

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 Component - Fan Controller V3.0.pdf

		
				 ®
PSoC Creator™ Component Datasheet
Fan Controller
3.0
Features
 Support for up to 16 PWM-controlled, 4-wire brushless DC fans for
PSoC 3/PSoC 5LP devices and up to 6 fans for PSoC 4

Individual or banked PWM outputs with tachometer inputs

Supports firmware-controlled fan speed regulation for PSoC 4
Supports 25 kHz, 50 kHz or user-specified PWM frequencies
Supports fan speeds up to 25,000 RPM
Supports 4-pole and 6-pole motors
Supports fan stall / rotor lock detection on all fans
Supports firmware controlled or hardware controlled fan speed
regulation for PSoC 3/PSoC 5LP
Customizable alert pin for fan fault reporting
General Description
The Fan Controller component enables designers to quickly and easily develop fan controller
solutions using PSoC. The component is a system-level solution that encapsulates all necessary
hardware blocks including PWMs, or TCPWMs for PSoC 4, tachometer input capture timer,
control registers, status registers and a DMA controller (ISR for PSoC 4) reducing development
time and effort.
The component is customizable through a graphical user interface enabling designers to enter
fan electromechanical parameters such as duty cycle-to-RPM mapping and physical fan bank
organization. Performance parameters including PWM frequency and resolution as well as open
or closed loop control methodology can be configured through the same user interface. Once the
system parameters are entered, the component delivers the most optimal implementation saving
resources within PSoC to enable integration of other thermal management and system
management functionality. Easy-to-use APIs are provided to enable firmware developers to get
up and running quickly.
Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-89670 Rev. **
Revised October 10, 2013
Fan Controller
®
PSoC Creator™ Component Datasheet
Note Designs using the Fan Controller component should not use PSoC’s low power sleep or
hibernate modes. Entering those modes prevents the Fan Controller component from controlling
and monitoring the fans.
When to Use a Fan Controller
The Fan Controller component should be used in any thermal management application that
needs to drive and monitor 4-wire, PWM based DC cooling fans. If the application requires more
than 16 fans, the Fan Controller component can be instantiated multiple times. Similarly, if the
fans in the application are organized into banks, designers have the option of instantiating one
Fan Controller component per bank or instantiating one component that handles all the banks.
Input/Output Connections
This section describes the various input and output connections for the Fan Controller. An
asterisk (*) in the list of I/Os states that the I/O may be hidden on the symbol under the
conditions listed in the description of that I/O.
clock – Input *
An input for a user-defined clock source for the fan control PWMs. It is present only when the
External Clock option is selected in the component customizer.
tach1-16 – Input *
Tachometer signal from each fan that enables the Fan Controller to measure fan rotational
speeds. The component is designed to work with 4-pole DC fans that produce 2 high-low pulse
trains per rotation on their tachometer output or 6-pole DC fans that produce 3 high-low pulse
trains. tach2..16 inputs are optional.
Note For PSoC 4 devices, the maximum number of tach inputs is limited to six because of the
limited digital resources.
fan1-16 – Output *
PWM output with variable duty cycle to control the speed of the fans. These output terminals are
replaced by the bank1..8 outputs if fan banking is enabled.
Note For Automatic Hardware (UDB) mode, the maximum number of fan outputs (and
associated tach inputs) is limited to 12 to minimize digital resource utilization.
Note For PSoC 4 devices the maximum number of fan outputs is limited to four because of the
limited digital resources.
Page 2 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Fan Controller
bank1-8 – Output *
PWM output with variable duty cycle to control the speed of the fan banks. These outputs appear
only when banking is enabled.
alert – Output
Active high output terminal asserted when fan faults are detected (if enabled). This signal is a
“sticky” signal. That is, once the signal is asserted high for a fault condition, it remains high until
the GetAlertSource() API is called in firmware.
eoc – Output
End-of-Cycle output is pulsed high each time the tachometer block has measured the speed of
all fans in the system. This can be used to synchronize firmware algorithms to the Fan Controller
hardware by connecting the terminal to a Status Register component or to an Interrupt
component.
Component Parameters
Drag a Fan Controller onto your design and double click it to open the Configure dialog.
Basic Tab
This tab is used to configure the fundamental operating parameters of the component.
Document Number: 001-89670 Rev. **
Page 3 of 36
Fan Controller
®
PSoC Creator™ Component Datasheet
Fan control method – Manual/Automatic
This parameter determines how the fan speeds are controlled. The possible options for selection
include:

Manual
Automatic Firmware (CPU)
Automatic Hardware (UDB)
Manual speed control is an open loop fan control mode and represents the lowest complexity
implementation. In this mode, the SetDutyCycle() API is used to set the PWM output duty cycle.
The actual fan speed is not used or taken into account. The assumption is that the fan will run at
the desired speed. However, fan faults (stalled or locked rotor) are detected and reported.
Manual speed control setting should be selected in cases where:
1. A complex or custom fan control algorithm needs to be implemented in firmware within
PSoC.
2. An external host controller is responsible for managing the fan speed algorithm and the
Fan Controller component is simply being used as the hardware interface to the fans.
3. Multiple fans are organized into banks sharing a common PWM drive signal.
Automatic Firmware (CPU) mode utilizes a firmware PID algorithm that is buried in the
component to control speed regulation. When this mode is selected, an additional tab, PID
Control, displays in the component Configure dialog. This tab provides an interface to enter PID
algorithm parameters. Based on the parameters, the PID algorithm, which is implemented in
ISR, analyzes the desired and actual fan’s RPM and sets the proper duty cycle for a fan currently
controlled.
This mode should be used to control multiple fans independently using an optimized PID control
loop running in firmware.
Automatic Hardware (UDB) mode dictates that hardware blocks inside the PSoC control fan
speed regulation automatically without any CPU intervention. Firmware sets the desired speed
for each fan and the hardware automatically adjusts the PWM duty cycle to achieve and maintain
the desired speed within specified tolerance limits.
The Automatic Hardware (UDB) setting should be selected to control multiple fans with minimal
firmware development.
Note For PSoC 4 devices, the Automatic Hardware (UDB) option is disabled because PSoC 4
has limited UDB resources.
Page 4 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Fan Controller
Automatic control mode – Control loop period
In Automatic controlled fan mode, this parameter controls the dynamic response time of the
Automatic Hardware or Firmware control loop (closed loop). This parameter controls how
frequently the internal algorithm adjusts the PWM duty cycles for each fan. It enables fine tuning
of the hardware control logic to match the selected fan’s electromechanical characteristics. The
valid range for this parameter is 0 to 2.55 (specified in seconds). The default setting is 0.5.
Automatic control mode – Tolerance
The option is only present in Automatic Hardware (UDB) control fan mode. This parameter sets
the acceptable tolerance when specifying desired fan speed targets. The tolerance is specified
as a percentage relative to the desired speed setting. This parameter enables fine tuning of the
hardware control logic to match the selected fan’s electromechanical characteristics.
The valid range for this parameter is 1 to 10%. The default setting is 1%. If 8-bit PWM resolution
is selected in the Fan Controller Fans tab, a Tolerance setting of 5% is recommended.
Automatic control mode – Acoustic Noise Reduction
In Automatic Hardware (UDB) control fan mode, this parameter limits audible noise from fans by
limiting the positive rate of change of speed. If enabled, and firmware requests an increase in
desired fan speed, the PWM duty cycle applied to the fan increases gradually to the new setting
rather than applying a sudden step change. This eliminates noisy fan whir from sudden speed
increases. This option is selected by default. This option is disabled for Automatic Firmware
(CPU) mode because the PID algorithm has this option built in.
Alerts – Fan stall / Rotor lock
The Fan Controller can be configured to generate an active-high alert signal when a fan stalls or
stops rotating due to a mechanical obstruction. This option is selected by default.
Alerts – Speed regulation failure
The Fan Controller can be configured to generate an active-high alert signal in Automatic control
fan mode when the Automatic control loop is not able to achieve the desired speed. This option
is not selected by default.
Connections – Display as bus
If selected, the tach inputs and fan/bank outputs will be displayed as buses. Otherwise, they are
displayed as individual terminals.
Connections – External clock
If selected, you may connect an external clock source to the component clock input. If not
selected, then an internal clock source will be used.
Document Number: 001-89670 Rev. **
Page 5 of 36
Fan Controller
®
PSoC Creator™ Component Datasheet
PID Control Tab
This tab is used to configure the coefficients for Firmware CPU Control mode.
PID Coefficients
These three gain parameters: Proportional gain (KP), Integral gain (KI), and Derivative gain
(KD) are used in the PID Control algorithm. Each term is presented as a ratio from 0.00% to
100.00%. The default terms are set to yield slow and stable performance for most systems (that
is, low bandwidth PI control). These coefficients are applied to each fan in the configuration at
startup and can be changed later using the FanController_SetPID() API. The values can be
changed individually for each fan.
See the PID Algorithm section of this datasheet for details on PID Coefficients.
Output saturation – Upper limit
This parameter defines the initial upper boundary for the integrator. It is presented as a ratio from
0.00% to 100.00%. This parameter can be used to set the upper limit for the fan; it also prevents
integrator windup commonly seen in unbounded control systems. The value is applied to each
fan in the configuration at start and can be changed later using the
FanController_SetSaturation() API. The value can be changed individually for each fan.
Output saturation – Lower limit
This parameter defines the initial lower boundary for the integrator. It is presented as a ratio from
0.00% to 100.00%. This parameter can be used to set the lower limit for the fan; it also prevents
Page 6 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Fan Controller
integrator windup commonly seen in unbounded control systems. The value is applied to each
fan in the configuration at start and can be changed later using the
FanController_SetSaturation() API. This parameter should always be set lower than the upper
saturation limit. The value can be changed individually for each fan.
Output attenuation
This is the attenuation defined in powers of 2. The range of the exponent is from 2-8 to 2-23. The
default gain is set to yield slow and stable performance for most systems (that is, low bandwidth
PI control).
Fans Tab
This tab is used to configure fan-specific parameters.
Motor support
This parameter specifies the number of high – low pulses that appear on the fan’s tachometer
output per revolution. The 4-pole option means there are two high and two low pulses per fan
revolution. The 6-pole option means that there are three high and three low pulses per fan
revolution.
Document Number: 001-89670 Rev. **
Page 7 of 36
Fan Controller
®
PSoC Creator™ Component Datasheet
PWM output configuration – Number of fans
This parameter specifies how many fans are in the system. The valid range for this parameter is
1 to 16. The default setting is 4.
Note For Automatic Hardware (UDB) mode, the number of fans is limited to 12. For PSoC 4
devices, the number of fans is limited to four in Automatic Firmware (CPU) mode or six (using
the banking feature) in manual mode.
PWM output configuration – Number of banks
This parameter is only visible in firmware control mode. It specifies how many fan banks are in
the system. It is assumed that when fans are organized into banks, each bank has the same
number of fans. Therefore, the number of fans must be divisible by the number of banks. The
