following table lists the conventions used throughout this guide:
Convention
Usage
Courier New
Displays file locations and source code:
C:\ …cd\icc\, user entered text
Displays file names and reference documentation:
sourcefile.hex
Displays keyboard commands in procedures:
[Enter] or [Ctrl] [C]
Represents menu paths:
File > New Project > Clone
Displays commands, menu paths and selections, and icon names in
procedures:
Click the Debugger icon, and then click Next.
Displays cautions or functionality unique to PSoC Creator or the PSoC device.
Italics
[bracketed, bold]
File > New Project
Bold
Text in gray boxes
References
This guide is one of a set of documents pertaining to PSoC Creator and PSoC devices. Refer to the
following other documents as needed:

PSoC Creator Help

PSoC Creator Component Datasheets

PSoC Creator Component Author Guide

PSoC Technical Reference Manual (TRM)
Sample Firmware Source Code
PSoC Creator provides numerous example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the Component
Catalog or an instance of the component in a schematic. For general examples, open the dialog from the
Start Page or File menu. As needed, use the Filter Options in the dialog to narrow the list of projects
available to select.
Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.
Revision History
Document Title: PSoC® Creator™ PSoC 4 System Reference Guide, cy_boot Component v5.0
Document Number: 001-96071
Revision
Date
Description of Change
**
4/30/2015
New document for version 5.0 of the cy_boot component. Refer
to the change section for component changes from previous
versions of cy_boot.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
9
Introduction
Migrating from Previous cy_boot Versions
The cy_boot component version 5.0 is fully backward compatible with cy_boot version 4.20 (and previous
versions). For PSoC 4 devices, the CyLFClk (low-frequency clock) APIs have been moved into separate
files (CyLFClk.h/CyLFClk.c).
Firmware projects created using PSoC Creator 3.1 will work with no issues in PSoC Creator 3.2 if the
project.h file is referenced, regardless of the cy_boot update. However, if the project.h file is not included
in the project being migrated, you must add a reference to the CyLFClk.h file in the project for the
availability of CyLFClk APIs.
If you choose not to update to cy_boot version 5.0 while migrating projects from PSoC Creator 3.1 to
PSoC Creator 3.2, CyLFClk.h/CyLFClk.c files will not be generated.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
10
2
Standard Types, APIs, and Defines
To support the operation of the same code across multiple CPUs with multiple compilers, the cy_boot
component provides types and defines (in the cytypes.h file) that create consistent results across
platforms.
Base Types
Type
Description
char8
uint8
uint16
uint32
int8
int16
int32
float32
float64
int64
uint64
8-bit (signed or unsigned, depending on the compiler selection for char)
8-bit unsigned
16-bit unsigned
32-bit unsigned
8-bit signed
16-bit signed
32-bit signed
32-bit float
64-bit float
64-bit signed
64-bit unsigned
Hardware Register Types
Hardware registers typically have side effects and therefore are referenced with a volatile type.
Define
Description
reg8
reg16
reg32
Volatile 8-bit unsigned
Volatile 16-bit unsigned
Volatile 32-bit unsigned
Compiler Defines
The compiler being used can be determined by testing for the definition of the specific compiler.
Define
Description
__GNUC__
__ARMCC_VERSION
ARM GCC compiler
ARM Realview compiler used by Keil MDK tool sets
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
11
Standard Types, APIs, and Defines
Return Codes
Return codes from Cypress routines are returned as an 8-bit unsigned value type: cystatus. The standard
return values are:
Define
Description
CYRET_SUCCESS
CYRET_UNKNOWN
CYRET_BAD_PARAM
CYRET_INVALID_OBJECT
CYRET_MEMORY
CYRET_LOCKED
CYRET_EMPTY
CYRET_BAD_DATA
CYRET_STARTED
CYRET_FINISHED
CYRET_CANCELED
CYRET_TIMEOUT
CYRET_INVALID_STATE
Successful
Unknown failure
One or more invalid parameters
Invalid object specified
Memory related failure
Resource lock failure
No more objects available
Bad data received (CRC or other error check)
Operation started, but not necessarily completed yet
Operation completed
Operation canceled
Operation timed out
Operation not setup or is in an improper state
Interrupt Types and Macros
Types and macros provide consistent definition of interrupt service routines across compilers and
platforms. Note that the macro to use is different between the function definition and the function
prototype.
Function definition example:
CY_ISR(MyISR)
{
/* ISR Code here */
}
Function prototype example:
CY_ISR_PROTO(MyISR);
Interrupt vector address type
Type
Description
cyisraddress
Interrupt vector (address of the ISR function)
Intrinsic Defines
Define
Description
CY_NOP
Processor NOP instruction
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
12
Standard Types, APIs, and Defines
Device Version Defines
Define
Description
CY_PSOC4
CY_PSOC4_4000
CY_PSOC4_4100
CY_PSOC4_4200
CY_PSOC4_4100BL
CY_PSOC4_4200BL
CY_PSOC4_4100M
CY_PSOC4_4200M
Any PSoC 4 Device
PSoC 4000 device family.
PSoC 4100 device family.
PSoC 4200 device family.
PSoC 4100 device family with BLE support.
PSoC 4200 device family with BLE support.
PSoC 4100M device family.
PSoC 4200M device family.
Variable Attributes
Define
Description
CY_NOINIT
Specifies that a variable should be placed into uninitialized data section that
prevents this variable from being initialized to zero on startup.
CY_ALIGN
Specifies a minimum alignment (in bytes) for variables of the specified type.
CY_PACKED,
Attached to an enum, struct, or union type definition, specified that the minimum
CY_PACKED_ATTR required memory be used to represent the type.
Example:
CYPACKED typedef struct {
uint8 freq;
uint8 absolute;
} CYPACKED_ATTR imoTrim;
CY_INLINE
Specifies that compiler can perform inline expansion: insert the function code at
the address of each function call.
Instance APIs
General APIs
Most components have an instance-specific set of the APIs that allow you to initialize, enable and disable
the component. These functions are listed below generically. Refer to the individual datasheet for specific
information.
`=instance_name`_InitVar
Description: This global variable Indicates whether the component has been initialized. The
variable is initialized to 0 and set to 1 the first time _Start() is called. This allows the
component to restart without reinitialization after the first call to the _Start() routine.
If reinitialization of the component is required, then the _Init() function can be called
before the _Start() or _Enable() function.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
13
Standard Types, APIs, and Defines
void `=instance_name`_Start (void)
Description: This function intended to start component operation. The _Start() sets the _initVar
variable, calls the _Init function, and then calls the _Enable function.
Parameters: None
Return Value: None
void `=instance_name`_Stop (void)
Description: Disables the component operation.
Parameters: None
Return Value: None
void `=instance_name`_Init (void)
Description: Initializes component's parameters to those set in the customizer placed on the
schematic. All registers will be reset to their initial values. This reinitializes the
component. Usually called in _Start().
Parameters: None
Return Value: None
void `=instance_name`_Enable (void)
Description: Enables the component block operation.
Parameters: None
Return Value: None
Low Power APIs
Most components have an instance-specific set of low power APIs that allow you to put the component
into its low power state. These functions are listed below generically. Refer to the individual datasheet for
specific information regarding register retention information if applicable.
void `=instance_name`_Sleep (void)
Description: The _Sleep() function checks to see if the component is enabled and saves that
state. Then it calls the _Stop() function and calls _SaveConfig() function to save the
user configuration.
• PSoC 4: Call the _Sleep() function before calling the CySysPmDeepSleep()
function.
Parameters: None
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
14
Standard Types, APIs, and Defines
void `=instance_name`_Wakeup (void)
Description: The _Wakeup() function calls the _RestoreConfig() function to restore the user
configuration. If the component was enabled before the _Sleep() function was
called, the _Wakeup() function will re-enable the component.
Parameters: None
Return Value: None
Side Effects: Calling the _Wakeup() function without first calling the _Sleep() or _SaveConfig()
function may produce unexpected behavior.
void `=instance_name`_SaveConfig(void)
Description: This function saves the component configuration. This will save non-retention
registers. This function will also save the current component parameter values, as
defined in the Configure dialog or as modified by appropriate APIs. This function is
called by the _Sleep() function.
Parameters: None
Return Value: None
void `=instance_name`_RestoreConfig(void)
Description: This function restores the component configuration. This will restore non-retention
registers. This function will also restore the component parameter values to what
they were prior to calling the _Sleep() function.
Parameters: None
Return Value: None
Side Effects: Calling this function without first calling the _Sleep() or _SaveConfig() function may
produce unexpected behavior.
PSoC Creator Generated Defines
PSoC Creator generates the following macros in the cyfitter.h file.
Project Type
The following are defines for project type (from Project > Build Settings):

CYDEV_PROJ_TYPE

CYDEV_PROJ_TYPE_BOOTLOADER

CYDEV_PROJ_TYPE_LOADABLE

CYDEV_PROJ_TYPE_MULTIAPPBOOTLOADER

CYDEV_PROJ_TYPE_STANDARD

CYDEV_PROJ_TYPE_LOADABLEANDBOOTLOADER
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
15
Standard Types, APIs, and Defines
Chip Configuration Mode
The following are defines for chip configuration mode (from System DWR). Options vary by device:
All

CYDEV_CONFIGURATION_MODE

CYDEV_CONFIGURATION_MODE_COMPRESSED

CYDEV_CONFIGURATION_MODE_DMA

CYDEV_CONFIGURATION_MODE_UNCOMPRESSED

CYDEV_DEBUGGING_ENABLE or
CYDEV_PROTECTION_ENABLE (Debugging or protection enabled. Mutually exclusive.)
PSoC 4

CYDEV_CONFIG_READ_ACCELERATOR (Flash read accelerator enabled?)

CYDEV_USE_BUNDLED_CMSIS (Include the CMSIS standard library.)
Debugging Mode
The following are defines for debugging mode (from System DWR):

CYDEV_DEBUGGING_DPS

CYDEV_DEBUGGING_DPS_Disable

CYDEV_DEBUGGING_DPS_JTAG_4

CYDEV_DEBUGGING_DPS_JTAG_5

CYDEV_DEBUGGING_DPS_SWD

CYDEV_DEBUGGING_DPS_SWD_SWV
Chip Protection Mode
The following are defines for chip protection mode (from System DWR):

CYDEV_DEBUG_PROTECT

CYDEV_DEBUG_PROTECT_KILL

CYDEV_DEBUG_PROTECT_OPEN

CYDEV_DEBUG_PROTECT_PROTECTED
Stack and Heap
The following are defines for the number of bytes allocated to the stack and heap (from System DWR).
These are only for PSoC 4.

CYDEV_HEAP_SIZE

CYDEV_STACK_SIZE
Voltage Settings
The following are defines for voltage settings (from System DWR). Options vary by device:
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
16
Standard Types, APIs, and Defines

CYDEV_VARIABLE_VDDA

CYDEV_VDDA

CYDEV_VDDA_MV

CYDEV_VDDD

CYDEV_VDDD_MV

CYDEV_VDDIO0

CYDEV_VDDIO0_MV

CYDEV_VDDIO1

CYDEV_VDDIO1_MV

CYDEV_VDDIO2

CYDEV_VDDIO2_MV

CYDEV_VDDIO3

CYDEV_VDDIO3_MV

CYDEV_VIO0

CYDEV_VIO0_MV

CYDEV_VIO1

CYDEV_VIO1_MV

CYDEV_VIO2

CYDEV_VIO2_MV

CYDEV_VIO3

CYDEV_VIO3_MV
System Clock Frequency
The following are defines for system clock frequency (from Clock DWR):
PSoC 4

CYDEV_BCLK__HFCLK__HZ

CYDEV_BCLK__HFCLK__KHZ

CYDEV_BCLK__HFCLK__MHZ

CYDEV_BCLK__SYSCLK__HZ

CYDEV_BCLK__SYSCLK__KHZ

CYDEV_BCLK__SYSCLK__MHZ
JTAG/Silicon ID
The following is the define for JTAG/Silicon ID for the current device:
CYDEV_CHIP_JTAG_ID

®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
17
Standard Types, APIs, and Defines
IP Block Information
PSoC Creator generates the following macros for the IP blocks that exist on the current device:
#define CYIPBLOCK_<BLOCK NAME>_VERSION <version>
For example:
#define CYIPBLOCK_P3_TIMER_VERSION 0
#define CYIPBLOCK_P3_USB_VERSION 0
#define CYIPBLOCK_P3_VIDAC_VERSION 0
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
18
3
Clocking
PSoC Creator Clocking Implementation
PSoC devices supported by PSoC Creator have flexible clocking capabilities. These clocking capabilities
are controlled in PSoC Creator by selections within the Design-Wide Resources settings, connectivity of
clocking signals on the design schematic, and API calls that can modify the clocking at runtime. The
clocking API is provided in the CyLib.c and CyLib.h files.
This section describes how PSoC Creator maps clocks onto the device and provides guidance on
clocking methodologies that are optimized for the PSoC architecture.
The System Clock consolidates System Clock (SYSCLK) on PSoC 4 devices. The Master Clock
consolidates High-Frequency Clock (HFCLK) on PSoC 4 devices.
Overview
The clock system includes these clock resources:
Two internal clock sources increase system integration:

PSoC 4000: 24, 32 and 48 MHz IMO ±2% across all frequencies when Vddd is above or
equal to 2.0 V and +/-4% below 2.0 V.

Other PSoC 4 families: 3 to 48 MHz IMO ±2% across all frequencies

32 kHz ILO outputs
External Clock (EXTCLK) generated using a signal from a single designated I/O pin:

The allowable external clock frequency has the same limits as the system clock
frequency.

The device always starts up using the IMO and the external clock must be enabled, so
the device cannot be started from a reset clocked by the external clock.
HFCLK selected from IMO or external clock:

PSoC 4000: The HFCLK frequency cannot exceed 16 MHz.

Other PSoC 4 families: The HFCLK frequency cannot exceed 48 MHz.

Low-Frequency Clock (LFCLK) sourced by ILO. PSoC 4100 BLE / PSoC 4200 BLE / PSoC
4100M / PSoC 4200M: LFCLK can be sourced by Watch Crystal Oscillator (WCO).

Dedicated prescaler for SYSCLK sourced by HFCLK. The SYSCLK must be equal to or faster
than all other clocks in the device.

PSoC 4000: The SYSCLK frequency cannot exceed 16 MHz.

Other PSoC 4 families: The SYSCLK frequency cannot exceed 48 MHz.

Four peripheral clock dividers, each containing three chainable 16-bit dividers

16 digital and analog peripheral clocks
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
19
Clocking
Power Modes
The IMO is available in Active and Sleep modes. It is automatically disabled/enabled for the proper Deep
Sleep and Hibernate mode entry/exit. The IMO is disabled during Deep Sleep and Hibernate modes.
The EXTCLK is available in Active and Sleep modes. The system will enter/exit Deep Sleep and
Hibernate using external clock. The device will re-enable the IMO if it was enabled before entering Deep
Sleep or Hibernate, but it does not wait for the IMO before starting the CPU. After entering Active mode,
the IMO may take an additional 2 us to begin toggling. The IMO will startup cleanly without glitches, but
any dependency should account for this extra startup time. If desired, firmware may increase wakeup
hold-off using CySysPmSetWakeupHoldoff() function to include this 2 us and ensure the IMO is toggling
by the time Active mode is reached.
The ILO is available in all modes except Hibernate and Stop.
Clock Connectivity
The PSoC architecture includes flexible clock generation logic. Refer to the Technical Reference Manual
for a detailed description of all the clocking sources available in a particular device. The usage of these
various clocking sources can be categorized by how those clocks are connected to elements of a design.
System Clock
This is a special clock. It is closely related to Master Clock. For most designs, Master Clock and System
Clock will be the same frequency and considered to be the same clock. These must be the highest speed
clocks in the system. The CPU will be running off of System Clock and all the peripherals will
communicate to the CPU and DMA using System Clock. When a clock is synchronized, it is synchronized
to Master Clock. When a pin is synchronized it is synchronized to System Clock.
Global Clock
This is a clock that is placed on one of the global low skew digital clock lines. This also includes System
Clock. When a clock is created using a Clock component, it will be created as a global clock. This clock
must be directly connected to a clock input or may be inverted before connection to a clock input. Global
clock lines connect only to the clock input of the digital elements in PSoC. If a global clock line is
connected to something other than a clock input (that is, combinatorial logic or a pin), then the signal is
not sent using low skew clock lines.
Routed Clock
Any clock that is not a global clock is a routed clock. This includes clocks generated by logic (with the
exception of a single inverter) and clocks that come in from a pin.
Clock Synchronization
Each clock in a PSoC device is either synchronous or asynchronous. This is in reference to System Clock
and Master Clock. PSoC is designed to operate as a synchronous system. This was done to enable
communication between the programmable logic and either the CPU or DMA. If these are not
synchronous to a common clock, then any communication requires clocking crossing circuitry. Generally,
asynchronous clocking is not supported except for PLD logic that does not interact with the CPU system.
Routed Clock Implementation
The clocking implementation in PSoC directly connects global clock signals to the clock input of clocked
digital logic. This applies to both synchronous and asynchronous clocks. Since global clocks are
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
20
Clocking
distributed on low skew clock lines, all clocked elements connected to the same global clock will be
clocked at the same time.
Routed clocks are distributed using the general digital routing fabric. This results in the clock arriving at
each destination at different times. If that clock signal was used directly as the clock, then it would force
the clock to be considered an asynchronous clock. This is because it cannot be guaranteed to transition
at the rising edge of System Clock. This can also result in circuit failures if the output of a register clocked
by an early arriving clock is used by a register clocked by a late arriving version of the same clock.
Under some circumstances, PSoC Creator can transform a routed clock circuit into a circuit that uses a
global clock. If all the sources of a routed clock can be traced back to the output of registers that are
clocked by common global clocks, then the circuit is transformed automatically by PSoC Creator. The
cases where this is possible are:

All signals are derived from the same global clock. This global clock can be asynchronous or
synchronous.

All signals are derived from more than one synchronous global clock. In this case, the common
global clock is System Clock.
The clocking implementation in PSoC includes a built-in edge detection circuit that is used in this
transformation. This does not use PLD resources to implement. The following shows the logical
implementation and the resulting clock timing diagram.
RoutedClk
(Enable)
Latch
(Transparent
when Low)
Clk
GlobalClk
(Effective
Clock)
GlobalClk
RoutedClk
Clk
This diagram shows that the resulting clock occurs synchronous to the global clock on the first clock after
a rising edge of the routed clock.
When analyzing the design to determine the source of a routed clock, another routed clock that was
transformed may be encountered. In that case, the global clock used in that transformation is considered
the source clock for that signal.
The clock transformation used for every routed clock is reported in the report file. This file is located in the
Workspace Explorer under the Results tab after a successful build. The details are shown under the
"Initial Mapping" heading. Each routed clock will be shown with the "Effective Clock" and the "Enable
Signal". The "Effective Clock" is the global clock that is used and the "Enable Signal" is the routed clock
that is edge detected and used as the enable for that clock.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
21
Clocking
Example with a Divided Clock
A simple divided clock circuit can be used to observe how this transformation is done. The following circuit
clocks the first flip-flop (cydff_1) with a global clock. This generates a clock that is divided by 2 in
frequency. That signal is used as a routed clock that clocks the next flip-flop (cydff_2).
The report file indicates that one global clock has been used and that the single routed clock has been
transformed using the global clock as the effective clock.
The resulting signals generated by this circuit are as follows.
Clock_1
Div2
Div4
It may appear that the Div4 signal is generated by the falling edge of the Div2 signal. This is not the case.
The Div4 signal is generated on the first Clock_1 rising edge following a rising edge on Div2.
Example with a Clock from a Pin
In the following circuit, a clock is brought in on a pin with synchronization turned on. Since
synchronization of pins is done with System Clock, the transformed circuit uses System Clock as the
Effective Clock and uses the rising edge of the pin as the Enable Signal.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
22
Clocking
If input synchronization was not enabled at the pin, there would not be a global clock to use to transform
the routed clock, and the routed clock would be used directly.
Example with Multiple Clock Sources
In this example, the routed clock is derived from flip-flops that are clocked by two different clocks. Both of
these clocks are synchronous, so System Clock is the common global clock that becomes the Effective
Clock.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
23
Clocking
If either of these clocks had been asynchronous, then the routed clock would have been used directly.
Overriding Routed Clock Transformations
The automatic transformation that PSoC Creator performs on routed clocks is generally the
implementation that should be used. There is however a method to force the routed clock to be used
directly. The UDBClkEn component configured in Async mode will force the clock used to be the routed
clock, as shown in the following circuit.
Using Asynchronous Clocks
Asynchronous clocks can be used with PLD logic. However, they are not automatically supported by
control registers, status registers and datapath elements because of the interaction with the CPU those
elements have. Most Cypress library components will only work with synchronous clocks. They
specifically force the insertion of a synchronizer automatically if the clock provided is asynchronous.
Components that are designed to work with asynchronous clocks such as the SPI Slave will specifically
describe how they handle clocking in their datasheet.
If an asynchronous clock is connected directly to something other than PLD logic, then a Design Rule
Check (DRC) error is generated. For example, if an asynchronous pin is connected to a control register
clock, a DRC error is generated.
As stated in the error message, the error can be removed by using a UDBClkEn component in async
mode. That won’t remove the underlying synchronization issue, but it will allow the design to override the
error if the design has handled synchronization in some other way.
Clock Crossing
Multiple clock domains are commonly needed in a design. Often these multiple domains do not interact
and therefore clocking crossings do not occur. In the case where signals generated in one clock domain
need to be used in another clock domain, special care must be taken. There is the case where the two
clock domains are asynchronous from each other and the case where both clock domains are
synchronous to System Clock.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
24
Clocking
When both clocks are synchronous to System Clock, signals from the slower clock domain can be freely
used in the other clock domain. In the other direction, care must be taken that the signals from the faster
clock domain are active for a long enough period that they will be sampled by the slower clock domain. In
both directions the timing constraints that must be met are based on the speed of System Clock not the
speed of either of the clock domains.
The only guarantee between the clock domains is that their edges will always occur on a rising edge of
System Clock. That means that the rising edges of the two clock domains can be as close as a single
System Clock cycle apart. This is true even when the clock domains are multiples of each other, since
their clock dividers are not necessarily aligned. If combinatorial logic exists between the two clock
domains, a flip-flop may need to be inserted to keep from limiting the frequency of System Clock
operation. By inserting the flip-flop, the crossing from one clock domain to the other is a direct flip-flop to
flip-flop path.
When the clock domains are unrelated to each other, a synchronizer must be used between the clock
domains. The Sync component can be used to implement the synchronization function. It should be
clocked by the destination clock domain.
The Sync component is implemented using a special mode of the status register that implements a
double synchronizer. The input signal must have a pulse width of at least the period of the sampling clock.
The exact delay to go through the synchronizer will vary depending on the alignment of the incoming
signal to the synchronizing clock. This can vary from just over one clock period to just over two clock
periods. If multiple signals are being synchronized, the time difference between two signals entering the
synchronizer and those same two signals at the output can change by as much as one clock period,
depending on when each is successfully sampled by the synchronizer.
Gated Clocks
Global clocks should not be used for anything other than directly clocking a circuit. If a global clock is
used for logic functionality, the signal is routed using an entirely different path without guaranteed timing.
A circuit such as the following should be avoided since timing analysis cannot be performed.
This circuit is implemented with a routed clock, has no timing analysis support, and is prone to the
generation of glitches on the clock signal when the clock is enabled and disabled.
The following circuit implements the equivalent function and is supported by timing analysis, only uses
global clocks, and has no reliability issues. This circuit does not gate the clock, but instead logically
enables the clocking of new data or maintains the current data.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
25
Clocking
If access to a clock is needed, for example to generate a clock to send to a pin, then a 2x clock should be
used to clock a toggle flip-flop. The output of that flip-flop can then be used with the associated timing
analysis available.
Fixed-Function Clocking
On the schematic, the clock signals sent to fixed-function peripherals and to UDB-based peripherals
appear to be the same clock. However, the timing relationship between the clock signals as they arrive at
these different peripheral types is not guaranteed. Additionally the routing delay for the data signals is not
guaranteed. Therefore when fixed-function peripherals are connected to signals in the UDB array, the
signals must be synchronized as shown in the following example. No timing assumptions should be made
about signals coming from fixed-function peripherals.
UDB-Based Clocking
If the component allows asynchronous clocks, you may use any clock input frequency within the device's
frequency range. If the component requires synchronization to the SYSCLK, then when using a routed
clock for the component, the frequency of the routed clock cannot exceed one half the routed clock’s
source clock frequency.

If the routed clock is synchronous to the SYSCLK, then it is one half the SYSCLK.

If the routed clock is synchronous to one of the clock dividers, its maximum is one half of that
clock rate.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
26
Clocking
Changing Clocks in Run-time
Impact on Components Operation
The components with internal clocks are directly impacted by the change of the system clock frequencies
or sources. The components clock frequencies obtained using design-time dividers. The run-time change
of components clock source will correspondingly change the internal component clock. Refer to the
component datasheet for the details.
CyDelay APIs
The CyDelay APIs implement simple software-based delay loops. The loops compensate for system clock
frequency. The CyDelayFreq() function must be called in order to adjust CyDelay(), CyDelayUs() and
CyDelayCycles() functions to the new system clock value.
Cache Configuration
If the CPU clock frequency increases during device operation, the number of clock cycles cache will wait
before sampling data coming back from Flash should be adjusted. If the CPU clock frequency decreases,
the number of clock cycles can be also adjusted to improve CPU performance. See
“CySysFlashSetWaitCycles()” for PSoC 4 for more information.
Low Voltage Analog Boost Clocks
When the operating voltage (Vdda) of a PSoC device drops below 4.0 V, the analog pumps for the analog
routing switches must be enabled by calling the SetAnalogRoutingPumps() function with the
corresponding parameter. On PSoC 4 devices the pumps may be left on at all voltages, but it is
recommended to disable them above 4.0 V so as to reduce current draw. It is the user's responsibility to
monitor the Vdda level at run-time and enable/disable the pumps as appropriate.
The analog pumps for the analog routing switches are configured on device startup based on the Vdda
and Variable Vdda design-time options. The Variable Vdda option in the System tab of the PSoC
Creator Design-Wide Resources (DWR) file is added to allow for designs in which the value of Vdda is
expected to vary at runtime. If Variable Vdda is enabled, the SetAnalogRoutingPumps() function
described above will be generated. If Vdda < 4.0 V, the routing pumps will be automatically enabled on
reset.
On PSoC 4 devices, the IMO must be enabled if Variable Vdda is enabled or Vdda < 4.0 V. This is
because the clock for the analog switch pump is driven from the IMO.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
27
Clocking
APIs
There is one API used for all devices: the SetAnalogRoutingPumps() function. Then, there is a set of APIs
used for PSoC 4 devices. Functions starting with CySysClk are applicable to PSoC 4 only.
void SetAnalogRoutingPumps(uint8 enabled)
Description: Enables or disables the analog pumps feeding analog routing switches. Intended
to be called at startup, based on the Vdda system configuration; may be called
during operation when the user informs us that the Vdda voltage crossed the
pump threshold.
Parameters: enabled:
•
•
1: Enable the pumps.
0: Disable the pumps.
Return Value: None
void CySysClkImoStart(void)
Description: Enables the IMO.
Parameters: None
Return Value: None
Side Effects and None
Restrictions:
void CySysClkImoStop(void)
Description: Disables the IMO.
Parameters: None
Return Value: None
Side Effects and None
Restrictions:
void CySysClkIloStart(void)
Description: Starts the ILO. Refer to the device datasheet for the ILO startup time.
Parameters: None
Return Value: None
Side Effects and None
Restrictions:
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
28
Clocking
void CySysClkWriteHfclkDirect (uint32 clkSelect)
Description: Selects the direct source for the HFCLK.
Parameters: clkSelect: One of the available HFCLK direct sources.
Define
Source
CY_SYS_CLK_HFCLK_IMO
CY_SYS_CLK_HFCLK_EXTCLK
CY_SYS_CLK_HFCLK_ECO
IMO
External clock pin
External crystal oscillator (applicable only for
PSoC 4100 BLE and PSoC 4200 BLE).
Return Value: None
Side Effects and The new source must be running and stable before calling this function.
Restrictions:
If the SYSCLK frequency increases during device operation, call
CySysFlashSetWaitCycles() with the appropriate parameter to adjust the number
of clock cycles the cache will wait before sampling data comes back from Flash. If
the SYSCLK frequency decreases, call CySysFlashSetWaitCycles() to improve
CPU performance. See CySysFlashSetWaitCycles() description for more
information.
•
®
PSoC 4000: The SYSCLK has a maximum speed of 16 MHz, so HFCLK
and SYSCLK dividers should be selected in a way to not to exceed 16
MHz for the System clock.
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
29
Clocking
void CySysClkWriteSysclkDiv (uint32 divider)
Description: Selects the prescaler divide amount for SYSCLK from HFCLK.
Parameters: divider: Power of 2 prescaler selection.
Define
Divider
CY_SYS_CLK_SYSCLK_DIV1
CY_SYS_CLK_SYSCLK_DIV2
CY_SYS_CLK_SYSCLK_DIV4
CY_SYS_CLK_SYSCLK_DIV8
CY_SYS_CLK_SYSCLK_DIV16
CY_SYS_CLK_SYSCLK_DIV32
CY_SYS_CLK_SYSCLK_DIV64
CY_SYS_CLK_SYSCLK_DIV128
1
2
4
8
16
32
64
128
Note The dividers above CY_SYS_CLK_SYSCLK_DIV8 are not available for the
PSoC 4000 family.
Return Value: None
Side Effects and If the SYSCLK frequency increases during device operation, call
Restrictions: CySysFlashSetWaitCycles() with the appropriate parameter to adjust the number
of clock cycles the cache will wait before sampling data comes back from Flash. If
the SYSCLK clock frequency decreases, call CySysFlashSetWaitCycles() to
improve CPU performance. See CySysFlashSetWaitCycles() description for more
information.
• PSoC 4000: The SYSCLK has a maximum speed of 16 MHz, so HFCLK
and SYSCLK dividers should be selected in a way to not to exceed 16
MHz for the System clock.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
30
Clocking
void CySysClkWriteImoFreq (uint32 freq)
Description: Sets the frequency of the IMO.
If IMO is currently driving the HFCLK, and if the HFCLK frequency decreases,
you can call CySysFlashSetWaitCycles () to improve CPU performance. See
CySysFlashSetWaitCycles () for more information.
For PSoC 4000 family of devices, maximum HFCLK frequency is 16 MHz. If IMO
is configured to frequencies above 16 MHz, ensure to set the appropriate HFCLK
predivider value first.
Parameters: All PSoC 4 families excluding PSoC 4000: Valid range [3-48] with step size
equals 1.
PSoC 4000: Valid range [24-48] with step size equals 4.
Note The CPU is halted if new frequency is invalid and project is compiled in
debug mode.
Return Value: None
Side Effects and If the SYSCLK frequency increases during device operation, call
Restrictions: CySysFlashSetWaitCycles() with the appropriate parameter to adjust the number
of clock cycles the cache will wait before sampling data comes back from Flash. If
the SYSCLK clock frequency decreases, call CySysFlashSetWaitCycles() to
improve CPU performance. See CySysFlashSetWaitCycles() description for more
information.
PSoC 4000: The SYSCLK has maximum speed of 16 MHz, so HFCLK and
SYSCLK dividers should be selected in a way, to not to exceed 16 MHz for the
System clock.
External Crystal Oscillator (ECO) APIs
cystatus CySysClkEcoStart(uint32 timeoutUs)
Description: Starts the External Crystal Oscillator (ECO). Refer to the device datasheet for
the ECO startup time.
The timeout interval is measured based on the system frequency defined by
PSoC Creator at build time. If System clock frequency is changed in runtime,
the CyDelayFreq() with the appropriate parameter should be called.
Parameters: timeoutUs: Timeout in microseconds. If zero is specified, the function starts the
crystal and returns CYRET_SUCCESS. If non-zero value is passed, the
CYRET_SUCCESS is returned once crystal is oscillating and amplitude
reached 60% and it does not mean 24 MHz crystal is within 50 ppm. If it is not
oscillating or amplitude didn't reach 60% after specified amount of time, the
CYRET_TIMEOUT is returned.
Return Value: CYRET_SUCCESS - Completed successfully. The ECO is oscillating and
amplitude reached 60% and it does not mean 24 MHz crystal is within 50 ppm.
CYRET_TIMEOUT - Timeout occurred
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
31
Clocking
void CySysClkEcoStop(void)
Description: Stops the megahertz crystal.
Parameters: None
Return Value: None
uint32 CySysClkEcoReadStatus(void)
Description: Read status bit for the megahertz crystal.
Parameters: None
Return Value: Non-zero indicates that ECO output reached 50 ppm.
void CySysClkWriteEcoDiv(uint32 divider)
Description: Selects value for the ECO divider.
The ECO must not be the HFCLK clock source when this function is called.
The HFCLK source can be changed to the other clock source by call to the
CySysClkWriteHfclkDirect() function. If the ECO sources the HFCLK this
function will not have any effect if compiler in release mode, and halt the
CPU when compiler in debug mode.
Parameters: divider: Power of 2 divider selection.
Define
Divider
CY_SYS_CLK_ECO_DIV1
CY_SYS_CLK_ECO_DIV2
CY_SYS_CLK_ECO_DIV4
CY_SYS_CLK_ECO_DIV8
HFCLK = ECO / 1
HFCLK = ECO / 2
HFCLK = ECO / 4
HFCLK = ECO / 8
Return Value: If the SYSCLK clock frequency increases during the device operation, call
CySysFlashSetWaitCycles() with the appropriate parameter to adjust the
number of clock cycles the cache will wait before sampling data comes back
from Flash. If the SYSCLK clock frequency decreases, you can call
CySysFlashSetWaitCycles() to improve the CPU performance. See
CySysFlashSetWaitCycles() description for more information.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
32
4
Power Management
There is a full range of power modes supported by PSoC devices to control power consumption and the
amount of available resources. See the following table for the supported power modes.
Table 1. Power modes
Architecture
PSoC 4
Family
4000
Active
4100 and 4200
4100 BLE and 4200 BLE