value 0 indicates that the fans are not banked. For banked operation, the valid range for this
parameter is from 1 to (Number of fans/2). The default setting is 0.
PWM output configuration – PWM resolution
This parameter specifies the resolution of the duty cycle for the modulated PWM signal that
drives the fans to control rotational speed. Valid options for this parameter are 8-bit or 10-bit. The
default setting is 8-bit.
PWM output configuration – PWM frequency
This parameter specifies the frequency of the modulated PWM signal that drives the fans. Valid
options for this parameter are 25 kHz or 50 kHz when the internal clock is used. The default
setting is 25 kHz. When an external clock is used, this parameter is grayed out since the PWM
frequency depends on the input clock source. See the Functional Description section for more
details.
Fan specifications – Duty cycle A (%), RPM A
These parameters together specify one data point on the duty cycle-to-RPM transfer function for
the selected fan or bank of fans. The RPM A parameter specifies the speed at which the fan
nominally runs when driven by a PWM with a duty cycle of Duty A (%). This information is
available from the fan manufacturer’s datasheet. It should be noted that the Fan Controller
component may drive PWM duty cycles down to 0% even if Duty A (%) is set to a non-zero
value.
The valid range for the Duty A (%) parameter is 0-99. The default setting is 25.
The valid range for the RPM A parameter is 500 to 24,999. The default setting is 1,000.
Fan specifications – Duty cycle B (%), RPM B
These parameters together specify a 2nd data point on the duty cycle-to-RPM transfer function
for the selected fan or bank of fans. The RPM B parameter specifies the speed at which the fan
nominally runs when driven by a PWM with a duty cycle of Duty B (%). This information is
Page 8 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Fan Controller
available from the fan manufacturer’s datasheet. It should be noted that the Fan Controller
component may drive PWM duty cycles up to 100% even if Duty B (%) is set below 100%.
The valid range for the Duty B (%) parameter is 1-100. The default setting is 100.
The valid range for the RPM B parameter is 501 to 25,000. The default setting is 10,000.
Fan specifications – Initial RPM
This parameter specifies the initial RPM of an individual fan. The value of Initial RPM is
converted into a duty cycle and set as the initial duty cycle for an individual fan. The Initial RPM
parameter may be set lower than the RPM A parameter.
Clock Selection
The component uses several clock tree sources for its operation. These clocks are: Bus Clock
(not used for PSoC 4), Tachometer Clock (500 kHz), and PWM Clock (6, 12 or 24 MHz
depending on the configuration). The component has an option to connect an external clock
source instead of the PWM Clock to create desirable PWM output frequency.
Note For the component to operate with 10-bit PWM resolution in PSoC 4 devices, the IMO
should be set to 48 MHz. due to clock restrictions.
Application Programming Interface
Application Programming Interface (API) routines allow you to interact with the component using
firmware. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.
By default, PSoC Creator assigns the instance name FanController_1 to the first instance of a
component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
FanController.
Functions
Function
Description
FanController_Start()
Start the component
FanController_Stop()
Stop the component and disable hardware blocks
FanController_Init()
Initializes the component
FanController_Enable()
Enables hardware blocks inside the component
FanController_EnableAlert()
Enables alerts from the component
FanController_DisableAlert()
Disables alerts from the component
Document Number: 001-89670 Rev. **
Page 9 of 36
®
Fan Controller
PSoC Creator™ Component Datasheet
Function
Description
FanController_SetAlertMode()
Configures alert sources
FanController_GetAlertMode()
Returns currently enabled alert sources
FanController_SetAlertMask()
Enables masking of alerts from each fan
FanController_GetAlertMask()
Returns alert masking status of each fan
FanController_GetAlertSource()
Returns pending alert source(s)
FanController_GetFanStallStatus()
Returns a bit mask representing the stall status of each fan
FanController_GetFanSpeedStatus()
Returns a bit mask representing the speed regulation status of each
fan in hardware control mode
FanController_SetDutyCycle()
Sets the PWM duty cycle for the specified fan or fan bank
FanController_GetDutyCycle()
Returns the PWM duty cycle for the specified fan or fan bank
FanController_SetDesiredSpeed()
Sets the desired fans speed for the specified fan in hardware control
mode
FanController_GetDesiredSpeed()
Returns the desired fans speed for the specified fan in hardware
control mode
FanController_GetActualSpeed()
Returns the actual speed for the specified fan
FanController_OverrideAutomaticControl()
Enables firmware to override Automatic fan control
FanController_SetSaturation()
Changes the PID controller output saturation.
FanController_SetPID()
Changes the PID controller coefficients for the controlled fan.
Global Variables
Variable
FanController_initVar
Description
The initVar variable is used to indicate initial configuration of this component.
This variable is pre-pended with the component name. The variable is initialized
to zero and set to 1 the first time FanController_Start() is called. This allows for
component initialization without re-initialization in all subsequent calls to the
FanController_Start() routine.
If re-initialization of the component is required the FanController_Stop() routine
should be called followed by the FanController_Init() and
FanController_Enable().
Page 10 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Fan Controller
void FanController_Start(void)
Description:
Enables the component. Calls the Init() API if the component has not been initialized
before. Calls the Enable() API.
Parameters:
None
Return Value:
None
Side Effects:
None
void FanController_Stop(void)
Description:
Disables the component. All PWM outputs will be driven to 100% duty cycle to ensure
cooling continues while the component is not operational.
Parameters:
None
Return Value:
None
Side Effects:
Alert pin is deasserted.
void FanController_Init(void)
Description:
Initializes the component.
Parameters:
None
Return Value:
None
Side Effects:
None
void FanController_Enable(void)
Description:
Enables hardware blocks within the component.
Parameters:
None
Return Value:
None
Side Effects:
None
Document Number: 001-89670 Rev. **
Page 11 of 36
®
Fan Controller
PSoC Creator™ Component Datasheet
void FanController_EnableAlert(void)
Description:
Enables generation of the alert signal. Specifically which alert sources are enabled is
configured using the FanController_SetAlertMode() and the FanController_SetAlertMask()
APIs.
Parameters:
None
Return Value:
None
Side Effects:
None
void FanController_DisableAlert(void)
Description:
Disables generation of the alert signal.
Parameters:
None
Return Value:
None
Side Effects:
Alert pin is de-asserted.
void FanController_SetAlertMode(uint8 alertMode)
Description:
Configures alert sources from the component. Two alert sources are available: 1) Fan Stall
or Rotor Lock, 2) Hardware control mode speed regulation failure.
Parameters:
uint8 alertMode
Bit Field
FanController_STALL_ALERT
Enabled Alert Source
1=Enable fan stall / rotor lock alert
FanController_SPEED_ALERT 1=Enable Automatic control speed regulation failure
alert
Return Value:
None
Side Effects:
None
Page 12 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Fan Controller
uint8 FanController_GetAlertMode(void)
Description:
Returns the alert sources that are enabled.
Parameters:
None
Return Value:
uint8 alertMode
Bit Field
Side Effects:
Enabled Alert Source
FanController_STALL_ALERT