Sleep
Deep Sleep
Hibernate
Stop

PSoC 4 devices support the following power modes (in order of high to low power consumption): Active,
Sleep, Deep Sleep, Hibernate, and Stop. Active, Sleep and Deep-Sleep are standard ARM defined power
modes, supported by the ARM CPUs. Hibernate/Stop are even lower power modes that are entered from
firmware just like Deep-Sleep, but on wakeup the CPU (and all peripherals) goes through a full reset.
For the ARM-based devices (PSoC 4), an interrupt is required for the CPU to wake up. The Power
Management implementation assumes that wakeup time is configured with a separate component
(component-based wakeup time configuration) for an interrupt to be issued on terminal count.
All pending interrupts should be cleared before the device is put into low power mode, even if they are
masked.
The Power Management API is provided in the CyPm.c and CyPm.h files.
Implementation
For PSoC 4100 and PSoC 4200 devices, the software should set EXT_VCCD bit in the PWR_CONTROL
register when Vccd is shorted to Vddd on the board. This impacts the chip internal state transitions where
it is necessary to know whether Vccd is connected or floating to achieve minimum current in low power
modes. Note Setting this bit turns off the active regulator and will lead to a system reset unless both Vddd
and Vccd pins are supplied externally. Refer to the device TRM for more information.
It is safe to call PM APIs from the ISR. The wakeup conditions for Sleep and DeepSleep low power
modes are illustrated in the table below:
Interrupts State
Condition
Wakeup
ISR Execution
Unmasked
IRQ priority > current level
Yes
Yes
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
33
Power Management
Masked
IRQ priority ≤ current level
IRQ priority > current level
IRQ priority ≤ current level
No
Yes
No
No
No
No
Clock Configuration (PSoC 4100 BLE / PSoC 4200 BLE)
For PSoC 4100 BLE and PSoC 4200 BLE devices, the HFCLK source should be set to IMO before
switching the device into low power mode. The IMO should be enabled (by calling CySysClkImoStart(), if
it is not) and HFCLK source should be changed to IMO by calling
CySysClkWriteHfclkDirect(CY_SYS_CLK_HFCLK_IMO).
If the System clock frequency is increased by switching to the IMO, the CySysFlashSetWaitCycles()
function with an appropriate parameter should be called beforehand. Also, it can optionally be called after
lowering the System clock frequency in order to improve CPU performance. See
CySysFlashSetWaitCycles() description for the details.
Power Management APIs
void CySysPmSleep(void)
Description: Puts the part into the Sleep state. This is a CPU-centric power mode. It means that
the CPU has indicated that it is in “sleep” mode and its main clock can be
removed. It is identical to Active from a peripheral point of view. Any enabled
interrupts can cause wakeup from a Sleep mode.
Parameters: None
Return Value: None
Side Effects and None
Restrictions:
void CySysPmDeepSleep(void)
Description: Puts the part into the Deep Sleep state.
If firmware attempts to enter this mode before the system is ready (that is, when
PWR_CONTROL.LPM_READY = 0), then the device will go into Sleep mode
instead and automatically enter the originally intended mode when the hold-off
expires. The wakeup occurs when an interrupt is received from a DeepSleep or
Hibernate peripheral. For more details, see corresponding peripheral’s datasheet.
Parameters: None
Return Value: None
Side Effects and None
Restrictions:
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
34
Power Management
void CySysPmHibernate(void)
Description: It puts the part into the Hibernate state. Only SRAM and UDBs are retained; most
internal supplies are off. Wakeup is possible from a pin or a hibernate comparator
only.
Parameters: None
Return Value: None
Side Effects and This function does not apply to the PSoC 4000 family.
Restrictions:
It is expected that the firmware has already frozen the IO-Cells using
CySysPmFreezeIo() function before the call to this function. If this is omitted the
IO-cells will be frozen in the same way as they are in the Active to Deep Sleep
transition, but will lose their state on wake up (because of the reset occurring at
that time).
Because all CPU state is lost, the CPU will start up at the reset vector. To save
firmware state through Hibernate low power mode, corresponding variable should
be defined with CY_NOINIT attribute. It prevents data from being initialized to zero
on startup. The interrupt cause of the hibernate peripheral is retained, such that it
can be either read by the firmware or cause an interrupt after the firmware has
booted and enabled the corresponding interrupt. To distinguish the wakeup from
the Hibernate mode and the general Reset event, the CySysPmGetResetReason()
function could be used.
void CySysPmStop(void)
Description: Puts the part into the Stop state. All internal supplies are off; no state is retained.
Wakeup from Stop is performed by toggling the wakeup pin (PSoC 4100 /
PSoC 4200 / PSoC 4100M / PSoC 4200M – P0.7, PSoC 4100 BLE /
PSoC 4200 BLE – P2.2), causing a normal boot procedure to occur.
• To configure the wakeup pin, the Digital Input Pin component should be
placed on the schematic, assigned to the appropriate wakeup pin, and
resistively pulled up or down to the inverse state of the wakeup polarity.
• To distinguish the wakeup from the Stop mode and the general Reset
event, CySysPmGetResetReason() function could be used. The wakeup
pin is active low by default. The wakeup pin polarity could be changed with
the CySysPmSetWakeupPolarity() function.
Parameters: None
Return Value: None
Side Effects and This function does not apply to the PSoC 4000 family.
Restrictions:
This function freezes IO cells implicitly. It is not possible to enter STOP mode
before freezing the IO cells. The IO cells remain frozen after awake from the Stop
mode until the firmware unfreezes them after booting explicitly with
CySysPmUnfreezeIo() function call.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
35
Power Management
void CySysPmSetWakeupPolarity(uint32 polarity)
Description: Wake up from stop mode is performed by toggling the wakeup pin (P0.7), causing
a normal boot procedure to occur. This function assigns the wakeup pin active
level. Setting the wakeup pin to this level will cause the wakeup from stop mode.
The wakeup pin is active low by default.
Parameters: polarity: Wakeup pin active level
Define
Description
CY_PM_STOP_WAKEUP_ACTIVE_LOW
CY_PM_STOP_WAKEUP_ACTIVE_HIGH
Logical zero will wake up the chip
Logical one will wake up the chip
Return Value: None
Side Effects and None
Restrictions:
uint32 CySysPmGetResetReason(void)
Description: Retrieves last reset reason - transition from OFF/XRES/STOP/HIBERNATE to
RESET state. Note that waking up from STOP using XRES will be perceived as
general RESET.
Parameters: None
Return Value: Reset reason
Define
Reset reason
CY_PM_RESET_REASON_UNKN
CY_PM_RESET_REASON_XRES
Unknown
Transition from OFF/XRES to
RESET
Transition/wakeup from
HIBERNATE to RESET
Transition/wakeup from STOP to
RESET
CY_PM_RESET_REASON_WAKEUP_HIB
CY_PM_RESET_REASON_WAKEUP_STOP
Side Effects and None
Restrictions:
void CySysPmFreezeIo(void)
Description: Freezes IO-Cells directly to save IO-Cell state on wake up from Hibernate or Stop
mode. It is not required to call this function before entering Stop mode, since the
CySysPmStop() function freezes IO-Cells implicitly.
This API is not available for PSoC 4000 family of devices.
Parameters: None
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
36
Power Management
void CySysPmUnfreezeIo(void)
Description: The IO-Cells remain frozen after awake from Hibernate or Stop mode until the
firmware unfreezes them after booting. The call of this function unfreezes IO-Cells
explicitly.
If the firmware intent is to retain the data value on the port, then the value must be
read and re-written to the data register before calling this API. Furthermore, the
drive mode must be re-programmed. If this is not done, the pin state will change to
default state the moment the freeze is removed.
This API is not available for PSoC 4000 family of devices.
Parameters: None
Return Value: None
void CySysPmSetWakeupHoldoff(uint32 hfclkFrequencyMhz)
Description: Sets the Deep Sleep wakeup time by scaling the hold-off to the HFCLK frequency.
This function must be called before increasing HFCLK clock frequency. It can
optionally be called after lowering HFCLK clock frequency in order to improve
Deep Sleep wakeup time.
It is functionally acceptable to leave the default hold-off setting, but Deep Sleep
wakeup time may exceed the specification.
This function is applicable only for the PSoC 4000 family.
Parameters: uint32 hfclkFrequencyMhz: The HFCLK frequency in MHz. For example, if IMO
frequency is 24 MHz, and HFCLK divider is 2, the function should be called with
parameter 12 (the SYSCLK divider value should not be taken into account).
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
37
5
Interrupts
The APIs in this chapter apply to all architectures except as noted. The Interrupts API is provided in the
CyLib.c and CyLib.h files. Refer also to the Interrupt component datasheet for more information about
interrupts.
APIs
CyGlobalIntEnable
Description: Macro statement that allows interrupts execution by clearing the
PRIMASK register. Refer to the ARM Cortex-M0 documentation for more details.
CyGlobalIntDisable
Description: Macro statement that prevents interrupts execution by setting the
PRIMASK register. Refer to the ARM Cortex-M0 documentation for more details.
uint32 CyDisableInts()
Description: Disables all interrupts.
Parameters: None
Return Value: 32-bit mask of interrupts previously enabled.
void CyEnableInts(uint32 mask)
Description: Enables all interrupts specified in the 32-bit mask.
Parameters: mask: 32-bit mask of interrupts to enable.
Return Value: None
void CyIntEnable(uint8 number)
Description: Enables the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31]
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
38
Interrupts
void CyIntDisable(uint8 number)
Description: Disables the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31]
Return Value: None
uint8 CyIntGetState(uint8 number)
Description: Gets the enable state of the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31].
Return Value: Enable status: 1 if enabled, 0 if disabled.
cyisraddress CyIntSetVector(uint8 number, cyisraddress address)
Description: Sets the interrupt vector of the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31].
address: Pointer to an interrupt service routine.
Return Value: Previous interrupt vector value.
cyisraddress CyIntGetVector(uint8 number)
Description: Gets the interrupt vector of the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31].
Return Value: Interrupt vector value.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
39
Interrupts
cyisraddress CyIntSetSysVector(uint8 number, cyisraddress address)
Description: This function applies to ARM based processors only. It sets the interrupt vector of
the specified exception. These exceptions in the ARM architecture operate similar
to user interrupts, but are specified by the system architecture of the processor.
The number of each exception is fixed. Note that the numbering of these
exceptions is separate from the numbering used for user interrupts.
Parameters: number: Exception number. Valid range: [0-15].
Define
Exception Number
CY_INT_NMI_IRQN
CY_INT_HARD_FAULT_IRQN
CY_INT_MEM_MANAGE_IRQN
Non Maskable Interrupt.
Hard Fault Interrupt.
Memory Management Interrupt.
Not available for PSoC 4.
CY_INT_BUS_FAULT_IRQN
Bus Fault Interrupt.
Not available for PSoC 4.
CY_INT_USAGE_FAULT_IRQN
Usage Fault Interrupt,
Not available for PSoC 4.
CY_INT_SVCALL_IRQN
SV Call Interrupt.
CY_INT_DEBUG_MONITOR_IRQN Debug Monitor Interrupt.
Not available for PSoC 4.
CY_INT_PEND_SV_IRQN
Pend SV Interrupt.
CY_INT_SYSTICK_IRQN
System Tick Interrupt.
address: Pointer to an interrupt service routine
Return Value: Previous interrupt vector value
cyisraddress CyIntGetSysVector(uint8 number)
Description: This function applies to ARM based processors only. It gets the interrupt vector of
the specified exception. These exceptions in the ARM architecture operate similar
to user interrupts, but are specified by the system architecture of the processor.
The number of each exception is fixed. Note that the numbering of these
exceptions is separate from the numbering used for user interrupts.
Parameters: number: Exception number. Valid range: [0-15].
Return Value: Interrupt vector value
void CyIntSetPriority(uint8 number, uint8 priority)
Description: Sets the priority of the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31]
priority: Interrupt priority. 0 is the highest priority. Valid range: [0-7]
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
40
Interrupts
uint8 CyIntGetPriority(uint8 number)
Description: Gets the priority of the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31]
Return Value: Interrupt priority
void CyIntSetPending(uint8 number)
Description: Forces the specified interrupt number to be pending.
Parameters: number: Interrupt number. Valid range: [0-31]
Return Value: None
void CyIntClearPending(uint8 number)
Description: Clears any pending interrupt for the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31]
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
41
6
Pins
For PSoC 4, there are status registers, data output registers, and port configuration registers only, so the
macro takes two arguments: port register and pin number. Each port has these registers addresses
defined:
CYREG_PRTx_DR
CYREG_PRTx_PS
CYREG_PRTx_PC
The x is the port number, and the second argument is the pin number.
PSoC 4 APIs
CY_SYS_PINS_READ_PIN(portPS, pin)
Description: Reads the current value on the pin (pin state, PS).
Parameters: portPS: Address of port pin status register (uint32). Definitions for each port are
provided in the cydevice_trm.h file in the form: CYREG_PRTx_PS, where x is a
port number 0 - 4.
pin: pin number 0 – 7.
Return Value: Pin state:
0: Logic low value
Non-0: Logic high value
CY_SYS_PINS_SET_PIN(portDR, pin)
Description: Set the output value for the pin (data register, DR) to a logic high.
Note that this only has an effect for pins configured as software pins that are not
driven by hardware.
The macro operation is not atomic. It is not guaranteed that the shared register
will remain uncorrupted during simultaneous read/modify/write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific interrupt is
disabled or within the critical section (all interrupts are disabled).
Parameters: portDR: Address of port output pin data register (uint32). Definitions for each port
are provided in the cydevice_trm.h file in the form: CYREG_PRTx_DR, where x is
a port number 0 - 4.
pin: pin number 0 - 7.
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
42
Pins
CY_SYS_PINS_CLEAR_PIN(portDR, pin)
Description: This macro sets the state of the specified pin to zero.
The macro operation is not atomic. It is not guaranteed that the shared register
will remain uncorrupted during simultaneous read/modify/write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific interrupt is
disabled or within the critical section (all interrupts are disabled).
Parameters: portDR: Address of port output pin data register (uint32). Definitions for each port
are provided in the cydevice_trm.h file in the form: CYREG_PRTx_DR, where x is
a port number 0 - 4.
pin: pin number 0 – 7.
Return Value: None
CY_SYS_PINS_SET_DRIVE_MODE(portPC, pin, mode)
Description: Sets the drive mode for the pin (DM).
The macro operation is not atomic. It is not guaranteed that the shared register
will remain uncorrupted during simultaneous read/modify/write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific interrupt is
disabled or within the critical section (all interrupts are disabled).
Parameters: portPC: Address of port configuration register (uint32). Definitions for each port
are provided in the cydevice_trm.h file in the form: CYREG_PRTx_PC, where x is
a port number 0 - 4.
pin: pin number 0 – 7.
mode: Desired drive mode
Define
Source
CY_SYS_PINS_DM_ALG_HIZ
Analog HiZ
CY_SYS_PINS_DM_DIG_HIZ
Digital HiZ
CY_SYS_PINS_DM_RES_UP
Resistive pull up
CY_SYS_PINS_DM_RES_DWN
Resistive pull down
CY_SYS_PINS_DM_OD_LO
Open drain - drive low
CY_SYS_PINS_DM_OD_HI
Open drain - drive high
CY_SYS_PINS_DM_STRONG
Strong CMOS Output
CY_SYS_PINS_DM_RES_UPDWN
Resistive pull up/down
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
43
Pins
CY_SYS_PINS_READ_DRIVE_MODE(portPC, pin)
Description: Reads the drive mode for the pin (DM).
Parameters: portPC: Address of port configuration register (uint32). Definitions for each port are
provided in the cydevice_trm.h file in the form: CYREG_PRTx_PC, where x is a
port number 0 - 4.
pin: pin number 0 – 7.
Return Value: Current drive mode for the pin
®
Define
Source
CY_SYS_PINS_DM_ALG_HIZ
Analog HiZ
CY_SYS_PINS_DM_DIG_HIZ
Digital HiZ
CY_SYS_PINS_DM_RES_UP
Resistive pull up
CY_SYS_PINS_DM_RES_DWN
Resistive pull down
CY_SYS_PINS_DM_OD_LO
Open drain - drive low
CY_SYS_PINS_DM_OD_HI
Open drain - drive high
CY_SYS_PINS_DM_STRONG
Strong CMOS Output
CY_SYS_PINS_DM_RES_UPDWN
Resistive pull up/down
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
44
7
Register Access
A library of macros provides read and write access to the registers of the device. These macros are used
with the defined values made available in the generated cydevice_trm.h and cyfitter.h files. Access to
registers should be made using these macros and not the functions that are used to implement the
macros. This allows for device independent code generation.
The PSoC 4 processor architecture use little endian ordering.
SRAM and Flash storage in all architectures is done using the endianness of the architecture and
compilers. However, the registers in all these chips are laid out in little endian order. These macros allow
register accesses to match this little endian ordering. If you perform operations on multi-byte registers
without using these macros, you must consider the byte ordering of the specific architecture. Examples
include usage of DMA to transfer between memory and registers, as well as function calls that are passed
an array of bytes in memory.
The PSoC 4 requires these accesses to be aligned to the width of the transaction.
The PSoC 4 requires peripheral register accesses to match the hardware register size. Otherwise, the
peripheral might ignore the transfer and Hard Fault exception will be generated.
APIs
uint8 CY_GET_REG8(uint32 reg)
Description: Reads the 8-bit value from the specified register.
Parameters: reg: Register address (
Return Value: Read value
void CY_SET_REG8(uint32 reg, uint8 value)
Description: Writes the 8-bit value to the specified register.
Parameters: reg: Register address
value: Value to write
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
45
uint16 CY_GET_REG16(uint32 reg)
Description: Reads the 16-bit value from the specified register. This macro implements the byte
swapping required for proper operation.
Parameters: reg: Register address
Return Value: Read value
void CY_SET_REG16(uint32 reg, uint16 value)
Description: Writes the 16-bit value to the specified register. This macro implements the byte
swapping required for proper operation.
Parameters: reg: Register address
value: Value to write
Return Value: None
uint32 CY_GET_REG24(uint32 reg)
Description: Reads the 24-bit value from the specified register. This macro implements the byte
swapping required for proper operation.
Parameters: reg: Register address
Return Value: Read value
void CY_SET_REG24(uint32 reg, uint32 value)
Description: Writes the 24-bit value to the specified register. This macro implements the byte
swapping required for proper operation.
Parameters: reg: Register address
value: Value to write
Return Value: None
uint32 CY_GET_REG32(uint32 reg)
Description: Reads the 32-bit value from the specified register. This macro implements the byte
swapping required for proper operation.
Parameters: reg: Register address
Return Value: Read value
void CY_SET_REG32(uint32 reg, uint32 value)
Description: Writes the 32-bit value to the specified register. This macro implements the byte
swapping required for proper operation.
Parameters: reg: Register address
value: Value to write
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
46
Register Access
uint8 CY_GET_XTND_REG8(uint32 reg)
Description: Reads the 8-bit value from the specified register. Identical to CY_GET_REG8 for
PSoC 4.
Parameters: reg: Register address
Return Value: Read value
void CY_SET_XTND_REG8(uint32 reg, uint8 value)
Description: Writes the 8-bit value to the specified register. Identical to CY_SET_REG8 for
PSoC 4.
Parameters: reg: Register address
value: Value to write
Return Value: None
uint16 CY_GET_XTND_REG16(uint32 reg)
Description: Reads the 16-bit value from the specified register. This macro implements the byte
swapping required for proper operation. Identical to CY_GET_REG16 for PSoC 4.
Parameters: reg: Register address
Return Value: Read value
void CY_SET_XTND_REG16(uint32 reg, uint16 value)
Description: Writes the 16-bit value to the specified register. This macro implements the byte
swapping required for proper operation. Identical to CY_SET_REG16 for PSoC 4.
Parameters: reg: Register address
value: Value to write
Return Value: None
uint32 CY_GET_XTND_REG24(uint32 reg)
Description: Reads the 24-bit value from the specified register. This macro implements the byte
swapping required for proper operation. Identical to CY_GET_REG24 for PSoC 4.
Parameters: reg: Register address
Return Value: Read value
void CY_SET_XTND_REG24(uint32 reg, uint32 value)
Description: Writes the 24-bit value to the specified register. This macro implements the byte
swapping required for proper operation. Identical to CY_SET_REG24 for PSoC 4.
Parameters: reg: Register address
Value to write
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
47
uint32 CY_GET_XTND_REG32(uint32 reg)
Description: Reads the 32-bit value from the specified register. This macro implements the byte
swapping required for proper operation. Identical to CY_GET_REG32 for PSoC 4.
Parameters: reg: Register address
Return Value: Read value
void CY_SET_XTND_REG32(uint32 reg, uint32 value)
Description: Writes the 32-bit value to the specified register. This macro implements the byte
swapping required for proper operation. Identical to CY_SET_REG32 for PSoC 4.
Parameters: reg: Register address
value: Value to write
Return Value: None
Bit Field Manipulation
The following macros shall provide bit field manipulation functionality.
Macro
Description
CY_GET_REG8_FIELD
CY_SET_REG8_FIELD
Reads the specified bit field value from the specified 8-bit register.
Sets the specified bit field value of the specified 8-bit register to the
required value.
Clears the specified bit field of the specified 8-bit register.
Reads the specified bit field value from the specified 16-bit register.
Sets the specified bit field value of the specified 16-bit register to the
required value.
Clears the specified bit field of the specified 16-bit register.
Reads the specified bit field value from the specified 32-bit register.
Sets the specified bit field value of the specified 32-bit register to the
required value.
Clears the specified bit field of the specified 32-bit register.
Reads the specified bit field value from the given 32-bit value.
Sets the specified bit field value within a given 32-bit value.
CY_CLEAR_REG8_FIELD
CY_GET_REG16_FIELD
CY_SET_REG16_FIELD
CY_CLEAR_REG16_FIELD
CY_GET_REG32_FIELD
CY_SET_REG32_FIELD
CY_CLEAR_REG32_FIELD
CY_GET_FIELD
CY_SET_FIELD
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
48
Register Access
CY_GET_REG8_FIELD(registerName, bitFieldName)
Description: Reads the specified bit field value from the specified 8-bit register.
The macro operation is not atomic. It is not guaranteed that shared register will
remain uncorrupted during simultaneous read-modify-write operations performed
by two threads (main and interrupt threads). To guarantee data integrity in such
cases, the macro should be invoked while the specific interrupt is disabled or
within critical section (all interrupts are disabled).
Using this macro on registers of 32-bit and 16-bit width will generate a hard fault
exception. Examples of 8-bit registers are the UDB registers.
Parameters: registerName: fully qualified name of the PSoC 4 device register
bitFieldName: fully qualified name of the bit field. The biFieldName is automatically
appended with __OFFSET and __SIZE by the macro for usage.
For fully qualified names of register and bit field, please refer to the respective
PSoC family register TRM.
Return Value: Zero if specified bit field equals zero, and non-zero value, otherwise. The return
value is of type uint32.
CY_SET_REG8_FIELD(registerName, bitFieldName, value)
Description: Sets the specified bit field value of the specified 8-bit register to the
required value.
The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).
Using this macro on registers of 32-bit and 16-bit width will generate a hard
fault exception. Examples of 8-bit registers are the UDB registers.
Parameters: registerName: fully qualified name of the PSoC 4 device register
bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.
value: value that the field must be configured for
For fully qualified names of register and bit field and the possible values the
field can take, please refer to the respective PSoC family register TRM.
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
49
CY_CLEAR_REG8_FIELD(registerName, bitFieldName)
Description: Clears the specified bit field of the specified 8-bit register.
The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).
Using this macro on registers of 32-bit and 16-bit width will generate a hard
fault exception. Examples of 8-bit registers are the UDB registers.
Parameters: registerName: fully qualified name of the PSoC 4 device register
bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.
For fully qualified names of register and bit field and the possible values the
field can take, please refer to the respective PSoC family register TRM.
Return Value: None
CY_GET_REG16_FIELD(registerName, bitFieldName)
Description: Reads the specified bit field value from the specified 16-bit register.
The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).
Using this macro on registers of 32-bit and 8-bit width will generate a hard
fault exception. Examples of 16-bit registers are the UDB registers.
Parameters: registerName: fully qualified name of the PSoC 4 device register
bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.
For fully qualified names of register and bit field, please refer to the
respective PSoC family register TRM.
Return Value: Zero if specified bit field equals zero, and non-zero value, otherwise. The
return value is of type uint32.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
50
Register Access
CY_SET_REG16_FIELD(registerName, bitFieldName, value)
Description: Sets the specified bit field value of the specified 16-bit register to the
required value.
The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).
Using this macro on registers of 32-bit and 8-bit width will generate a hard
fault exception. Examples of 16-bit registers are the UDB registers.
Parameters: registerName: fully qualified name of the PSoC 4 device register
bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.
value: value that the field must be configured for
For fully qualified names of register and bit field and the possible values the
field can take, please refer to the respective PSoC family register TRM.
Return Value: None
CY_CLEAR_REG16_FIELD(registerName, bitFieldName)
Description: Clears the specified bit field of the specified 16-bit register.
The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).
Using this macro on registers of 32-bit and 8-bit width will generate a hard
fault exception. Examples of 16-bit registers are the UDB registers.
Parameters: registerName: fully qualified name of the PSoC 4 device register
bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.
For fully qualified names of register and bit field and the possible values the
field can take, please refer to the respective PSoC family register TRM.
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
51
CY_GET_REG32_FIELD(registerName, bitFieldName)
Description: Reads the specified bit field value from the specified 32-bit register.
The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).
Using this macro on registers of 16-bit and 8-bit width will generate a hard
fault exception.
Parameters: registerName: fully qualified name of the PSoC 4 device register
bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.
For fully qualified names of register and bit field, please refer to the
respective PSoC family register TRM.
Return Value: Zero if specified bit field equals zero, and non-zero value, otherwise. The
return value is of type uint32.
CY_SET_REG32_FIELD(registerName, bitFieldName, value)
Description: Sets the specified bit field value of the specified 32-bit register to the
required value.
The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).
Using this macro on registers of 16-bit and 8-bit width will generate a hard
fault exception.
Parameters: registerName: fully qualified name of the PSoC 4 device register
bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.
value: value that the field must be configured for
For fully qualified names of register and bit field and the possible values the
field can take, please refer to the respective PSoC family register TRM.
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
52
Register Access
CY_CLEAR_REG32_FIELD(registerName, bitFieldName)
Description: Clears the specified bit field of the specified 32-bit register.
The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).
Using this macro on registers of 16-bit and 8-bit width will generate a hard
fault exception.
Parameters: registerName: fully qualified name of the PSoC 4 device register
bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.
For fully qualified names of register and bit field and the possible values the
field can take, please refer to the respective PSoC family register TRM.
Return Value: None
CY_GET_FIELD(regValue, bitFieldName)
Description: Reads the specified bit field value from the given 32-bit value.
The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).
This macro has to be used in conjunction with CY_GET_REG32 for atomic
reads.
Parameters: regValue: value as read by CY_GET_REG32
bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.
For fully qualified names of bit field and the possible values the field can
take, please refer to the respective PSoC family register TRM.
Return Value: Zero if specified bit field equals zero, and non-zero value, otherwise. The
return value is of type uint32.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
53
CY_SET_FIELD(regValue, bitFieldName, value)
Description: Sets the specified bit field value within a given 32-bit value.
The macro operation is not atomic. It is not guaranteed that shared register
will remain uncorrupted during simultaneous read-modify-write operations
performed by two threads (main and interrupt threads). To guarantee data
integrity in such cases, the macro should be invoked while the specific
interrupt is disabled or within critical section (all interrupts are disabled).
This macro has to be used in conjunction with CY_GET_REG32 for atomic
reads and CY_SET_REG32 for atomic writes.
Parameters: regValue: value as read by CY_GET_REG32
bitFieldName: fully qualified name of the bit field. The biFieldName is
automatically appended with __OFFSET and __SIZE by the macro for
usage.
value: value that the field must be configured for
For fully qualified names of bit field and the possible values the field can
take, please refer to the respective PSoC family register TRM.
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
54
8
Flash
Memory Architecture
Flash memory in PSoC devices provides nonvolatile storage for user firmware, user configuration data,
and bulk data storage. The main flash memory area contains up to 256 KB of user program space,
depending on the device type.
See the device datasheet and TRM for more information on Flash architecture.
The Flash and API provide following device-specific definitions:
Value
Description
CY_FLASH_BASE
CY_FLASH_SIZE
CY_FLASH_SIZEOF_ARRAY
CY_FLASH_SIZEOF_ROW
CY_FLASH_NUMBER_ROWS
CY_FLASH_NUMBER_ARRAYS
The base pointer of the Flash memory.
The size of the Flash memory.
The size of Flash array.
The size of the Flash row.
The number of Flash row.
The number of Flash arrays.
PSoC devices include a flexible flash-protection model that prevents access and visibility to on-chip flash
memory. The device offers the ability to assign one of four protection levels to each row of flash:

Unprotected

Full Protection
The required protection level can be selected using the Flash Security tab of the PSoC Creator DWR
file. Flash protection levels can only be changed by performing a complete flash erase. The Flash
programming APIs will fail to write a row with Full Protection level. For more information on protection
model, refer to the Flash Security Editor section in the PSoC Creator Help.
Working with Flash
Flash programming operations are implemented as system calls. System calls are executed out of SROM
in the privileged mode of operation. Users have no access to read or modify the SROM code. The CPU
requests the system call by writing the function opcode and parameters to the System Performance
Controller (SPC) input registers, and then requesting the SROM to execute the function. Based on the
function opcode, the SPC executes the corresponding system call from SROM and updates the SPC
status register. The CPU should read this status register for the pass/fail result of the function execution.
As part of function execution, the code in SROM interacts with the SPC interface to do the actual flash
programming operations.
It can take as many as 20 milliseconds to write to flash. During this time, the device should not be reset,
or unexpected changes may be made to portions of the flash. Reset sources include XRES pin, software
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
55
Flash
reset, and watchdog. Make sure that these are not inadvertently activated. Also, the low voltage detect
circuits should be configured to generate an interrupt instead of a reset.
The flash can be read either by the cache controller or the SPC. Flash write can be performed only by the
SPC. Both the SPC and cache cannot simultaneously access flash memory. If the cache controller tries to
access flash at the same time as the SPC, then it must wait until the SPC completes its flash access
operation. The CPU, which accesses the flash memory through the cache controller, is therefore also
stalled in this circumstance. If a CPU code fetch has to be done from flash memory due to a cache miss
condition, then the cache would have to wait until the SPC completes the flash write operation. Thus the
CPU code execution will also be halted till the flash write is complete. Flash is directly mapped into
memory space and can be read directly.
Note Flash write operations on PSoC 4000 devices modify the clock settings of the device during the
period of the write operation. Refer to the CySysFlashWriteRow() API documentation for details.
APIs
uint32 CySysFlashWriteRow(uint32 rowNum, const uint8 rowData[])
Description: Erases a row of Flash and programs it with the new data
Parameters: uint32 rowNum: The flash row number. The number of the flash rows is defined
by the CY_FLASH_NUMBER_ROWS macro for the selected device. Refer to the
device datasheet for the details.
uint8* rowData: Array of bytes to write. The size of the array must be equal to the
flash row size. The flash row size for the selected device is defined by the
CY_FLASH_SIZEOF_ROW macro. Refer to the device datasheet for the details.
Return Value: Status:
Value
Description
CY_SYS_FLASH_SUCCESS
CY_SYS_FLASH_INVALID_ADDR
CY_SYS_FLASH_PROTECTED
Other non-zero
Successful
Specified flash row address is invalid
Specified flash row is protected
Failure
Side Effects and The IMO must be enabled before calling this function. The operation of the flash
Restrictions: writing hardware is dependent on the IMO.
For PSoC 4000, PSoC 4100 BLE and PSoC 4200 BLE devices (PSoC 4100 BLE
and PSoC 4200 BLE devices with 256K of Flash memory are not affected), this
API will automatically modify the clock settings for the device. Writing to flash
requires that changes be made to the IMO and HFCLK settings. The
configuration is restored before returning. This will impact the operation of most of
the hardware in the device.
For PSoC 4000 devices, the HFCLK will have several frequency changes during
the operation of this API between a minimum frequency of the current IMO
frequency divided by 4 and a maximum frequency of 12 MHz.
For PSoC 4100 BLE and PSoC 4200 BLE, the IMO frequency is set to 48 MHz.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
56
Flash
void CySysFlashSetWaitCycles(uint32 freq)
Description: Sets the number of clock cycles the cache will wait before it samples data coming
back from Flash. This function must be called before increasing SYSCLK clock
frequency. It can optionally be called after lowering SYSCLK clock frequency in
order to improve CPU performance.
Parameters: freq: Valid range [3-48]. Frequency for operation of the SYSCLK
Note: Invalid frequency will be ignored.
Return Value: None
Side Effects and None
Restrictions:
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
57
9
System Functions
These functions apply to all architectures.
General APIs
uint8 CyEnterCriticalSection(void)
Description: The function prevents interrupts being executed by setting PRIMASK register and
returns previous state to be used for critical section exit using CyExitCriticalSection()
function. Please refer to the ARM Cortex-M0 documentation for the more details.
Note To avoid corrupting the processor state, it must be the policy that all interrupt
routines restore the interrupt enable bits as they were found on entry.
Parameters: None
Return Value: Returns 0 if interrupts were previously enabled or 1 if interrupts were previously
disabled.
void CyExitCriticalSection(uint8 savedIntrStatus)
Description: The function restores the interrupt state as it was before CyEnterCriticalSection()
function call. If interrupts were allowed before CyEnterCriticalSection() function call,
the CyExitCriticalSection() clears the PRIMASK register. Please refer to the ARM
Cortex-M0 documentation for the more details.
If an interrupt was already in the pending state, the processor accepts the interrupt
after CyExitCriticalSection() function was executed. However, processor can execute
up to one additional instruction before entering the interrupt service routine.
Parameters: uint8 savedIntrStatus: Saved interrupt status returned by the
CyEnterCriticalSection() function.
Return Value: None
void CYASSERT(uint32 expr)
Description: Macro that evaluates the expression and if it is false (evaluates to 0) then the
processor is halted. This macro is evaluated unless NDEBUG is defined. If NDEBUG
is defined, then no code is generated for this macro. NDEBUG is defined by default
for a Release build setting and not defined for a Debug build setting.
Parameters: expr: Logical expression. Asserts if false.
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
58
System Functions
void CyHalt(uint8 reason)
Description: Halts the CPU.
Parameters: reason: Value to be passed for debugging. This value may be useful to know the
reason why CyHalt() was invoked.
Return Value: None
void CySoftwareReset(void)
Description: Forces a software reset of the device.
Parameters: None
Return Value: None
void CyGetUniqueID(uint32* uniqueId)
Description: Returns the 64-bit unique id of the device
Parameters: uniqueId: Pointer to a two element 32-bit unsigned integer array.
Return Value: Returns the 64-bit unique id of the device by loading them into the integer array
pointed to by uniqueId.
CyDelay APIs
There are four CyDelay APIs that implement simple software-based delay loops. The loops compensate
for SYSCLK frequency.
The CyDelay functions provide a minimum delay. If the processor is interrupted, the length of the loop will
be extended by as long as it takes to implement the interrupt. Other overhead factors, including function
entry and exit, may also affect the total length of time spent executing the function. This will be especially
apparent when the nominal delay time is small.
void CyDelay(uint32 milliseconds)
Description: Delay by the specified number of milliseconds. By default the number of cycles to
delay is calculated based on the clock configuration entered in PSoC Creator. If
the clock configuration is changed at run-time, then the function CyDelayFreq is
used to indicate the new SYSCLK frequency. CyDelay is used by several
components, so changing the clock frequency without updating the frequency
setting for the delay can cause those components to fail.
Parameters: milliseconds: Number of milliseconds to delay.
Return Value: None
Side Effects and CyDelay has been implemented with the instruction cache assumed enabled.
Restrictions:
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
59
System Functions
void CyDelayUs(uint16 microseconds)
Description: Delay by the specified number of microseconds. By default the number of cycles
to delay is calculated based on the clock configuration entered in PSoC Creator.
If the clock configuration is changed at run-time, then the function CyDelayFreq is
used to indicate the new SYSCLK frequency. CyDelayUs is used by several
components, so changing the clock frequency without updating the frequency
setting for the delay can cause those components to fail.
Parameters: microseconds: Number of microseconds to delay.
Return Value: Void
Side Effects and CyDelayUS has been implemented with the instruction cache assumed enabled.
Restrictions: If the SYSCLK frequency is a small non-integer number, the actual delay can be
up to twice as long as the nominal value. The actual delay cannot be shorter than
the nominal one.
void CyDelayFreq(uint32 freq)
Description: Sets the SYSCLK frequency used to calculate the number of cycles needed to
implement a delay with CyDelay. By default the frequency used is based on the
value determined by PSoC Creator at build time.
Parameters: freq: SYSCLK frequency in Hz.
0: Use the default value
non-0: Set frequency value
Return Value: None
void CyDelayCycles(uint32 cycles)
Description: Delay by the specified number of cycles using a software delay loop.
The execution overhead is in range of 16-23 cycles depending on the number of
the delay cycles and device family. The 16-cycle overhead means that
CyDelayCycles(100), will be executed for 116 cycles.
Parameters: cycles: Number of cycles to delay. Valid range is from 0 to the maximum uint32
type value.
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
60
System Functions
Voltage Detect APIs (PSoC 4100 / PSoC 4200 / PSoC 4100 BLE /
PSoC 4200 BLE)
void CySysLvdEnable(uint32 threshold)
Description: Sets the voltage trip level, enables the output of the digital low-voltage monitor,
and unmasks the associated interrupt in the LVD block.
Note The associated global interrupt enable/disable state is not changed by the
function. The Interrupt component’s API should be used to register the interrupt
service routine and to enable/disable associated interrupt.
Parameters: threshold: Threshold selection for Low Voltage Detect circuit. Threshold variation
is +/- 2.5% from these typical voltage choices.
Define
Voltage threshold
CY_LVD_THRESHOLD_1_75_V
CY_LVD_THRESHOLD_1_80_V
CY_LVD_THRESHOLD_1_90_V
CY_LVD_THRESHOLD_2_00_V
CY_LVD_THRESHOLD_2_10_V
CY_LVD_THRESHOLD_2_20_V
CY_LVD_THRESHOLD_2_30_V
CY_LVD_THRESHOLD_2_40_V
CY_LVD_THRESHOLD_2_50_V
CY_LVD_THRESHOLD_2_60_V
CY_LVD_THRESHOLD_2_70_V
CY_LVD_THRESHOLD_2_80_V
CY_LVD_THRESHOLD_2_90_V
CY_LVD_THRESHOLD_3_00_V
CY_LVD_THRESHOLD_3_20_V
CY_LVD_THRESHOLD_4_50_V
1.75 V
1.80 V
1.90 V
2.00 V
2.10 V
2.20 V
2.30 V
2.40 V
2.50 V
2.60 V
2.70 V
2.80 V
2.90 V
3.00 V
3.20 V
4.50 V
Return Value: None
void CySysLvdDisable(void)
Description: Disables the low voltage detection. Low voltage interrupt is masked in LVD
block.
Note The associated global interrupt enable/disable state is not changed by the
function. The Interrupt component’s API should be used to enable/disable
associated interrupt.
Parameters: None
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
61
System Functions
uint32 CySysLvdGetInterruptSource(void)
Description: Gets the low voltage detection interrupt status (without clearing).
Parameters: None
Return Value: Interrupt request value:
•
CY_SYS_LVD_INT - Indicates an Low Voltage Detect interrupt
void CySysLvdClearInterrupt(void)
Description: Clears the low voltage detection interrupt status.
Parameters: None
Return Value: None
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
62
10
Startup and Linking
The cy_boot component is responsible for the startup of the system. The following functionality has been
implemented:

Provide the reset vector

Setup processor for execution

Setup interrupts

Setup the stack

Configure the device

Initialize static and global variables with initialization values

Clear all remaining static and global variables

Integrate with the bootloader functionality

Preserve the reset status

Call main() C entry point
The device startup procedure configures the device to meet datasheet and PSoC Creator project
specifications. Startup begins after the release of a reset source, or after the end of a power supply ramp.
There are two main portions of startup: hardware startup and firmware startup. During hardware startup,
the CPU is halted, and other resources configure the device. During firmware startup, the CPU runs code
generated by PSoC Creator to configure the device. When startup ends, the device is fully configured,
and its CPU begins execution of user-authored main() code.
The hardware startup configures the device to meet the general performance specifications given in the
datasheet. The hardware startup phase begins after a power supply ramp or reset event. There are two
phases of hardware startup: reset and boot. After hardware startup ends, code execution from Flash
begins.
Firmware startup configures the PSoC device to behave as described in the PSoC Creator project. It
begins at the end of hardware startup. The PSoC device’s CPU begins executing user-authored main()
code after the completion of firmware startup. The main task of firmware startup is to populate
configuration registers such that the PSoC device behaves as designed in the PSoC Creator project. This
includes configuring analog and digital peripherals, as well as system resources such as clocks and
routing.
The startup procedure may be altered to better fit a specific application’s needs. There are two ways to
modify device startup: using the PSoC Creator design-wide resources (DWR) interface, and modifying the
device startup code.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
63
Startup and Linking
The startup and linker scripts have been custom developed by Cypress, but both of the toolchain vendors
that we currently support provide example linker implementations and complete libraries that solve many
of the issues that have been created by our custom implementations.
For the more information on the PSoC 4’s CPU architecture, refer to the Cortex™-M0 Technical
Reference Manual on infocenter.arm.com.
GCC Implementation
PSoC Creator integrates the GCC ARM Embedded compiler including making the Newlib-nano and
newlib libraries. Refer to the Red Hat newlib C Library for the C library reference manual.
The newlib-nano is configured by default. To choose newlib library, open the Build Settings dialog >
ARM GCC 4.8.4 > Linker > General, and set the “Use newlib-nano” option to False.
By default, with the GNU ARM compiler, the string formatting functions in the C run-time library return
empty strings for floating-point conversions. The newlib-nano library is a stripped-down version of the full
C newlib. It does not include support for floating point formatting and other memory-intensive features.
There are two solutions to this problem: enable floating-point formatting support in newlib-nano, or
change the library to the full newlib.
To enable floating-point formatting, open the Build Settings dialog, go to the Linker page, and add the
string -u _printf_float to the command line options. This change will result in an increase in Flash
and RAM usage in your application.
Note If you also wish to use the scanf functions with floating-point numbers you should add the string
–u _scanf_float as well, with another increase in Flash and RAM usage.
Realview Implementation (applicable for MDK)
Use all the standard libraries (C standardlib, C microlib, fplib, mathlib). All of these libraries are linked in
by default.

Support for RTOS and user replacement of routines. This is possible because the library routines
are denoted as "weak" allowing their replacement if another implementation is provided.

A mechanism is provided that allows for the replacement of the provided linker/scatter file with a
user version. This is implemented by allowing the user to create the file local to their project and
having a build setting that allows the specification of this file as the linker/scatter file instead of the
file provided automatically.

Currently the heap and stack size are specified as a fixed quantity (4 K Stack, 1 K Heap). If
possible the requirement to specify Heap and Stack sizes should be removed entirely. If that is
not possible, then these values should be the defaults with the option to choose other values in
the Design-Wide Resources GUI.

All the code in the Generated Source tree is compiled into a single library as part of the build
process. Then that compiled library is linked in with the user code in the final link.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
64
Startup and Linking
CMSIS Support
Cortex Microcontroller Software Interface Standard (CMSIS) is a standard from ARM for interacting with
Cortex M-series processors. There are multiple levels of support. The Core Peripheral Access Layer
(CMSIS Core) support is provided. For the more information refer to CMSIS - Cortex Microcontroller
Software Interface Standard on www.arm.com.
PSoC Creator 3.2 provides support for CMSIS Core version 4.0. Also, PSoC Creator 3.2 provides the
ability to use a custom version of the CMSIS Core.
The following diagram shows how CMSIS Core version 4.0 files are integrated into the cy_boot
component and how custom version of CMSIS Core files can be integrated.
core_cm4_simd.h
core_cmInstr.h
core_cmInstr.h
core_cmFunc.h
core_cmFunc.h
core_cm0.h
core_<cpu>.h
core_cm0_psoc4.h
<device>.h
Cm0RealView.scat
(cm0gcc.ld)
startup_<device>.s
Cm0Start.c
system_<device>.h
system_<device>.c
main.c
cy_boot
CMSIS v3.30
<user>.c/c++
CMSIS-CORE
Device Files (Cypress)
CMSIS-CORE
Standard Files (ARM)
User Program
CMSIS custom
version
The following describe each file from the diagram:

The Cm0Start.c and cm0gcc.ld files (part of the cy_boot component) contain Cortex-M0 device
startup code and interrupt vector tables and completely substitute CMSIS startup_<device>.s
template file.

Vendor-specific device file <device>.h that includes CMSIS Core standard files is represented in
cy_boot component by core_cm0_psoc4.h.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
65
Startup and Linking

The core_cmInstr.h file defines intrinsic functions to access special Cortex-M instructions and
core_cmFunc.h file provides functions to access the Cortex-M core peripherals. These files were
added since CMSIS Core version 2.0.