1=Enable fan stall / rotor lock alert
FanController_SPEED_ALERT
1=Enable Closed Loop speed regulation failure
alert
None
void FanController_SetAlertMask(uint16 alertMask)
Description:
Enables or disables alerts from each fan through a mask. Masking applies to both fan stall
alerts and speed regulation failure alerts.
Parameters:
uint16 alertMask
Bit Field
Enabled Alert Source
bit0
1=Enable alerts for Fan1
bit1
1=Enable alerts for Fan2
…
…
bit15
1=Enable alerts for Fan16
Return Value:
None
Side Effects:
None
Document Number: 001-89670 Rev. **
Page 13 of 36
®
Fan Controller
PSoC Creator™ Component Datasheet
uint16 FanController_GetAlertMask(void)
Description:
Returns alert mask status from each fan. Masking applies to both fan stall alerts and
speed regulation failure alerts.
Parameters:
None
Return Value:
uint16 alertMask
Bit Field
Side Effects:
Enabled Alert Source
bit0
1=Enable alerts for Fan1
bit1
1=Enable alerts for Fan2
…
…
bit15
1=Enable alerts for Fan16
None
uint8 FanController_GetAlertSource(void)
Description:
Returns pending alert sources from the component. This API can be used to poll the alert
status of the component. Alternatively, if the alert pin is used to generate interrupts to
PSoC’s CPU core, the interrupt service routine can use this API to determine the source
of the alert. In either case, when this API returns a non-zero value, the
FanController_GetFanStallStatus() and FanController_GetFanSpeedStatus() APIs can
provide further information on which fan(s) has(have) a fault.
Parameters:
uint8 alertMode
Bit Field
FanController_STALL_ALERT
Pending Alert
1=Fan stall / rotor lock alert pending
FanController_SPEED_ALERT 1=Closed Loop speed regulation failure alert
pending
Return Value:
None
Side Effects:
Calling this API de-asserts the alert pin. If any alerts are pending, the alert pin is reasserted right after the next end-of-cycle (eoc) pulse.
Page 14 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Fan Controller
uint16 FanController_GetFanStallStatus(void)
Description:
Returns the stall / rotor lock status of all fans.
Parameters:
None
Return Value:
uint16 stallStatus
Bit Field
Side Effects:
Status
bit0
Fan1 stall status (1=stall, 0=OK)
bit1
Fan2 stall status
…
…
bit15
Fan16 stall status
Calling this API clears all pending fan stall alerts.
uint16 FanController_GetFanSpeedStatus(void)
Description:
Returns the hardware fan control mode speed regulation status of all fans. Speed
regulation failures occur in two cases: 1) if the desired fan speed exceeds the current
actual fan speed but the fan’s duty cycle is already at 100%, 2) if the desired fan speed is
below the current actual fan speed, but the fan’s duty cycle is already at 0%.
Parameters:
None
Return Value:
uint16 speedStatus
Bit Field
Side Effects:
Status
bit0
Fan1 speed regulation status (1=failure, 0=OK)
bit1
Fan2 speed regulation status
…
…
bit15
Fan16 speed regulation status
Calling this API clears all pending speed regulation alerts.
Document Number: 001-89670 Rev. **
Page 15 of 36
®
Fan Controller
PSoC Creator™ Component Datasheet
void FanController_SetDutyCycle(uint8 fanOrBankNumber, uint16 dutyCycle)
Description:
Parameters:
Sets the PWM duty cycle of the selected fan or fan bank in hundredths of a percent. In
hardware fan control mode, if manual duty cycle control is desirable, call the
FanController_OverrideHardwareControl() API prior to calling this API.
uint8 fanOrBankNumber
Fan or bank number. Valid range is 1..16 but should not exceed the number of fans or
banks in the system.
uint16 dutyCycle
Duty cycle in hundredths of a percent. For example, 50% duty cycle = 5000. Valid range is
0..10000.
Return Value:
None
Side Effects:
None
uint16 FanController_GetDutyCycle(uint8 fanOrBankNumber)
Description:
Returns the current PWM duty cycle of the selected fan or fan bank in hundredths of a
percent.
Parameters:
uint8 fanOrBankNumber
Fan or bank number. Valid range is 1..16 but should not exceed the number of fans or
banks in the system.
Return Value:
Duty cycle in hundredths of a percent. For example, 50% duty cycle = 5000.
Side Effects:
None
Page 16 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Fan Controller
void FanController_SetDesiredSpeed(uint8 fanNumber, uint16 rpm)
Description:
Sets the desired speed of the specified fan in revolutions per minute (RPM). In hardware
fan control mode, the RPM parameter is passed to the control loop hardware as the new
target fan speed for regulation. In firmware fan control mode, the RPM parameter is
converted to a duty cycle based on the fan parameters entered into the Fans tab of the
customizer and written to the appropriate PWM. This provides firmware with a method for
initiating coarse level speed control. Fine level firmware speed control can then be
achieved using the FanController_SetDutyCycle() API.
Parameters:
uint8 fanNumber
Fan or bank number. Valid range is 1..16 but should not exceed the number of fans in the
system.
uint16 rpm
Valid range is 500..25,000 but should not exceed the maximum RPM that the fan is
capable of running at. Doing so will cause a speed regulation failure.
Return Value:
None
Side Effects:
None
uint16 FanController_GetDesiredSpeed(uint8 fanNumber)
Description:
Returns the currently desired speed for the selected fan.
Parameters:
uint8 fanNumber
Fan or bank number. Valid range is 1..16 but should not exceed the number of fans in the
system.
Return Value:
Currently desired speed for the selected fan in RPM
Side Effects:
None
Document Number: 001-89670 Rev. **
Page 17 of 36
®
Fan Controller
PSoC Creator™ Component Datasheet
uint16 FanController_GetActualSpeed(uint8 fanNumber)
Description:
Returns the current actual speed for the selected fan.
Parameters:
uint8 fanNumber
Fan number. Valid range is 1..16 but should not exceed the number of fans in the system.
Return Value:
Current actual speed for the selected fan in RPM
Side Effects:
None
void FanController_OverrideAutomaticControl(uint8 override)
Description:
Allows firmware to take over fan control in hardware fan control mode. Note that this API
cannot be called in firmware fan control mode.
Parameters:
uint8 override
0 = hardware assumes control of fans
1 = firmware assumes control of fans
Valid range is 0..1. Default is 0
Return Value:
None
Side Effects:
None
void FanController_SetSaturation(uint8 fanNum, uint16 satH, uint16 satL)
Description:
Changes the PID controller output saturation. This bounds the output PWM to the fan and
prevents what is known as integrator windup.
Parameters:
uint8 fanNum
Fan number. Valid range is 1..16 but should not exceed the number of fans in the system.
uint16 satH
The upper threshold for saturation. Valid range is 0 to 65535. A value of 0 represents 0%
of the duty cycle. A value of 65535 represents 100% duty cycle.
uint16 satL
The lower threshold for saturation. Valid range is 0 to 65535. A value of 0 represents 0%
of the duty cycle. A value of 65535 represents 100% duty cycle.
Return Value:
None
Side Effects:
None
Page 18 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Fan Controller
void FanController_SetPID (uint8 fanNum, uint16 kp, uint16 ki, uint16 kd)
Description:
Changes the PID controller coefficients for the controlled fan. The coefficients are integers
that are proportional to the gain.
Parameters:
uint8 fanNum: Fan number. Valid range is 1..16 but should not exceed the number of fans
in the system.
uint16 kp: Proportional gain. Valid range is 0 to 65535. A value of 0 represents 0% gain. A
value of 65535 represents 100% gain.
uint16 ki: Integral gain. Valid range is 0 to 65535. A value of 0 represents 0% gain. A value
of 65535 represents 100% gain.
uint16 kd: Derivative gain. Valid range is 0 to 65535. A value of 0represents 0% gain. A
value of 65535 represents 100% gain.
Return Value:
None
Side Effects:
None
MISRA Compliance
This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:

project deviations – deviations that are applicable for all PSoC Creator components
specific deviations – deviations that are applicable only for this component
This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.
The Fan Controller component has the following specific deviations:
MISRAC:2004
Rule
Rule Class
(Required/
Advisory)
Rule Description
Description of Deviation(s)
10.3
R
A cast should not be performed between a When Automatic Firmware mode is used
pointer to object type and a different
the PID algorithm casts signed integer
pointer to object type.
variables to unsigned.
13.7
R
Boolean operations whose results are
invariant shall not be permitted .
Document Number: 001-89670 Rev. **
Depending on the component
configuration there can be condition
checks which conditions are invariant.
Page 19 of 36
®
Fan Controller
MISRAC:2004
Rule
19.7
Rule Class
(Required/
Advisory)
A
PSoC Creator™ Component Datasheet
Rule Description
Description of Deviation(s)
A function should be used in preference to
a function-like macro.
A function-like macro
FanController_OverrideHardwareControl()
was added for support of existing designs
as the function
FanController_OverrideHardwareControl()
was renamed to
FanController_OverrideAutomaticControl()
21.1
R
Minimization of run-time failures shall be
ensured by the use of at least one of the
following:
a) Static analysis tools/ techniques
b) Dynamic analysis tools/ techniques
Depending on the component
configuration there can be condition
checks which conditions are invariant as
the result some part of code can be
redundant.
c) Explicit coding of checks to handle runtime faults
This component has the following embedded components: DMA. Refer to the corresponding
component datasheet for information on their MISRA compliance and specific deviations.
Sample Firmware Source Code
PSoC Creator provides numerous example projects that include schematics and example code
in the Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.
Refer to the "Find Example Project" topic in the PSoC Creator Help for more information.
Interrupt Service Routine
The Fan Controller component can utilize two interrupts depending on the mode it is configured
with or the device which is used. When it is configured in Automatic Firmware (CPU) mode the
component uses FanController_PID_ISR interrupt. This interrupt implements a PID Control
algorithm. An addition interrupt - FanController_DataSend is used when component is utilized in
PSoC4 design. This interrupt is responsible for transferring measured RPM speed from
tachometer to RAM.
Note For PSoC 4, if there are any other interrupts used in the design except Fan Controller
interrupts it is important that FanController_DataSend interrupt have highest priority than other
interrupts. This is because of the small time window during which the FanController_DataSend
should read the current active fan address and locate read value of actual speed to a proper
RAM location.
Page 20 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Fan Controller
Functional Description
Block Diagram and Configuration
The schematic shown in Figure below shows high level block diagrams of the two fundamental
modes of the component: 1) open loop control mode (Manual) and 2) closed loop control mode
(Automatic).
OPEN LOOP FAN CONTROL MODE
Custom
PWMs/
TCPWMs
SetDytyCycle()
or
SetDesiredSpeed()
CPU
CLOSED LOOP FAN CONTROL MODE
Cypress Provided
Speed Control
Algorithm
(Hardware or
Firmware)
DMA/
Interrupt
Tachometer
Custom
PWMs/
TCPWMs
SetDesiredSpeed()
DMA/
Interrupt
Tachometer
Manual (Open Loop) Control mode is straightforward and it was described in Component
Parameters section.
Automatic (Closed Loop) Control Mode
In Automatic Control mode the controlling algorithm is hidden from the user but the component
provides a set of parameters for configuring the algorithm selected. Although this algorithm
doesn't require almost any firmware development it does require some basic knowledge on
component operation to be able to configure it properly.
Control Loop Period
Control Loop Period provides a programmable delay between fans speeds adjustments. The
main purpose on this delay is to give fans time to stabilize which prevents them from oscillating.
The Control Loop Period is optional for Automatic Hardware (UDB) mode as in case when
component is configured for many fans (eg. 12 or more) the measurement of that number of fans
introduces a natural delay so the Control Loop Period may not be needed. For Automatic
Firmware (CPU) mode the Control Loop Period (tCLP) is required and it should be always be
greater than time consumed for speed measure of all fans (tM), while in Automatic Hardware
(UDB) tCLP can be smaller than tM.
Document Number: 001-89670 Rev. **
Page 21 of 36
®
Fan Controller
PSoC Creator™ Component Datasheet
The following timing diagram illustrates the Control Loop Period generation.
t CLP
tM
t FanN
t FanN-1
t Fan1
t Fan0
Enable
(internal)
Fan Addr
(Internal)
Fan N
Fan N-1
Fan 2
Fan 1
Fan N
EOM
(Internal)
Control Loop
Timer TC (internal)
On the diagram above the internal enable signal is set to high when terminal count of internal
control loop timer is set high. This enable signal starts a sequence of speed measurement for all
fans. The sequence is stopped, with asserting enable signal to low, when internal End-OfMeasurement (EOM) signal pulses.
Control Loop Period Calculation
For Automatic Hardware (UDB) mode the control loop period make sense only if it is greater than
time for measurement of all fans. For Automatic Firmware (CPU) mode it is vital that tCLP > tM as
each terminal count of control loop period timer the PID ISR is triggered to run the PID algorithm
and it that moment all the measured actual speed values for all fans must be available.
The tM can be calculated from the formula:
tM = tFan1 + tFan2 + .. + tFanN ;
(1)
Where tFan1 ... tFanN is time periods required to measure speed for Fan1 .. FanN. The time that is
required for measuring speed for the fan is defined by the following formula:
tFan = 1.75 * (60/RPMFan_min);
(2)
In this formula coefficient 1.75 dictated by the hardware as 1.75 of fan’s rotation is required to
measure the speed. RPMFan_min is the minimal speed for the specific fan.
Example. For configuration of 4 fans that all have RPMFan_min = 1000 the result will be following:
tM = 4 * 1.75 * (60/1000) = 0.42 sec
But tCLP > tM so the minimal value of the Control Loop Period for this configuration is 0.43 sec.
Page 22 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Fan Controller
Custom Clock
The component has a feature that allows the connection of an external clock. The frequency of
the clock source determines the PWM output frequency, and the relation between the input clock
frequency (fCLK) and output PWM frequency (fPWM) is shown in the following equations:
fPWM = fCLK / PPWM;
(3)
Where PPWM is the PWM period. For 8 bit resolution PPWM equals to 240 and for PPWM it equals to
960.
PID Algorithm
The Automatic Firmware CPU control mode uses proportional-integral-derivative (PID) algorithm
for controlling fans. The algorithm is defined in the following equation:
GPID[z] = KP + KI * (1 / (1 - z-1)) + KD * (1 - z-1);
(4)
Although Equation 4 could be implemented in code directly, the result would yield code that is