The core_cm4_simd.h file added to the CMSIS SIMD Instruction Access is relevant for Cortex-M4
only.

system_<device>.h, system_<device>.c – Generic files for system configuration (i.e. processor
clock and memory bus system), are partially covered by Cm0Start.c.
Manual addition of the CMSIS Core files
Beginning with PSoC Creator 2.2, the “Include CMSIS Core Peripheral Library Files” option is added to
the System tab of the DWR file. By default, this option is enabled and CMSIS Core version 4.0 files are
added to the project. This option should be disabled if you wish to manually add CMSIS Core files.
Un-check “Include CMSIS Core Peripheral Library Files” option on the System tab of the DWR file to
detach CMSIS 4.0 files from the cy_boot component.
Add the following CMSIS Core files to the project:

core_cmInstr.h

core_cmFunc.h

core_cm0.h
Based on the CMSIS vendor-specific template file (<device>.h), create device header file, copy device
specific definitions from core_cm0_psoc4.h file and add following definitions at the top of the file:
#include <cytypes.h>
#define __CHECK_DEVICE_DEFINES
#define __CM0_REV
#define __NVIC_PRIO_BITS
#define __Vendor_SysTickConfig
0x0000
2
0
Include the previously created vendor-specific device header file to the application.
High-Level I/O Functions
To use high-level input/output functions, like printf() or scanf(), the application must implement the base
I/O functions. The base I/O API depends on compiler and used C library:

GCC - Red Hat newlib C Library on sourceware.org/newlib.

MDK – The ARM C and C++ Libraries on infocenter.arm.com.

MDK - The ARM C Micro-library on infocenter.arm.com.
The printf() Usage Model
The printf() function formats a series of strings and numeric values and builds a string to write to the
output stream. Its implementation relies on the following low-level library functions:

Keil compiler uses the putchar()

GCC uses _write()
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
66
Startup and Linking
MDK uses _sys_write() or fputc(). The micro-library uses fputc().

The application should implement these functions and call the communication component API to send
data via selected interface.
Preservation of Reset Status
uint32 CySysGetResetReason(uint32 reason)
Description: The function returns the cause for the latest reset(s) that occurred in the system
and clears those that are defined with the parameter.
All bits in the RES_CAUSE register assert when the corresponding reset cause
occurs and must be cleared by firmware. These bits are cleared by hardware only
during XRES, POR, or a detected brown-out.
Parameters: reason: bits in the RES_CAUSE register to clear.
Define
Source
CY_SYS_RESET_WDT
CY_SYS_RESET_PROTFAULT
CY_SYS_RESET_SW
WDT
Protection Fault
Software reset
Return Value: Status. Same enumerated bit values as used for the reason parameter.
Side Effects and None
Restrictions:
API Memory Usage
API memory usage varies significantly depending on the compiler, device, design-wide resource
configuration, and component configuration used in the design. The following tables provide the memory
usage for the entire empty project with the default design-wide resource configuration options.
The measurements have been done with an associated compiler configured in Release mode with
optimization set for Size. For a specific design, the map file generated by the compiler can be analyzed to
determine the memory usage.
The following data is provided for a blank design with default settings. Resource usage may increase if
any of unused by default cy_boot APIs are used in some particular project.
PSoC 4000 (GCC)
Configuration
Default
PSoC 4000
Flash Bytes
SRAM Bytes
Stack
144
30
832
PSoC 4100/PSoC 4200 (GCC)
Configuration
Default
®
PSoC 4100 / PSoC 4200
Flash Bytes
SRAM Bytes
Stack
1024
252
48
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
67
Startup and Linking
PSoC 4100 BLE/PSoC 4200 BLE (GCC)
Configuration
PSoC 4100 BLE / PSoC 4200 BLE
Flash Bytes
SRAM Bytes
Stack
1152
252
30
Default
PSoC 4100M/PSoC 4200M (GCC)
Configuration
PSoC 4100 / PSoC 4200
Flash Bytes
SRAM Bytes
Stack
1152
236
30
Default
Performance
Functions Execution Time
The API execution time varies depending on the compiler, device, and design-wide resource
configuration.
The measurements have been done with the default compiler (GCC) configured in Release mode with
optimization set for Size. The project uses default design-wide resource configuration for the
measurements.
The following table provides the numbers for the functions whose execution time is considered to have
significant impact.
PSoC 4 [1]
Description
Min
Typ
Max
Units
Device initialization time (from reset to the main() entry)
-
4.2
-
ms
The CySysFlashWriteRow() function execution time
-
12.3
-
ms
Critical Sections Duration
The duration of critical sections (code sections with disabled interrupts) varies depending on the compiler,
device and, design-wide resource configuration.
The measurements have been done with the default compiler (GCC) configured in Release mode with
optimization set for Size. The project used default design-wide resource configuration for the
measurements.
1
The measurements were performed on PSoC 4200 BLE devices.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
68
Startup and Linking
The following table provides the numbers for the functions whose critical section duration might have
meaningful impact.
PSoC 4
Description
Conditions
Min
Typ
Max
Units
The CySysClkWriteImoFreq() function critical section time
Default
-
302
-
cycles
The CySysWdtClearInterrupt() function critical section time
Default
-
78
-
cycles
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
69
11
MISRA Compliance
This chapter describes the MISRA-C:2004 compliance and deviations for the PSoC Creator cy_boot
component and code generated by PSoC Creator.
MISRA stands for Motor Industry Software Reliability Association. The MISRA specification covers a set of
122 mandatory rules and 20 advisory rules that apply to firmware design and has been put together by
the Automotive Industry to enhance the quality and robustness of the firmware code embedded in
automotive devices.
There are two types of deviations defined:

project deviations – deviations that are applicable for all PSoC Creator components

specific deviations – deviations that are applicable for the specific component
This section provides information on the following items:

Verification Environment

Project Deviations

Documentation Related Rules

PSoC Creator Generated Sources Deviations

cy_boot Component-Specific Deviations
Verification Environment
This section provides MISRA compliance analysis environment description.
Component
Name
Version
Test Specification
MISRA-C:2004 Guidelines for the use of the C language in critical
systems.
October 2004
PSoC 4
Production
PK51
9.51
GCC
4.8.4
MDK
4.1
PSoC Creator
3.1
Target Device
Target Compiler
Generation Tool
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
70
MISRA Compliance
Component
Name
Version
MISRA Checking Tool
Programming Research QA C source code analyzer for Windows
8.1-R
Programming Research QA C MISRA-C:2004 Compliance Module
(M2CM)
3.2
The MISRA rules 1.5, 2.4, 3.3, and 5.7 are not enforced by Programming Research QA C. The
compliance with these rules was verified manually by code review.
Project Deviations
A Project Deviations are defined as a permitted relaxation of the MISRA rules requirements that are
applied for source code that is shipped with PSoC Creator. The list of deviated rules is provided in the
table below.
MISRA-C:
2004 Rule
Rule Class Rule Description
[2]
(R/A)
Description of Deviation(s)
1.1
R
This rule states that code shall conform
to C ISO/IEC 9899:1990 standard.
5.1
R
5.7
A
This rule says that both internal and
external identifiers shall not rely on the
significance of more than 31
characters.
Verify that no identifier name should is
reused.
Some C language extensions (like interrupt
keyword) relate to device hardware
functionality and cannot be practically
avoided.
In the main.c file that is generate by PSoC
Creator the non-standard main() declaration is
used: “void main()”. The standard declaration
is “int main()”
The number of macro definitions exceeds
1024 - program does not conform strictly to
ISO:C90.
The length of names based on user-defined
names depends on the length of the userdefine names.
8.7
R
Objects shall be defined at block scope
if they are only accessed from within a
single function.
8.10
R
11.3
A
All declarations and definitions of
objects or functions at file scope shall
have internal linkage unless external
linkage is required.
This rule states that cast should not be
performed between a pointer type and
an integral type.
2
Local variables with the same name may
appear in different functions. Aside from
commonly used names such as 'i', generated
API functions for multiple instances of the
same component will have identical local
variable names.
The object 'InstanceName_initVar' is only
referenced by function 'InstanceName_Start',
in the translation unit where it is defined. The
intention of this publicly available global
variable is to be used by user application.
Components API are designed to be used in
user application and might not be used in
component API.
The cast from unsigned int to pointer does not
have any unintended effect, as it is a
consequence of the definition of a structure
based on hardware registers.
Required / Advisory
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
71
MISRA Compliance
MISRA-C:
2004 Rule
Rule Class Rule Description
[2]
(R/A)
Description of Deviation(s)
14.1
R
There shall be no unreachable code.
21.1
R
Minimization of run-time failures shall
be ensured by the use of at least one
of:
a) static analysis tools/techniques;
b) dynamic analysis tools/techniques;
c) explicit coding of checks to handle
run-time faults.
Some functions that are part of the component
API are not used within component API.
Components API are designed to be used in
user application and might not be used in
component API.
Some components in some specific
configurations can contain redundant
operations introduced because of generalized
implementation approach.
Documentation Related Rules
This section provides information on implementation-defined behavior of the toolchains supported by
PSoC Creator. The list of deviated rules is provided in the table below.
MISRA-C:
2004 Rule
Rule Class Rule Description
[2]
(R/A)
Description
1.3
R
Multiple compilers and/or languages
shall only be used if there is a
common defined interface standard for
object code to which the
languages/compilers/assemblers
conform.
1.4
R
1.5
A
3.1
R
The compiler/linker shall be checked
to ensure that 31 character
significance and case sensitivity are
supported for external identifiers.
Rule states that floating-point
implementation should comply with a
defined floating-point standard.
All usage of implementation-defined
behavior shall be documented.
No multiple compilers and languages can be
used at a time for PSoC Creator projects.
The PK51 linker produces OMF-51 object
module format. The GCC linker produces
EABI format files. The MDK linker produces
files of ARM ELF format.
PK51 and GCC treat more than 31 characters
of internal and external identifier length, and
are case sensitive (e.g., Id and ID are not
equal).
Floating-point arithmetic implementation
conforms to IEEE-754 standard.
3.2
R
The character set and the
corresponding encoding shall be
documented.
3.3
A
3.5
R
3.6
R
This rule states that implementation of
integer division should be
documented.
This rules requires implementation
defined behavior and packing of bit
fields be documented.
All libraries used in production code
shall be written to comply with the
provisions of this document, and shall
have been subject to appropriate
validation.
®
For the documentation on PK51 and GCC
compilers, refer to the Help menu,
Documentation sub-menu, Keil and GCC
commands respectively.
The Windows-1252 (CP-1252) character set
encoding is used.
Some characters that are used for source
code generation in PSoC Creator are not
included in character set, defined by ISO-IEC
9899-1900 "Programming languages — C".
When dividing two signed integers, one of
which is positive and one negative compiler
rounds up with a negative remainder.
The use of bit-fields is avoided.
The C standard libraries provided with C51,
GCC, and RVCT have not been reviewed for
compliance. Some code uses memset and
memcpy. The compiler may also insert calls to
its vendor-specific compiler support library.
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
72
MISRA Compliance
PSoC Creator Generated Sources Deviations
This section provides the list of deviations that are applicable for the code that is generated by PSoC
Creator. The list of deviated rules is provided in the table below.
MISRA-C:
2004 Rule
Rule Class Rule Description
[2]
(R/A)
3.4
R
11.4
A
14.1
R
15.2
R
15.3
R
17.4
R
19.7
A
®
Description of Deviation(s)
All uses of the #pragma directive shall
be documented.
The #pragma directive is required to ensure
that the C51 compiler produces efficient code
for generated functions related to the
AMuxSeq component.
This rule states that cast should not be CYMEMZERO8 and CYCONFIGCPY8 use
performed between a pointer to object void * arguments for compatibility with
type and a different pointer to object
memset/memcpy but must use a pointer to an
type.
actual type internally.
Rule requires that there shall be no
The CYMEMZERO, CYMEMZERO8,
unreachable code.
CYCONFIGCPY, CYCONFIGCPY8,
CYCONFIGCPYCODE, and
CYCONFIGCPYCODE8 are often but not
always used.
Switch cases must end with break
The code structure is required to ensure that
statements.
the C51 compiler produces efficient code for
generated functions related to the AMuxSeq
component.
default must be the last clause in a
The code structure is required to ensure that
switch statement.
the C51 compiler produces efficient code for
generated functions related to the AMuxSeq
component.
Array indexing shall be only allowed
The CYMEMZERO8 and CYCONFIGCPY8
form of pointer arithmetic.
have void * arguments for compatibility with
memset/memcpy.
The rule says that function shall be
The CYMEMZERO, CYMEMZERO8,
used instead of function-like macro.
CYCONFIGCPY, CYCONFIGCPY8,
CYCONFIGCPYCODE, and
CYCONFIGCPYCODE8 macros are used to
call cymemzero, cyconfigcpy, and
cyconfigcpycode in a device-independent way.
The macros cannot be converted to functions
without significantly increasing the time and
memory required for each function call (this is
a limitation of C51). The macros have been
converted to functions for GCC/RVCT.
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
73
MISRA Compliance
cy_boot Component-Specific Deviations [3]
This section provides the list of cy_boot component specific-deviations. The list of deviated rules is
provided in the table below.
MISRA-C:
2004 Rule
Rule Class
[2]
(R/A)
Rule Description
Description of Deviation(s)
6.3
A
typedefs that indicate size and
signedness should be used in place of
the basic types.
8.7
R
Objects shall be defined at block
scope if they are only accessed from
within a single function.
8.12
R
8.8
R
When an array is declared with
external linkage, its size shall be
stated explicitly or defined implicitly by
initialization.
An external object or function shall be
declared in one and only one file.
For PSoC 4, the RealView C Library
initialization function __main(void) in startup
file (Cm0Start.c/Cm3Start.c) file returns value
of basic type 'int'.
For PSoC 4, the cySysNoInitDataValid
variable is intentionally declared as global in
Cm0Start.c/Cm3Start.c files to prevent linker
from CY_NOINIT section removal.
For PSoC 4 (Cm0Start.c/Cm3Start.c), the
__cy_regions array of structures is declared
with unknown size.
10.1
R
10.3
R
14.3
R
11.4
A
11.5
17.4
3
R
The value of an expression of integer
type shall not be implicitly converted to
a different underlying type under some
circumstances.
The value of a complex expression of
integer type may only be cast to a type
that is narrower and of the same
signedness as the underlying type of
the expression.
Before preprocessing, a null statement
shall only occur on a line by itself; it
may be followed by a comment
provided that the first character
following the null statement is a whitespace character.
A cast should not be performed
between a pointer to object type and a
different pointer to object type.
A cast shall not be performed that
removes any const or volatile
qualification from the type addressed
by a pointer.
Array indexing shall be the only
allowed form of pointer arithmetic.
For the PSoC 4, some objects is being
declared with external linkage in
Cm3Start.c/Cm3Start.c file and this
declaration is not in a header file.
PSoC 4: CMSIS Core: An integer constant of
'essentially unsigned' type is being converted
to signed type on assignment in CMSIS Core
hardware abstraction layer.
The DMA API has a composite expression of
'essentially unsigned' type (unsigned char) is
being cast to a wider unsigned type, 'unsigned
long'. This deviation is not present for PSoC 4
cy_boot code.
The CYASSERT() macro has null statement is
located close to other code.
The DMA and Interrupt API use casts between
a pointer to object type and a different pointer
to object type.
The volatile qualification is lost during pointer
cast to pointer to void before passing to the
memcpy() function.
The DMA, Flash and Interrupt APIs use array
indexing that are applied to an object of
pointer type to access hardware registers,
buffer allocated by user and vector tables
correspondingly.
The MISRA rules deviations of the CMSIS files are not documented here. Refer to the CMSIS documentation for the list of the
deviated rules.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
74
MISRA Compliance
MISRA-C:
2004 Rule
Rule Class
[2]
(R/A)
Rule Description
Description of Deviation(s)
19.4
R
19.7
A
19.12
A
19.13
A
C macros shall only expand to a
braced initializer, a constant, a
parenthesized expression, a type
qualifier, a storage class specifier, or a
do-while-zero construct.
A function should be used in
preference to a function-like macro.
There shall be at most one occurrence
of the # or ## preprocessor operator in
a single macro definition.
The # and ## pre-processor operators
should not be used.
20.5
R
The CYASSERT(),
INTERRUPT_DISABLE_IRQ,
INTERRUPT_ENABLE_IRQ,
CyGlobalIntEnable, and CyGlobalIntDisable
macro defines a braced code statement block.
Deviated since function-like macros are used
to allow more efficient code.
PSoC 4: Pins API: Two preprocessor
concatenation operations are required as
PSoC 4 APIs have two arguments.
PSoC 4: Pins API: The preprocessor
concatenation method is used to allow existing
PSoC 3 and PSoC 5LP per-pin APIs to be
used in PSoC 4 designs.
Caused by use of the error indicator errno
used by the sbrk() function. It is used to report
errors to the malloc() function if no heap
memory is available.
®
The error indicator errno shall not be
used.
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
75
12
System Timer (SysTick)
Functional Description
The SysTick timer is part of the Cortex M0 (PSoC 4) devices. The timer is a down counter with a 24-bit
reload/tick value that is clocked by the System clock (or LF clock for the PSoC 4100 BLE and PSoC 4200
BLE devices). The timer has the capability to generate an interrupt when the set number of ticks expires
and the counter is reloaded. This interrupt is available as part of the Nested Vectored Interrupt Controller
(NVIC) for service by the CPU and can be used for general purpose timing control in user code.
Since the timer is independent of the CPU (except for the clock), this can be handy in applications
requiring precise timing that don’t have a dedicated timer/counter available for the job.
Refer to the SysTick section (Section 4.4) of the ARM reference guide for complete details on the
registers and their usage.
APIs
Functions
Function
Description
CySysTickStart()
CySysTickInit()
CySysTickEnable()
CySysTickStop()
CySysTickEnableInterrupt()
CySysTickDisableInterrupt()
CySysTickSetReload()
CySysTickGetReload()
CySysTickGetValue()
CySysTickSetClockSource()
CySysTickGetCountFlag()
CySysTickClear()
CySysTickSetCallback()
Configures and starts the SysTick timer.
Configures the SysTick timer.
Enables the SysTick timer and its interrupt.
Stops the SysTick timer.
Enables the SysTick interrupt.
Disables the SysTick interrupt.
Sets value the counter is set to on startup and after it reaches zero.
Returns SysTick reload value.
Gets current SysTick counter value.
Sets the clock source for the SysTick counter.
Returns the SysTick count flag value.
Clears the SysTick counter for well-defined startup.
Sets the address(es) to the function(s) that will be called on a
SysTick interrupt.
Gets the specified callback pointer.
CySysTickGetCallback()
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
76
System Timer (SysTick)
void CySysTickStart(void)
Description: Configures the SysTick timer to generate an interrupt every 1 ms by calling the
CySysTickInit() function and starts the timer by calling the CySysTickEnable()
function.
Refer to the corresponding function description for the details.
Parameters: None
Return Value: None
Side Effects and Clears SysTick count flag if it was set.
Restrictions:
void CySysTickInit(void)
Description: Initializes the callback addresses with pointers to NULL, associates the SysTick
system vector with the function that is responsible for calling registered callback
functions, configures SysTick timer to generate interrupt every 1 ms.
Parameters: None
Return Value: None
Side Effects and Clears SysTick count flag if it was set.
Restrictions:
The 1 ms interrupt interval is configured based on the frequency determined by
PSoC Creator at build time. If System clock frequency is changed in runtime, the
CyDelayFreq() with the appropriate parameter should be called to ensure that
actual frequency used for SysTick reload value calculation.
void CySysTickEnable(void)
Description: Enables the SysTick timer and its interrupt.
Parameters: None
Return Value: None
Side Effects and Clears SysTick count flag if it was set.
Restrictions:
void CySysTickStop(void)
Description: Stops the system timer (SysTick).
Parameters: None
Return Value: None
Side Effects and Clears SysTick count flag if it was set.
Restrictions:
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
77
System Timer (SysTick)
void CySysTickEnableInterrupt(void)
Description: Enables the SysTick interrupt.
Parameters: None
Return Value: None
Side Effects and Clears SysTick count flag if it was set.
Restrictions:
void CySysTickDisableInterrupt(void)
Description: Disables the SysTick interrupt.
Parameters: None
Return Value: None
Side Effects and Clears SysTick count flag if it was set.
Restrictions:
void CySysTickSetReload(uint32 value)
Description: Sets value the counter is set to on startup and after it reaches zero.
Parameters: value: Counter reset value. Valid range [0x0-0x00FFFFFF].
For example, if the SysTick timer is configured to be clocked off the 48 MHz
System Clock and interrupt every 100 us is desired, the function parameter should
be 4,800 (48,000,000 Hz multiplied by 100/1,000,000 seconds).
Return Value: None
Side Effects and None
Restrictions:
uint32 CySysTickGetReload(void)
Description: Returns SysTick reload value.
Parameters: None
Return Value: None
Side Effects and Returns SysTick reload value.
Restrictions:
uint32 CySysTickGetValue(void)
Description: Gets current SysTick counter value.
Parameters: None
Return Value: Returns SysTick counter value.
Side Effects and None
Restrictions:
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
78
System Timer (SysTick)
void CySysTickSetClockSource(uint32 clockSource)
Description: Sets the clock source for the SysTick counter.
Parameters: uint32 clockSource:
Constant
Description
CY_SYS_SYST_CSR_CLK_SRC_SYSCLK SysTick is clocked by the
System clock.
CY_SYS_SYST_CSR_CLK_SRC_LFCLK
SysTick is clocked by the low
frequency clock (LFCLK for
PSoC 4).
Return Value: None
Side Effects and Clears SysTick count flag if it was set.
Restrictions:
uint32 CySysTickGetCountFlag(void)
Description: The count flag is set once SysTick counter reaches zero. The flag is cleared on
read.
Parameters: None
Return Value: Returns non-zero value if the counter is set, otherwise zero is returned.
Side Effects and Clears SysTick count flag if it was set.
Restrictions:
void CySysTickClear(void)
Description: Clears the SysTick counter for well-defined startup. This function should be called
if SysTick configuration (reload value or timer clock source) is changed. The
function is called as part of the CySysTickStart() execution.
Parameters: None
Return Value: None
Side Effects and None
Restrictions:
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
79
System Timer (SysTick)
(void *) CySysTickSetCallback(uint32 number, void(*CallbackFunction)(void))
Description: This function allows up to five user-defined interrupt service routine functions to be
associated with the SysTick interrupt. These are specified through the use of
pointers to the function.
To set a custom callback function without the overhead of the system provided
one, use CyIntSetSysVector(CY_INT_SYSTICK_IRQN, cyisraddress <address>),
where <address> is address of the custom defined interrupt service routine.
Note: a custom callback function overrides the system defined callback functions.
Parameters: uint32 number: The number of the callback function addresses to be set. The valid
range is from 0 to 4.
void(*CallbackFunction(void): A pointer to the function that will be associated with
the SysTick ISR for the specified number.
Return Value: Returns the address of the previous callback function.
NULL is returned if the specified function address in not initialized.
Side Effects and The registered callback functions will be executed in the interrupt.
Restrictions:
(void *) CySysTickGetCallback(uint32 number)
Description: The function get the specified callback pointer.
Parameters: uint32 number: The number of callback function address to get. The valid range is
from 0 to 4.
Return Value: Returns the address of the specified callback function.
The NULL is returned if the specified address in not initialized.
Side Effects and None
Restrictions:
Global Variables
Function
Description
uint32 cySysTickInitVar
Indicates whether or not the SysTick has been initialized. The variable is
initialized to 0 and set to 1 the first time CySysTickStart() is called.
This allows the component to restart without reinitialization after the first
call to the CySysTickStart() routine.
If reinitialization of the SysTick is required, call CySysTickInit() before
calling CySysTickStart(). Alternatively, the SysTick can be reinitialized by
calling the CySysTickInit() and CySysTickEnable() functions.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
80
13
cy_boot Component Changes
Version 5.0
This section lists and describes the major changes in the cy_boot component version 5.0:
Description of Version 5.0 Changes
Reason for Changes / Impact
Added support for PSoC 4200M / PSoC 4200M
family of devices.
Added support for PSoC 4100 BLE and
PSoC 4200 BLE family of devices with 256 K flash
memory.
For PSoC 4 family of devices, the APIs related to
LFCLK including ILO, WCO, WDT are now part of
CyLFClk system wide resource.
New example projects for flash/EEPROM, voltage
detection, interrupts, unique id have been added.
System Reference Guide is now divided into:
System Reference Guide - PSoC 3/PSoC 5LP
System Reference Guide - PSoC 4
System Reference Guide - DMA (PSoC 4)
System Reference Guide - CyLFClk (PSoC 4)
New CyGetUniqueID() API support for all PSoC
families.
New device support.
New device support.
This change was done to streamline grouping of
APIs with respect to functionality. Backward
compatibility will not be affected.
This change was done for ease of use of content.
The new API assists users in identifying each
PSoC device on the field using an unique
identification number.
New bit field manipulation APIs for PSoC 4 families. The new APIs can be used to set, reset and
toggle individual bit(s) of registers by their field
names.
Voltage Detect API: Updated implementation of the
CySysLvdEnable() functions to ensure that no false
interrupts are generated.
Voltage Detect API: Updated description of the
CySysLvdEnable() function to clarify that it does not
change state of the associated global interrupt.
Updated CMSIS-Core version from 3.20 to 4.0.
Removed the Bootloader Migration section.
Section was for older versions of Creator and not
applicable to v5.0.
Added support for CMSIS-PACK.
This feature supports exporting PSoC firmware
projects to Keil µVision v5.
Added attribute definitions CY_PACKED,
Better programming support.
CY_PACKED_ATTR and CY_INLINE.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
81
cy_boot Component Changes
Description of Version 5.0 Changes
PSoC 4000 / PSoC 4100 / PSoC 4200: Optimized
implementation of the CySysFlashWriteRow() to
use less stack space.
Clock API: optimized implementation of the
CySysClkWriteImoFreq() to use less flash memory.
SysTick API: Fixed incorrect mask being applied in
the CySysTickGetValue().
PSoC 4100 BLE/ PSoC 4200 BLE: updated
implementation of the CySysClkWriteEcoDiv() to
skip divider update when ECO sources.
PM API: Replaced 'asm' with '__asm'.
PM API: Updated description of the
CySysPmFreezeIo() and CySysPmUnfreezeIo().
Clock API: PSoC 4200M / PSoC 4200M: Updated
CySysClkImoStart(),CySysClkImoStop(), and
CySysClkWriteImoFreq() function with the Trim to
WCO functionality. Added
CySysClkImoEnableWcoLock() and
CySysClkImoDisableWcoLock().
Fixed the issue when device may jump to default
interrupt handler when the Link-Time Optimization
options is enabled.
Flash API: Updated implementation for the
PSoC 4200 BLE family of devices with 256 K flash
memory. The CySysFlashWriteRow() does not
modify device clock settings: the IMO and HFCLK
settings are not changed.
Flash API: Update CySysFlashWriteRow() function
implementation to use less stack space.
Bootloader: Fixed the issue when bootloadable
application was not allowed to be placed in the first
available flash row when the “Manual application
image placement” option is enabled in the
Bootloadable component.
Updated IAR linker configuration file to ensure that
maximum size for the ROM vectors block is not
exceeded.
Bootloader: Added support for the combination
project type. See Bootloader component datasheet
for the details.
Corrected references to #defines in
CySysTickSetClockSource() function
®
Reason for Changes / Impact
To ensure that correct values are returned.
The ECO should not source HFCLK when ECO
divider value is changed. If ECO divider should be
changed: switch to IMO, change ECO divider and
switch back to ECO.
To support -std GCC options.
Ensured compiler will not inline functions
executed before main().
Fix error that causes following message:
"Error[Lp004]: actual size exceeds maximum size
(0x100) for block "ROMVEC"
Added support for a new functionality of the
Bootloader component.
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
82
cy_boot Component Changes
Version 4.20
This section lists and describes the major changes in the cy_boot component version 4.20:
Description of Version 4.20 Changes
Reason for Changes / Impact
Added support for the PSoC 4100 BLE and
PSoC 4200 BLE families.
New device support.
Added CySysClkSetLfclkSource() function for the
LFCLK clock source selection.
PSoC 3/PSoC5LP: Updated CyWriteRowFull()
function implementation to return
CYRET_BAD_PARAM if invalid parameters values
are passed.
PSoC 3: Fixed a defect that caused the
CyResetStatus global variable to lose its value on
bootloadable application entry.
PSoC 4: The implementation of the
CY_SYS_PINS_READ_PIN macro was optimized
in order to increase performance.
PSoC 4100/PSoC 4200/PSoC 4100 BLE/ PSoC
4200 BLE: Updated implementation of the
CySysClkIloStop() to ensure proper pulse length on
LFCLK.
PSoC 4100/PSoC 4200: WDT API: Fixed the defect
in CySysWdtWriteClearOnMatch() that caused clear
on match feature fails to be disabled.
PSoC 4100/PSoC 4200/PSoC 4100 BLE/ PSoC
4200 BLE: Updated CySysPmStop() function
implementation to match hardware requirements:
the software delay was replaced with 2 register
read-backs and corrected the procedure of the low
power mode entry.
PSoC 4100/PSoC 4200/PSoC 4100 BLE/ PSoC
4200 BLE: Fixed the order of the Stop mode entry
in the CySysPmStop() function to ensure that Stop
mode token is set at the beginning of the low power
mode entry.
Added following attribute macros: CY_PACKED,
CY_PACKED_ATTR and CY_INLINE.
The declaration of the IntDefaultHandler created in
CyLib.h.
PSoC 4000: Corrected the lower bound of the
HFCLK frequency change from the current IMO
frequency divided by 8 to divided by 4 in the wside
effects section of the CySysFlashWriteRow()
function.
PSoC 3/ PSoC 5LP: Updated implementation of the
CySetTemp() function in order to improve execution
time of the first call after Power-On-Reset (POR).
®
Omit the situation when GPIO pins remain frozen
after the reset if reset occurred after IO pin freeze
but before Stop mode entry.
Previously, the IntDefaultHandler was declared in
both interrupt source file and Cm0Start.c files.
Significantly improved the first Flash write after
POR.
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
83
cy_boot Component Changes
Description of Version 4.20 Changes
Reason for Changes / Impact
PSoC 4/PSoC 5LP: Added sbrk() function, which is
used by malloc() and other heap-utilizing functions
to check for available memory.
The fix ensures that malloc(), et al, now correctly
handle heap overflow.
Note that some projects will now fail to execute
due to a lack of available heap. The resolution is
to increase the heap size in the Design-Wide
Resources System Editor (<project>.cydwr file),
and re-build the project.
Caused by use of the error indicator errno used
by sbrk() function. It is used to report error to the
malloc() function if no heap memory available.
PSoC 4/ PSoC 5LP: Added the following MISRA
rule deviations: 20.5.
PSoC 4100/PSoC 4200/PSoC 4100 BLE/ PSoC
4200 BLE:
• Updated CySysWdtEnable() function
implementation to ensure that WDT is
enabled upon function exit;
• Updated CySysWdtWriteMatch() function
implementation to ensure that match value is
updated properly: add delay before (ensures
that last update applied properly) and after
value change (ensures that match update
synchronization started).
• Updated CySysWdtDisable() function
implementation to ensure that WDT is
disabled upon function exit.
PSoC 4/PSoC 5LP: Updated IAR linker script file to
eliminate warning generated by the IAR EW-ARM
v7.10.
PSoC 4: The CySysFlashWriteRow() function return To follow hardware-defined error codes. The
basic behavior remains the same: zero for
type changed from cystatus to uint32.
success and non-zero for any type of failure.
PSoC 5LP: The CyFlash_SetWaitCycles() function
is updated with 80 MHz parts support.
PSoC 4/PSoC 5LP: Added System Timer (SysTick)
API.
PSoC 3/PSoC 5LP: Flash/EEPROM API: updated
No need to allocate buffer and pass it to
implementation to eliminate requirement to call
CySetFlashEEBuffer() for both Flash and
CySetFlashEEBuffer() function, if the Flash ECC
EEPROM programming.
feature is disabled.
PSoC 3/PSoC 5LP: Flash API: added
Defined macros for the number of EEPROM
CY_EEPROM_NUMBER_SECTORS and
sectors and size of EEPROM sector.
CY_EEPROM_SIZEOF_SECTOR.
PSoC 4/PSoC 5LP: Interrupt API: added macros for
the CyIntSetSysVector() and CyIntGetSysVector()
functions exception type numbers.
PSoC 3: The CyPmSleep() and CyPmHibernate()
Satisfy interrupt controller usage model.
functions disable clock to the interrupt controller
before Sleep and Hibernate mode entry and reenable on wakeup.
PSoC 3/PSoC 5LP: Updated CyFlash_Start() and
To ensure that EEPROM and Flash are ready for
CyEEPROM_Start() functions implementation.
operation on corresponding function exit.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
84
cy_boot Component Changes
Description of Version 4.20 Changes
Reason for Changes / Impact
PSoC 5LP: Changed CyFlushCache()
implementation.
To use Instruction Synchronization Barrier (ISB)
instruction instead of multiple no operation
instructions.
PSoC 4: The CY_SYS_PINS_READ_PIN macro
was optimized for the better performance.
PSoC 4200/PSoC 4100: updated
CySysClkWriteImoFreq() function for better
performance.
PSoC 4: Added the following MISRA rule
deviations: 19.12 and 19.13.
Updated the following MISRA rule deviations:
12.10, 12.13, 13.2, and 13.5.
PSoC 4000: Update WDT API description to clarify
that CySysWdtEnable() and CySysWdtDisable()
correspondingly enables and disables the watchdog
timer reset generation.
PSoC 4000: Fixed the implementation of the
CySysWdtReadIgnoreBits() to return correct
number of the ignored bits in the WDT counter.
PSoC 3/PSoC 5LP: removed LVI/HVI reset
constants for the CyResetStatus global variable in
section “Preservation of Reset Status”.
PSoC 4100/PSoC 4200: Power Management API:
Updated CySysPmDeepSleep() function to bypass
the flash accelerator before Deep Sleep mode entry
and restore it upon wakeup.
Added the possibility for existing PSoC 3 and
PSoC 5LP per-pin APIs to be used in PSoC 4
designs.
The LVI and HVI resets are not reported by
CyResetStatus variable.
Cypress identified a defect with the Flash write
functionality upon wakeup from deep-sleep in
PSoC 4100 and PSoC 4200 devices. The
corrupted data has the potential to be sent to the
CPU on device wakeup.
Version 4.11
This section lists and describes the major changes in the cy_boot component version 4.11:
Description of Version 4.11 Changes
Reason for Changes / Impact
The CySysFlashWriteRow() function now checks
the data to be written and, if necessary, modifies it
to have a non-zero checksum. After writing to Flash,
the modified data is replaced (Flash program) with
the correct (original) data.
Cypress identified a defect with the Flash write
functionality of the PSoC 4000, PSoC 4100, and
PSoC 4200 devices. The CySysFlashWriteRow()
function in the cy_boot [v4.0 and v4.10]
component fails to write a row of flash memory if
the data to be written has a zero in the lower 32bits of the checksum.
Version 4.10
This section lists and describes the major changes in the cy_boot component version 4.10:
Description of Version 4.10 Changes
Reason for Changes / Impact
PSoC 4: Added CySysGetResetReason() function.
Reports the cause for the latest reset(s) that
occurred in the system.
New device support.
Added support for the PSoC 4000 family.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
85
cy_boot Component Changes
Description of Version 4.10 Changes
PSoC 3: Added reentrancy support for the
CySpcLock() and CySpcUnlock() functions.
PSoC 3/ PSoC 5LP: Fixed the defect in
CyPmRestoreClocks() function, that can might to
the device halt during the function execution, in
some clock system configurations, when PLL is
not sourced by IMO and IMO is manually stopped
by user code.
PSoC 4: Added note that enabling or disabling a
WDT requires three LFCLK cycles to come into
effect, during that period the SYSCLK should be
available.
PSoC 4: Added note that, after waking from Deep
Sleep, the WDT internal timer value is set to zero
until the ILO loads the register with the correct
value.
Reason for Changes / Impact
The device should not put into Deep Sleep mode
during that period.
This led to an increase in low-power mode current
consumption.
The work around is to wait for the first positive
edge of the ILO clock before allowing the
WDT_CTR_* registers to be read by
CySysWdtReadCount() function.
Added note to the "Working with Flash and
EEPROM" section with the information that CPU
code execution can be halted till the flash write is
complete.
Added note to the "Working with Flash and
EEPROM" section with the information that power
manager will not put the device into a low power
state if the system performance controller (SPC) is
executing a command.
PSoC 3 / PSoC 5LP: The CyPmRestoreClocks()
implementation was enhanced by polling status and
proceed as soon as PLL is locked. Added merge
section to add ability of handling cases when
predefined timeout is not enough.
PSoC 4: Fixed a defect in CySysWdtClearInterrupt()
that caused unintentional clearing of the WDT
interrupt status bit.
Version 4.0
This section lists and describes the major changes in the cy_boot component version 4.0:
Description of Version 4.0 Changes
Reason for Changes / Impact
Added note to the Flash section about unavailability
of the Store Configuration Data in ECC Memory
DWR option for the bootloader project type.
Added note to the Working with Flash and
EEPROM section that when writing Flash, data in
the instruction cache can become stale.
Call CyFlushCache() to invalidate the data in
cache and force fresh information to be loaded
from Flash.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
86
cy_boot Component Changes
Description of Version 4.0 Changes
Reason for Changes / Impact
Fixed issue in the CyDmaChEnable() and
CyDmaChDisable() functions.
If DMA request occurred during these functions,
the DMA channels configuration could be
corrupted. The APIs were changed to address
this problem.
PSoC 5 has been replaced by PSoC 5LP.
Removed references to PSoC 5 device.
PSoC Creator Generated Sources Deviations
section was updated with the MISRA deviations
related to the AMuxSeq component.
The CY_IMO_FREQ_74MHZ parameter was added
to the CyIMO_SetFreq() function.
PSoC 4: Added CyExitCriticalSection() function call
after WFI instruction in the CySysPmHibernate()
function.
Support of the 80 MHZ PSoC 5LP devices.
If any interrupt occurred between
CyEnterCriticalSection() and WFI instruction
execution, the device could skip low power mode
entry request and continue code execution with
global interrupts disabled.
Version 3.40 and Older
Version 3.40
This section lists and describes the major changes in the cy_boot component version 3.40:
Description of Version 3.40 Changes
Reason for Changes / Impact
Added PSoC 4 device support.
PSoC 3: Updated CyPmSleep() function description
with the information that hardware buzz must be
disabled before sleep mode entry.
New device support.
Using hardware buzz in conjunction with other
device wakeup sources can cause the device to
lockup, halting further code execution. Refer to
the device errata for more information.
As hardware buzz is required for LVI, HVI, and
Brown Out detect operations – they must be
disabled before sleep mode entry and restored on
wakeup. If LVI or HVI is enabled, CyPmSleep() will
halt device if project is compiled in debug mode.
Version 3.30
This section lists and describes the major changes in the cy_boot component version 3.30:
Description of Version 3.30 Changes
Updates to support PSoC Creator 2.2.
Added MISRA Compliance section.
Added Low Voltage Analog Boost Clocks section.
Added requirement about interrupt configuration,
when interrupt is sources from PICU and used as a
wakeup event.
®
Reason for Changes / Impact
New feature for the SC-based (TIA, Mixer, PGA
and PGA_Inv) components.
For PSoC 5LP, the interrupt component
connected to the wakeup source may not use the
"RISING_EDGE" detect option. Use the "LEVEL"
option instead.
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
87
cy_boot Component Changes
Description of Version 3.30 Changes
Reason for Changes / Impact
The delay between Bus clock and analog clocks
configuration save/restore moved from
CyPmSleep() and CyPmHibernate() functions to
CyPmSaveClocks() / CyPmRestoreClocks().
This modification decrease CyPmSleep() and
CyPmHibernate() functions execution time.
The components that use analog clock must not
be used after CyPmSaveClocks() execution till
the clocks configuration will be restored by
CyPmRestoreClocks().
Added float32 and float64 data types. The type
float64 is not available for PSoC 3 devices.
Version 3.20
This section lists and describes the major changes in the cy_boot component version 3.20:
Description of Version 3.20 Changes
Reason for Changes / Impact
Many minor edits throughout the document to
distinguish features of PSoC 5 and PSoC 5LP
devices.
The PSoC 5LP Alternate Active usage model was
changed to be same as for PSoC 5.
Improve PSoC 5 and PSoC 5LP documentation.
The interface of the CyIMO_SetFreq() function was
updated for PSoC 5LP to support 62 and 72 MHz
frequencies.
No parameters are used for CyPmAltAct(). That
means NONE should be passed for the
parameters. The device will go into Alternate
Active mode until an enabled interrupt occurs.
Added interface to configure IMO to 62 and 72
MHz on PSoC 5LP.
Version 3.10
This section lists and describes the major changes in the cy_boot component version 3.10:
Description of Version 3.10 Changes
Reason for Changes / Impact
The Bootloader system was redesigned in cy_boot
version 3.0 to separate the Bootloader and
Bootloadable components. The change is listed
here as well for migrating from older versions.
A few edits were applied to the Voltage Detect
APIs: fixed a typo in the register definition, added
CyVdLvDigitEnable() function threshold parameter
mask to protect from invalid parameter values,
updated CyVdLvDigitEnable() and
CyVdLvAnalogEnable() functions to use delay
instead of while loop during hardware initialization.
Minor updates to the CyPmSleep() function.
See Bootolader Migration section in cy_boot
version 3.10 System Reference Guide.
®
To improve the overall implementation of these
APIs.
Better support of latest PSoC 3 devices.
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
88
cy_boot Component Changes
Version 3.0
This section lists and describes the major changes in the cy_boot component version 3.0:
Description of Version 3.0 Changes
Reason for Changes / Impact
The Bootloader system was redesigned to separate
the Bootloader and Bootloadable components.
The CyPmSleep() function implementation was
updated to preserve/restore PRES state
before/after Sleep mode. The support of the
HVI/LVI functionality added.
Added following Voltage Detect APIs:
CyVdLvDigitEnable(),CyVdLvAnalogEnable(),CyVd
LvDigitDisable(),CyVdLvAnalogDisable(),CyVdHvA
nalogEnable(),CyVdHvAnalogDisable(),CyVdSticky
Status() and CyVdRealTimeStatus().
The implementation of the Flash API was slightly
modified as the SPC API used in Flash APIs was
refactored.
The implementation of the CyXTAL_32KHZ_Start(),
CyXTAL_32KHZ_Stop(),
CyXTAL_32KHZ_ReadStatus() and
CyXTAL_32KHZ_SetPowerMode() APIs was
updated.
The implementation of the CyXTAL_Start() function
for PSoC 5 parts was changed. For more
information on function see Clocking section.
The following APIs were removed for PSoC 5 parts:
CyXTAL_ReadStatus(),
CyXTAL_EnableErrStatus(),
CyXTAL_DisableErrStatus(),
CyXTAL_EnableFaultRecovery(),
CyXTAL_DisableFaultRecovery().
The CyDmacConfigure() function is now called by
the startup code only if DMA component is placed
onto design schematic.
See Bootolader Migration section in cy_boot
version 3.0 System Reference Guide.
New functionality support.
The CyXTAL_32KHZ_ReadStatus() function
implementation was changed by removing digital
measurement status return.
Updated description of following APIs:
CyFlash_SetWaitCycles().
The address of the top of reentrant stack was
decremented from CYDEV_SRAM_SIZE to
(CYDEV_SRAM_SIZE - 3) for PSoC 3.
The CyIMO_SetFreq() function implementation was
updated by removing support of 74 and 62 MHz
parameters for PSoC 5 parts.
The minimal P divider value for the
CyPLL_OUT_SetPQ() was risen from 4 up to 8.
The CyXTAL_SetFbVoltage()/SetWdVoltage() were
added for PSoC 5LP devices.
®
Added voltage monitoring APIs.
The implementation quality improvements.
Added additional timeouts to ensure proper block
start-up.
Changes were made to make sure that MHZ
XTAL starts successfully on PSoC 5 parts.
The functionality provided within these APIs is not
supported by the PSoC 5 part.
Increase device startup time in case if DMA is not
used within design. The CyDmacConfigure()
function should be called manually if DMA
functionality is used without DMA component.
The analog status measurement is the only
reliable source.
Changes were made to improve power mode
configuration.
Prevent rewriting CyResetStatus variable with the
parameters and/or local variables of the reentrant
function during its execution.
Removal of the functionality that is not supported
by device.
To meet hardware requirements
The functionality provided by these APIs is
available in PSoC 5LP.
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
89
cy_boot Component Changes
Description of Version 3.0 Changes
Reason for Changes / Impact
The description of the CyWdtStart() was updated.
Added notes on WDT operation during low power
modes for PSoC 5.
The implementation of the CyPmSleep() for PSoC 5 Not putting CTW in reset state on wakeup allows
to combine CTW usage in both Active and low
was changed not to hold CTW in reset on wakeup.
power modes for PSoC 5.
The Preservation of Reset Status section was
The software reset behavior of other resets is
explained. Explained how the reset status
updated with more detailed information.
variable can be used.
Updated description of following APIs:
To reflect implementation better.
CyMasterClk_SetDivider(),CyWdtStart(),CyWdtStart
().
The Startup and Linking section was updated. The
To provide more information on device operation.
information on using custom linker script was
added.
Following macros were removed: CYWDT_TICKS
The CyWdtStart() and CyWdtClear() should be
CYWDT_CLEAR, CYWDT_ENABLE
used instead.
CYWDT_DISABLE_AUTO_FEED.
The CyCpuClk_SetDivider() was removed for PSoC The hardware does not support this functionality.
5 devices.
The cystrcpy(), cystrlen(), CyGetSwapReg16() and The library functions should be used.
CySetSwapReg16() APIs were removed.
The return value description for
Function returns 0 if interrupts were previously
CyEnterCriticalSection() function was updated for
enabled or 1 if interrupts were previously
PSoC 5.
disabled.
Added all APIs with the CYREENTRANT keyword
Not all APIs are truly reentrant. Comments in the
component API source files indicate which
when they are included in the .cyre file.
functions are candidates.
This change is required to eliminate compiler
warnings for functions that are not reentrant used
in a safe way: protected from concurrent calls by
flags or Critical Sections.
Added PSoC 5LP support
Version 2.40
This section lists and describes the major changes in the cy_boot component version 2.40:
Description of Version 2.40 Changes
Reason for Changes / Impact
Updated the CyPmSleep() and CyPmHibernate()
APIs.
Changes were made to improve power mode
configuration.
Version 2.30 and Older
Version 2.30 and older are obsolete.
®
PSoC Creator™ PSoC 4 System Reference Guide, Document Number: 001-96071, Rev. **
90

				

 Open as PDF

 	Similar pages
	

										Component PSoC 3 and PSoC 5LP CyBoot V5.0 Datasheet.pdf

	

										Component PSoC 4 CyBoot V5.20 Datasheet.pdf

	

										Component - CyBoot V4.20 Dataheet.pdf

	

										Component PSoC 3 and PSoC 5LP CyBoot V5.40 Datasheet.pdf

	

										Component - CyBoot V4.11 Datasheet.pdf

	

										Component PSoC 3 and PSoC 5LP CyBoot V5.30 Datasheet.pdf

	

										Component PSoC 4 CyBoot V5.40 Datasheet.pdf

	

										Component PSoC 4 CyBoot V5.30 Datasheet.pdf

	

										Component - CyBoot V4.10 Datasheet.pdf

	

										AN89056 PSoC 4 IEC 60730 Class B and IEC 61508 SIL Safety Software Library.pdf

	

										Component - CyBoot V4.0 Datasheet.pdf

	

										Component - CyBoot V3.40 Datasheet.pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