quite abusive on PSoC’s processing and memory resources. However, Equation 4 can be
algebraically simplified to a form that is far more efficient for implementation and is shown in
Equation 5:
GPID[z] = ((KP + KI + KD) + (- KP + 2 * KD) * z-1 + * (KD) * z-2) / (1 - z-1);
(5)
This transfer function represents the desired PID algorithm for the fan controller. Note, the
derivative term is likely unnecessary for most fan control applications, but it is maintained in the
event that a yet to be known fan system requires the extra compensation. Figure below shows
the corresponding signal flow diagram for the transfer function presented in Equation 5.
Document Number: 001-89670 Rev. **
Page 23 of 36
®
Fan Controller
PSoC Creator™ Component Datasheet
To help understand, the following table contains a brief summary of the inputs and outputs of the
PID control algorithm.
Signal
Direction
Note
PID_refference (Xref)
Input
The reference the control regulates in case of Fan Controller it is the
desired speed in RPM.
PID_in (x)
Input
The signal being controlled, in this case the measured fan speed in
RPM.
PID_error_saturation_high
Input
The saturation boundary for the input error signal. These are internal
constants hardcoded to 4096(high) and -4096(low). These values are
reasonably large to account for a wide error input and small enough to
fit well within the controller computational limits.
Input
The controller coefficients where A1, A2, and A3 are functions of KP,
KI, and KD. These coefficients should are available for changing at
run-time through FanController_SetPID() function for the situation
where compensation may need tweaking for a very non-linear fan
response. However, in most cases these parameters are expected to
be constant. The coefficients are signed integers limited to < 16 bits.
Input
The PID output should be limited to the dynamic range of the system
being controlled, the PWM driving the fan in this case. These set the
upper and lower boundaries for the integrator (prevents integrator
windup). These parameters are available to the user for changing at
runtime through FanController_SetSaturation() function. Note that the
saturation is scaled by the PID_POST_GAIN term.
PID_POST_GAIN (GO)
Input
The output gain for the controller. Used in computation of output
saturation high and low limits. This parameter is inversely proportional
to output attenuation.
PID_out (y)
output
The output of the PID sent to the PWM that drives the fan.
PID_error_saturation_low
PID_A1
PID_A2
PID_A3
PID_output_saturation_high
PID_output_saturation_low
The coefficients used in the algorithm are defined by Equation 6, 7, and 8.
PID_A1 = (KP + KI + KD) * 212 ;
(6)
PID_A2 = -(KP + 2 * KD) * 212 ;
(7)
PID_A3 = (KD) * 212 ;
(8)
Note The equations impose coefficient results in the range of 12 to 13 bits with a maximum no
higher than 13 bits. Thus the combined results from the feed-forward terms are not sufficient to
cause an overflow in the controller integration stage, certainly not with small error.
The maximum and minimum saturation levels for the output saturation are set by the customizer
generated upper limit (YH), lower limit (YL), the PWM period mentioned in previous section
(PPWM), and the output gain (GO).
PID_output_saturation_high = (YH * PPWM)/GO;
(9)
PID_output_saturation_low = (YL * PPWM)/GO;
(10)
Page 24 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Fan Controller
Registers
The Fan Controller has several control and status registers that are used by the firmware APIs to
control operation and monitor status. None of these registers should be directly accessible by
user firmware.
Component Debug Window
The Fan Controller component supports the PSoC Creator component debug window. The
following registers are displayed in the Fan Controller component debug window.
FanController_GLBL_CTRL
This is component’s Global Control register.
FanController_ALERT_STATUS
This is component’s Alert status register.
FanController_STALL_STATUS_LSB
This register holds status of stall alerts for fans 1-8.
FanController_MSB_STALL_STATUS_MSB
This register holds status of stall alerts for fans 9-16.
FanController_ALRT_MASK_LSB
This register holds status of speed alerts for fans 1-8.
FanController_MSB_ALRT_MASK_MSB
This register holds status of stall speed for fans 9-16.
Document Number: 001-89670 Rev. **
Page 25 of 36
®
Fan Controller
PSoC Creator™ Component Datasheet
Resources
The Fan Controller component is placed throughout the UDB array. The following table shows
UDB resources t utilized by the component.
PSoC 3/PSoC 5LP
Resource Type
Configuration
[1][2]
Datapath Cells
Macrocells
[3]
Status
Cells
Control
Cells
DMA
Interrupts
Channels
Manual mode, 4 Fans
3 (7)
32
3
3
1
–
Manual mode, 8 Fans
7 (11)
40
3
3
1
–
Manual mode, 12 Fans
9 (15)
49
4
4
1
–
Manual mode, 16 Fans
11 (19)
59
4
4
1
–
Auto Firmware mode, 4 Fans
4 (8)
37
3
3
1
–
Auto Firmware mode, 8 Fans
8 (12)
45
3
3
1
–
Auto Firmware mode, 12 Fans
10 (16)
54
4
4
1
–
Auto Firmware mode, 16 Fans
12 (20)
64
4
4
1
–
Auto Hardware mode, 4 Fans
7 (11)
61
4
7
2
–
Auto Hardware mode, 8 Fans
11 (19)
97
4
11
2
–
Auto Hardware mode, 12 Fans
15
135
6
16
2
–
PSoC 4
Resource Type
Configuration
Datapath
Cells
Macrocells
Status
Cells
Control
DMA
Cells
Channels
Manual mode, 4 Fans
3
19
2
3
Auto Firmware mode, 4 Fans
4
25
2
3
TCPWM
Blocks
Interrupts
–
4
1
–
4
2
1
Table demonstrates resource usage for 8-bit resolution. Resources that are occupied by 10-bit configuration if
they differ are shown in parentheses.
2
For the Hardware mode, resources used by the Control Loop Period feature are not included.
3
For PSoC 5LP the component utilizes 3 macrocells less than for PSoC 3. It’s because of the fix for simultaneous
CPU and DMA multi-byte access issue.
Page 26 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Fan Controller
API Memory Usage
The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.
The measurements have been done with the associated compiler configured in Release mode
with optimization set for Size. For a specific design, the map file generated by the compiler can
be analyzed to determine the memory usage.
Configuration
[4][5]
PSoC 3 (Keil_PK51)
PSoC 4 (GCC)
PSoC 5LP (GCC)
Flash
SRAM
Flash
SRAM
Flash
SRAM
Bytes
Bytes
Bytes
Bytes
Bytes
Bytes
Manual mode, 4 Fans
1689 (1718)
82
1440
65
792 (816)
70
Manual mode, 8 Fans
1705 (1734)
162
N/A
N/A
804 (820)
138
Manual mode, 12 Fans
1738 (1767)
242
N/A
N/A
872 (896)
206
Manual mode, 16 Fans
1754 (1783)
322
N/A
N/A
900 (932)
274
Auto Firmware mode, 4 Fans
3368 (3483)
186
2088
169
1368 (1384)
174
Auto Firmware mode, 8 Fans
3441 (3499)
366
N/A
N/A
1380 (1400)
342
Auto Firmware mode, 12 Fans
3454 (3485)
546
N/A
N/A
1456 (1480)
510
Auto Firmware mode, 16 Fans
3500 (3679)
726
N/A
N/A
1488 (1504)
678
Auto Hardware mode, 4 Fans
2567 (2581)
115
N/A
N/A
1120 (1132)
103
Auto Hardware mode, 8 Fans
2599 (2613)
227
N/A
N/A
1188 (1196)
203
Auto Hardware mode, 12 Fans
2652
339
N/A
N/A
1316
303
4
Table demonstrates resource usage for 8-bit resolution. Resources that are occupied by 10 bit configuration if
they differ are shown in parentheses.
5
For the Hardware mode, resources used by the Control Loop Period feature are not included.
Document Number: 001-89670 Rev. **
Page 27 of 36
®
Fan Controller
PSoC Creator™ Component Datasheet
DC and AC Electrical Characteristics
Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.
DC Characteristics
PSoC 3/PSoC 5LP (PWM clock – 6 MHz, BUS_CLK – 24 MHz)
Parameter
Idd
Description
Min
Typ
[6]
Max
Unit
Component current consumption(Manual mode, 4 Fans)
8-bit resolution
–
108
–
μA
10-bit resolution
–
139
–
μA
8-bit resolution
–
194
–
μA
10-bit resolution
–
260
–
μA
8-bit resolution
–
307
–
μA
10-bit resolution
–
395
–
μA
8-bit resolution
–
392
–
μA
10-bit resolution
–
505
–
μA
Component current consumption(Manual mode, 8 Fans)
Component current consumption(Manual mode, 12 Fans)
Component current consumption(Manual mode, 16 Fans)
Component current consumption(Automatic Firmware mode, 4 Fans)
8-bit resolution
–
180
–
μA
10-bit resolution
–
221
–
μA
Component current consumption(Automatic Firmware mode, 8 Fans)
8-bit resolution
–
264
–
μA
10-bit resolution
–
319
–
μA
Component current consumption(Automatic Firmware mode, 12 Fans)
8-bit resolution
–
329
–
μA
10-bit resolution
–
428
–
μA
Component current consumption(Automatic Firmware mode, 16 Fans)
6
Device I/O and clock distribution current not included. Other factors such as routing conditions, frequency of tach
inputs and temperature also have an impact on the current consumption. The values are at 25 °C.
Page 28 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Parameter
Description
Fan Controller
Min
Typ
[6]
Max
Unit
8-bit resolution
–
385
–
μA
10-bit resolution
–
508
–
μA
Component current consumption(Automatic Hardware mode, 4 Fans)
8-bit resolution
–
225
–
μA
10-bit resolution
–
269
–
μA
Component current consumption(Automatic Hardware mode, 8 Fans)
8-bit resolution
–
417
–
μA
10-bit resolution
–
518
–
μA
636
–
μA
Component current consumption(Automatic Hardware mode, 12 Fans)
8-bit resolution
–
PSoC 3/PSoC 5LP (PWM clock – 12 MHz, BUS_CLK – 24 MHz)
Parameter
Idd
Description
Min
Typ
[7]
Max
Unit
Component current consumption(Manual mode, 4 Fans)
8-bit resolution
–
169
–
μA
10-bit resolution
–
233
–
μA
8-bit resolution
–
310
–
μA
10-bit resolution
–
439
–
μA
8-bit resolution
–
498
–
μA
10-bit resolution
–
677
–
μA
8-bit resolution
–
641
–
μA
10-bit resolution
–
871
–
μA
Component current consumption(Manual mode, 8 Fans)
Component current consumption(Manual mode, 12 Fans)
Component current consumption(Manual mode, 16 Fans)
Component current consumption(Automatic Firmware mode, 4 Fans)
7
8-bit resolution
–
246
–
μA
10-bit resolution
–
307
–
μA
Device I/O and clock distribution current not included. Other factors such as routing conditions, frequency of tach
inputs and temperature also have an impact on the current consumption. The values are at 25 °C.
Document Number: 001-89670 Rev. **
Page 29 of 36
®
Fan Controller
PSoC Creator™ Component Datasheet
Parameter
Description
Min
Typ
[7]
Max
Unit
Component current consumption(Automatic Firmware mode, 8 Fans)
8-bit resolution
–
360
–
μA
10-bit resolution
–
486
–
μA
Component current consumption(Automatic Firmware mode, 12 Fans)
8-bit resolution
–
512
–
μA
10-bit resolution
–
695
–
μA
Component current consumption(Automatic Firmware mode, 16 Fans)
8-bit resolution
–
618
–
μA
10-bit resolution
–
870
–
μA
Component current consumption(Automatic Hardware mode, 4 Fans)
8-bit resolution
–
403
–
μA
10-bit resolution
–
492
–
μA
Component current consumption(Automatic Hardware mode, 8 Fans)
8-bit resolution
–
756
–
μA
10-bit resolution
–
951
–
μA
1162
–
μA
Max
Unit
Component current consumption(Automatic Hardware mode, 12 Fans)
8-bit resolution
–
PSoC 3/PSoC 5LP (PWM clock – 24 MHz, BUS_CLK – 24 MHz)
Parameter
Idd
Description
Min
Typ
[8]
Component current consumption(Manual mode, 4 Fans)
8-bit resolution
–
290
–
μA
10-bit resolution
–
417
–
μA
8-bit resolution
–
545
–
μA
10-bit resolution
–
798
–
μA
–
887
–
μA
Component current consumption(Manual mode, 8 Fans)
Component current consumption(Manual mode, 12 Fans)
8-bit resolution
8
Device I/O and clock distribution current not included. Other factors such as routing conditions, frequency of tach
inputs and temperature also have an impact on the current consumption. The values are at 25 °C.
Page 30 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Parameter
Description
Fan Controller
Min
10-bit resolution
Typ
[8]
Max
Unit
–
1243
–
μA
8-bit resolution
–
1150
–
μA
10-bit resolution
–
1607
–
μA
Component current consumption(Manual mode, 16 Fans)
Component current consumption(Automatic Firmware mode, 4 Fans)
8-bit resolution
–
354
–
μA
10-bit resolution
–
494
–
μA
Component current consumption(Automatic Firmware mode, 8 Fans)
8-bit resolution
–
614
–
μA
10-bit resolution
–
906
–
μA
Component current consumption(Automatic Firmware mode, 12 Fans)
8-bit resolution
–
897
–
μA
10-bit resolution
–
1246
–
μA
Component current consumption(Automatic Firmware mode, 16 Fans)
8-bit resolution
–
1089
–
μA
10-bit resolution
–
1671
–
μA
Component current consumption(Automatic Hardware mode, 4 Fans)
8-bit resolution
–
753
–
μA
10-bit resolution
–
938
–
μA
Component current consumption(Automatic Hardware mode, 8 Fans)
8-bit resolution
–
1446
–
μA
10-bit resolution
–
1826
–
μA
–
2220
–
μA
Description
Min
Typ
Max
Unit
Component current consumption (Manual mode, 4 Fans)
–
605
–
μA
Component current consumption(Automatic Hardware mode, 12 Fans)
8-bit resolution
PSoC 4 (PWM clock – 6 MHz, BUS_CLK – 24 MHz)
Parameter
Idd
Document Number: 001-89670 Rev. **
Page 31 of 36
®
Fan Controller
PSoC Creator™ Component Datasheet
PSoC 4 (PWM clock – 12 MHz, BUS_CLK – 24 MHz)
Parameter
Idd
Description
Min
Typ
Max
Unit
–
900
–
μA
Min
Typ
Max
Unit
–
670
–
μA
Min
Typ
Max
Unit
–
1010
–
μA
Min
Typ
Max
Unit
–
1200
–
μA
Min
Typ
Max
Unit
Manual mode, 8-bit, 4 Fans
–
–
51
MHz
Manual mode, 8-bit, 8 Fans
–
–
45
MHz
Manual mode, 8-bit, 12 Fans
–
–
51
MHz
Manual mode, 8-bit, 16 Fans
–
–
47
MHz
Manual mode, 10-bit, 4 Fans
–
–
44
MHz
Component current consumption
PSoC 4 (PWM clock – 6 MHz, BUS_CLK – 48 MHz)
Parameter
Idd
Description
Component current consumption
PSoC 4 (PWM clock – 12 MHz, BUS_CLK – 48 MHz)
Parameter
Idd
Description
Component current consumption
PSoC 4 (PWM clock – 24 MHz, BUS_CLK – 48 MHz)
Parameter
Idd
Description
Component current consumption
AC Specifications
PSoC 3/PSoC 5LP
Parameter
fpwm_clk
9
Description
[9]
Input clock frequency
The values provide a maximum safe operating PWM frequency for the Fans. The component may run at higher
clock frequencies, at which point you will need to validate the timing requirements with Static Timing Analysis
results.
Page 32 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Parameter
Fan Controller
Description
Min
Typ
Max
Unit
Manual mode, 10-bit, 8 Fans
–
–
43
MHz
Manual mode, 10-bit, 12 Fans
–
–
43
MHz
Manual mode, 10-bit, 16 Fans
–
–
43
MHz
Automatic Firmware mode, 8-bit, 4 Fans
–
–
51
MHz
Automatic Firmware mode, 8-bit, 8 Fans
–
–
46
MHz
Automatic Firmware mode, 8-bit, 12 Fans
–
–
46
MHz
Automatic Firmware mode, 8-bit, 16 Fans
–
–
56
MHz
Automatic Firmware mode, 10-bit, 4 Fans
–
–
44
MHz
Automatic Firmware mode, 10-bit, 8 Fans
–
–
44
MHz
Automatic Firmware mode, 10-bit, 12 Fans
–
–
44
MHz
Automatic Firmware mode, 10-bit, 16 Fans
–
–
44
MHz
Automatic Hardware mode, 8-bit, 4 Fans
–
–
55
MHz
Automatic Hardware mode, 8-bit, 8 Fans
–
–
44
MHz
Automatic Hardware mode, 8-bit, 12 Fans
–
–
46
MHz
Automatic Hardware mode, 10-bit, 4 Fans
–
–
50
MHz
Automatic Hardware mode, 10-bit, 8 Fans
–
–
50
MHz
ftach_clk
Tachometer clock frequency
–
500
–
kHz
Tach Resolution
Tachometer counter resolution
–
16
–
Bits
ftach
Tachometer Speed
–
25000
RPM
Min
Typ
Max
Unit
–
–
48
MHz
[10]
500
PSoC 4
Parameter
fpwm_clk
Description
[11]
Input clock frequency
10
Speed less than the minimum will be interpreted as halted.
11
The values provide a maximum safe operating PWM frequency for the Fans. The component may run at higher
clock frequencies, at which point you will need to validate the timing requirements with Static Timing Analysis
results.
Document Number: 001-89670 Rev. **
Page 33 of 36
®
Fan Controller
PSoC Creator™ Component Datasheet
Component Changes
This section lists the major changes in the component from the previous version.
Version
3.0
Description of Changes
Reason for Changes / Impact
Updated Resources, API Usage, Functional
Description, DC and AC Electrical
Characteristics sections.
Fixed the FanController_GetActualSpeed() API. The function would sometimes return incorrect
measured speed values.
Removed a note about the
FanController_GetActualSpeed() being called
within a specific time window after EOC pulse
on PSoC 3.
The reason for this note is related to simultaneous
multi-byte data access by the CPU and DMA. The
current version of the component fixes this issue.
Added a description of control loop period.
Added two new API functions:
FanController_SetSaturation() and
FanController_PID().
These functions are required to support new
component’s mode.
Renamed
FanController_OverrideHardwareControl() to
FanController_OverrideAutomaticControl().
The old name became obsolete with introduction of
new mode.
Removed PSoC 5 support.
Added support of PSoC 4 family devices.
To provide Fan Controlling capability to PSoC 4.
Firmware (CPU) mode was renamed to
Manual.
This mode was not performing actual fan control and
instead a task of implementing fan control algorithm
was relied on the user. The new mode - Automatic
Firmware (CPU) uses internal PID Control algorithm
to control fans.
New control mode - Automatic Firmware (CPU)
was added to the component. This mode is
based on the PID control algorithm.
New feature.
2.30.a
Label “Damping factor (sec)” renamed to
“Control loop period (sec)”.
Since a corresponding parameter is a time quantity,
term “Control loop period” is better.
2.30
Added MISRA Compliance section.
The component was not verified for MISRA
compliance.
Updated Fan Controller with the latest version
of the clock and DMA components
2.20
Updated Side Effects section in description of
FanController_GetFanSpeedStatus(),
FanController_GetFanStallStatus() and
FanController_GetAlertSource() functions.
Page 34 of 36
Document Number: 001-89670 Rev. **
®
PSoC Creator™ Component Datasheet
Version
Description of Changes
Fan Controller
Reason for Changes / Impact
Fixed an issue related to the alert pin, which did The alert signal was asserting high for a duration of
not behave as described in the datasheet.
one input clock cycle at each "eoc"; it was expected
to go up until it was cleared by the
FanController_GetFanSpeedStatus() or
FanController_GetFanStallStatus() functions. Now, it
has been adjusted to go up until it is cleared by the
FanController_GetAlertSource().
Fixed a bug related to the component operation
in Firmware Mode in which the component was
configured to support 6-pole motors.
The component didn't work for this configuration
because of an error in the implementation of the
component's state machine.
Fixed a bug due to the customizer validating
unused (hidden) component settings.
Now, only visible row values in the fan table are
checked for correctness.
Fixed a bug due to an incorrect value for the
initial duty cycle which was generated by the
customizer.
2.10
Updated component characterization data.
Added PSoC 5LP support
2.0
Added component characterization data.
Changed Damping Factor behavior.
In previous versions Damping Factor specified a
delay between speed measurements of each fan and
the value of delay wasn’t specified in any units. In
this version, Damping Factor specifies a delay
between start-to-start of speed measurements of all
fans. In addition, this delay is now specified in
seconds.
Added new parameter Initial RPM to every fan
in the configuration.
This parameter specifies approximate speed of
rotation of the specific fan at component start. In
previous versions all fans were initialized with
maximum speed.
Added new feature of selecting the type of
motors that are supported by the component.
This parameter specifies the number of high – low
pulses per fan revolution. 2 high-low pulses for4 pole
motors, 3 high-low pulses - 6 pole motors.
Component symbol was extended with a
functionality of adding external clock source to
drive internal PWMs. This option is accessible
in customizer's GUI.
New component feature. Allows connection to an
external clock. Based on the value of the source
clock and the resolution of PWMs in the
configuration it is possible to regulate the PWM
Output Frequency.
Added new feature, that is selectable in the
customizer's GUI and used to display
components inputs and output as a bus.
Now the sets of tach1-tachN, fan1-fanN and bank1bankN connections can be shown as buses. This
allows space to be saved on the schematic as this
option reduces the size of component symbol.
Added Keil function reentrancy support to the
APIs.
Add the capability for customers to specify any
individual generated functions as reentrant.
Document Number: 001-89670 Rev. **
Page 35 of 36
®
Fan Controller
Version
PSoC Creator™ Component Datasheet
Description of Changes
Removed obsolete function name FanController_OverrideClosedLoop(), which
was a simple #define of
FanController_OverrideHardwareControl().
1.20
Reason for Changes / Impact
As this was marked obsolete in previous versions, it
is removed in this version.
1. Updated for compatibility with PSoC Creator
v2.0
2. Re-classified as “Concept” component
3. SetDesiredSpeed() API modified for
improved accuracy
1.10
1. SetDesiredSpeed() API corrected
2. Glitch filter added to tachometer inputs
3. Fan control terminology changed from
Open/Closed loop to Firmware/Hardware
control method
4. Symbol colors and size updated
5. Resource utilization updated (reduced)
6. References to power management APIs
removed (not supported)
1.0
First release
© Cypress Semiconductor Corporation, 2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control, or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in lifesupport systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in lifesupport systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Page 36 of 36
Document Number: 001-89670 Rev. **

				

 Open as PDF

 	Similar pages
	

										Component - Fan Controller V3.10.pdf

	

										Component - Fan Controller V2.20.pdf

	

										Component - Fan Controller V2.10.pdf

	

										Component - Fan Controller V2.0.pdf

	

										ETC CY8CKIT-036

	

										CY8CKIT-036 User s Guide.pdf

	

										APML (Advanced Platform Management Link) Specification

	

										MAXIM MAX31790ATI+

	

										AN144 - Silicon Labs

	

										NHD-C160100DiZ-FSW-FBW

	

										NHD-C0216CiZ-FSW-FBW-3V3

	

										FanControl.pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

