

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 Component - PSoC 4 SCB V3.0 Datasheet.pdf

		
				 PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
3.0
Features
 Industry-standard NXP® I2C bus interface
 Standard SPI Master and Slave interfaces with Motorola, Texas
Instruments, and the National Semiconductor's Microwire protocols

Standard UART TX and RX interfaces with SmartCard reader and IrDA protocols
EZ I2C mode which emulates a common I2C EEPROM interface
Supports wakeup from Deep Sleep mode
Run-time reconfigurable
I2C Bootloader support
General Description
The PSoC 4 SCB component is a multifunction hardware block that implements the following
communication components: I2C, SPI, UART, and EZI2C. Each is available as a pre-configured
schematic macro in the PSoC Creator Component Catalog, labeled with “SCB Mode.”
Note PSoC 4000 devices support only I2C modes. The UART or SPI mode choice is not
available.
Click on one of the links below to jump to the appropriate section:
I2C
EZI2C
SPI
UART
There is also an Unconfigured SCB component entry in the Component Catalog.
Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-96075 Rev. *A
Revised July 19, 2015
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
When to Use an SCB Component
The SCB can be used in a pre-configured mode: I2C, EZI2C, SPI, and UART. Alternatively, the
SCB can be left unconfigured at build time and then configured during run-time into any of the
modes by calling the appropriate API functions. All configuration settings made at build time can
also be made during run time.
The following figure shows the component Configure dialog used to select the desired mode.
Note PSoC 4000 devices support only I2C modes. The UART or SPI mode choice is not
available.
The pre-configured modes are the typical use case. They are the simplest method to configure
the SCB into the mode of operation that is desired. The unconfigured method can be used to
create designs for multiple applications and where the specific usage of the SCB in the design is
not known when the PSoC Creator hardware design is created.
Page 2 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Unconfigured SCB
The SCB can be run-time configured for operation in any of the modes(I2C, SPI, UART, EZI2C)
from the Unconfigured mode. It can also be re-configured from any of these modes to any of the
other modes during run time. For example, you can reconfigured the SCB from SPI to UART
during run time.
Input/Output Connections
This section describes the various input and output connections for the SCB component. An
asterisk (*) in the list of terminals indicates that the terminal may be hidden on the symbol under
the conditions listed in the description of that terminal.
clock – Input
Clock that operates this block. This terminal is required in Unconfigured mode. For other modes
the option is provided to use an internal clock or an external clock connected to this terminal.
The interface-specific pins are buried inside the component because these pins use dedicated
connections and are not routable as general purpose signals. See the I/O System section in the
device Technical Reference Manual (TRM) for more information.
Note The input buffer of buried output pins is disabled so as not to cause current linkage in low
power mode. Reading the status of these pins always returns zero. To get the current status, the
input buffer must be enabled before status read.
Document Number: 001-96075 Rev. *A
Page 3 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
SCB Tab
Use the SCB tab to select the pins that will be used by the SCB component in Unconfigured
mode. The communication type along with the pin name is listed with a check box to enable pin.
When the pin is enabled it is reserved for the SCB, and cannot be used by other functions. To
see what pins were reserved consult the pins tab in the .cydwr file
The Enable UART RX wake adds an interrupt to the RX pin to accomplish the UART wake-up
capability. This option restricts the processing of any other pin interrupts from the port where this
RX pin is placed.
Note PSoC 4000 devices only support I2C modes. The following pin names are used for this
device:

UART RX / I2C SCL / SPI MOSI pin name is I2C SCL
UART TX / I2C SDA / SPI MISO pin name is I2C SDA
SPI SCLK, SPI SS0 – SS3 pins are not available, nor is the Enable UART RX wake
option
Note PSoC 4100/PSoC 4200 devices do not support UART hardware flow control. The following
pin name changes are used for these devices:

SPI SCLK / UART CTS pin name is SPI SCLK
SPI SS0 / UART RTS pin name is SPI SS0
Page 4 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Note PSoC 4100 BLE/PSoC 4200 BLE devices have different locations for the SCL and SDA
pins. The following pin name changes are used for these devices:

UART RX / I2C SCL / SPI MOSI pin name is UART RX / I2C SDA / SPI MOSI
UART TX / I2C SDA / SPI MISO pin name is UART TX / I2C SCL / SPI MISO
Unconfigured mode operation
Before starting operation in Unconfigured mode, determine which communication interfaces will
be used (more than one communication interface can be used in one SCB). Next, use the SCB
parameters tab to select pins required to implement the chosen communication interfaces.
The communication interface name is listed first, followed by the pin name related to the specific
interface. For example, UART RX / I2C SCL / SPI MOSI means this pin functions as MOSI when
the SCB is configured to utilize the SPI interface; it functions as SCL for the I 2C interface; and as
RX for the UART interface.
Next, a clock component must be connected to the SCB clock input. This clock frequency along
with the SCB oversampling configuration (set in the interface-specific Init API function)
determines the operation speed of the communications interface. The clock frequency will be
configured later in the firmware by setting a clock divider, using the clock's API. The possible
choice of clock configuration is: source HFCLK with divider 1.
To use the UART and I2C interfaces, select the following pins on the SCB tab:

UART RX / I2C SCL / SPI MOSI pin
UART TX / I2C SDA / SPI MISO pin
To use the SPI interface, select the following pins on the SCB tab:

UART RX / I2C SCL / SPI MOSI pin
UART TX / I2C SDA / SPI MISO pin
SPI SCLK
Any combination of SPI SS0 – SPI SS3
Interface data rate configuration
The data rate is a function of the clock source frequency and the component configuration of the
oversampling parameter. The oversampling parameter is only important for master modes and
has no effect for slave (UART mode has the same dependency on oversampling as master
modes). For slave modes only, the connected clock source frequency is important.
For I2C master modes, SPI master, and UART, the data rate is calculated using the formula
below (where fSCBCLK is the frequency of the clock component connected to the SCB):
Document Number: 001-96075 Rev. *A
Page 5 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
Data rate = (fSCBCLK / Oversampling value)
fSCBCLK = Data rate * Oversampling value
Note For the I2C interface in master modes, the oversampling value is a sum of Low and High
oversampling factor values.
For I2C and EZI2C in slave modes, the fSCBCLK must match the values provided in Table 1 on
page 16.
For SPI slave mode, the clock source frequency impacts TDSO parameter. Refer to
SPI AC Specifications for the selected device and to the Slave data rate section.
Refer to the applicable I2C / EZI2C / SPI / UART Parameter section for more information about
data rate and oversampling. To change fSCBCLK clock frequency, the clock divider must be
changed. The clock component provides API to perform this task.
DivSCBCLK = fHFCLK / fSCBCLK
Note The DivSCBCLK must be an integer value.
Example of DivSCBCLK calculation for I2C and UART is as follows:
Design HFCLK configuration of fHFCLK = 24 MHz
Required I2C slave data rate = 100 kbps and UART baud rate = 115200 bps
The fSCBCLK = 1.6MHz is taken from Table 1 on page 16 for data rate 100 kbps:
DivSCBCLK = fHFCLK / fSCBCLK = 24 MHz / 1.6 MHz = 15
The oversampling default value 16 is chosen to calculate DivSCBCLK for the UART.
fSCBCLK = Data rate * Oversampling value = 115200 * 16 = ~1,843 MHz
DivSCBCLK = fHFCLK / fSCBCLK = 24 MHz / 1, 843 MHz = ~13
For the UART, the fSCBCLK accuracy is important for correct operation and the actual fSCBCLK must
be calculated to use fHFCLK and DivSCBCLK.
Actual fSCBCLK = fHFCLK / DivSCBCLK = 24 MHz / 13 = ~1,846 MHz
The deviation of actual fSCBCLK from desired must be calculated:
(1,843MHz – 1,846 MHz) / 1,843 MHz = ~0.2%
Taking into account HFCLK accuracy ±2%, the total error is: 0.2 + 2= 2.2%. The total error value
is less than 5% and it is enough for correct UART operation.
The following numbers are calculated:
Page 6 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet

PSoC 4 Serial Communication Block (SCB)
I2C master data rate = 100 kbps: DivSCBCLK = 15
UART baud rate = 115200 bps: Oversampling = 16, DivSCBCLK = 13
Run-time Configuration
Configuration structures are provided for each interface. These structures provide configuration
fields that match the selections available in the Configure dialog for the specific interface. The
description of each structure is provided in the APIs section of corresponding interface:

void SCB_I2CInit(SCB_I2C_INIT_STRUCT *config)
void SCB_EzI2CInit(SCB_EZI2C_INIT_STRUCT *config)
void SCB_SpiInit(SCB_SPI_INIT_STRUCT *config)
void SCB_UartInit(SCB_UART_INIT_STRUCT *config)
Allocate structures for the selected interfaces and fill the structure with the required configuration
information. A pointer to this structure is passed to the appropriate initialization function of the
selected interface. The list of initialization functions for each interface is provided above.
The following example provides configuration structures for:

I2C slave, data rate 100 kbps, slave address is 0x08
UART RX+TX, sub-mode Standard, buffer size 16 for TX and RX (implies software buffer
utilization)
The following code snippets are taken from the SCB Uncofigured example project
SCB_UnconfiguredComm.
/***
* Common Definitions
***/
/* Constants */
#define ENABLED
(1u)
#define DISABLED
(0u)
#define NON_APPLICABLE (DISABLED)
/* Common RX and TX buffers for I2C and UART operation */
#define COMMON_BUFFER_SIZE
(16u)
uint8 bufferTx[COMMON_BUFFER_SIZE];
/* UART RX buffer requires one extra element for proper operation. One element
* remains empty while operation. Keeping this element empty simplifies
* circular buffer operation.
*/
uint8 bufferRx[COMMON_BUFFER_SIZE + 1u];
/***
Document Number: 001-96075 Rev. *A
Page 7 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
* I2C Configuration
***/
#define I2C_SLAVE_ADDRESS
(0x08u)
#define I2C_SLAVE_ADDRESS_MASK (0xFEu)
#define I2C_STANDARD_MODE_MAX
(100u)
#define
#define
#define
#define
I2C_RX_BUFFER_SIZE
I2C_TX_BUFFER_SIZE
I2C_RX_BUFER_PTR
I2C_TX_BUFER_PTR
(PACKET_SIZE)
(PACKET_SIZE)
bufferRx
bufferTx
/* I2C slave desired data rate is 100 kbps. The datasheet Table 1 provides a
* range of possible clock values 1.55 - 12.8 MHz. The CommCLK = 1.6 MHz is
* selected from this range. The clock divider has to be calculated to control
* clock frequency as clock component provides interface to it.
* Divider = (HFCLK / CommCLK) = (24MHz / 1.6 MHz) = 15. But the value written
* into the register has to decremented by 1. The end result is 14.
*/
#define I2C_CLK_DIVIDER
(14u)
/* Comm_I2C_INIT_STRUCT provides the fields which match the selections available
* in the customizer. Refer to the I2C customizer for detailed description of
* the settings.
*/
const Comm_I2C_INIT_STRUCT configI2C =
{
Comm_I2C_MODE_SLAVE,
/* mode: slave */
NON_APPLICABLE,
/* oversampleLow: N/A for slave */
NON_APPLICABLE,
/* oversampleHigh: N/A for slave */
NON_APPLICABLE,
/* enableMedianFilter: N/A */
I2C_SLAVE_ADDRESS,
/* slaveAddr: slave address */
I2C_SLAVE_ADDRESS_MASK, /* slaveAddrMask: single slave address */
DISABLED,
/* acceptAddr: disabled */
DISABLED,
/* enableWake: disabled */
DISABLED,
/* enableByteMode: disabled */
I2C_STANDARD_MODE_MAX, /* dataRate: 100 kbps */
DISABLED,
/* acceptGeneralAddr */
};
/***
* UART Configuration
***/
#define UART_OVERSAMPLING
(16u)
#define UART_DATA_WIDTH
(8u)
#define UART_RX_INTR_MASK
(Comm_INTR_RX_NOT_EMPTY)
#define UART_TX_INTR_MASK
(0u)
#define
#define
#define
#define
UART_RX_BUFFER_SIZE
UART_TX_BUFFER_SIZE
UART_RX_BUFER_PTR
UART_TX_BUFER_PTR
(COMMON_BUFFER_SIZE)
(COMMON_BUFFER_SIZE)
bufferRx
bufferTx
/* UART desired baud rate is 115200 bps. The selected Oversampling parameter is
* 16. The CommCLK = Baud rate * Oversampling = 115200 * 16 = 1.843 MHz.
Page 8 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
* The clock divider has to be calculated to control clock frequency as clock
* component provides interface to it.
* Divider = (HFCLK / CommCLK) = (24MHz / 1.8432 MHz) = 13. But the value
* written into the register has to decremented by 1. The end result is 12.
* The clock accuracy is important for UART operation. The actual CommCLK equal:
* CommCLK(actual) = (24MHz / 13MHz) = 1.846 MHz
* The deviation of actual CommCLK from desired must be calculated:
* Deviation = (1.843MHz – 1.846 MHz) / 1.843 MHz = ~0.2%
* Taking into account HFCLK accuracy ±2%, the total error is: 0.2 + 2= 2.2%.
* The total error value is less than 5% and it is enough for correct
* UART operation.
*/
#define UART_CLK_DIVIDER
(12u)
/* Comm_UART_INIT_STRUCT provides the fields which match the selections
* available in the customizer. Refer to the I2C customizer for detailed
* description of the settings.
*/
const Comm_UART_INIT_STRUCT configUart =
{
Comm_UART_MODE_STD,
/* mode: Standard */
Comm_UART_TX_RX,
/* direction: RX + TX */
UART_DATA_WIDTH,
/* dataBits: 8 bits */
Comm_UART_PARITY_NONE, /* parity: None */
Comm_UART_STOP_BITS_1, /* stopBits: 1 bit */
UART_OVERSAMPLING,
/* oversample: 16 */
DISABLED,
/* enableIrdaLowPower: disabled */
DISABLED,
/* enableMedianFilter: disabled */
DISABLED,
/* enableRetryNack: disabled */
DISABLED,
/* enableInvertedRx: disabled */
DISABLED,
/* dropOnParityErr: disabled */
DISABLED,
/* dropOnFrameErr: disabled */
NON_APPLICABLE,
/* enableWake: disabled */
UART_RX_BUFFER_SIZE,
/* rxBufferSize: TX software buffer size */
UART_RX_BUFER_PTR,
/* rxBuffer: pointer to RX software buffer */
UART_TX_BUFFER_SIZE,
/* txBufferSize: TX software buffer size */
UART_TX_BUFER_PTR,
/* txBuffer: pointer to TX software buffer */
DISABLED,
/* enableMultiproc: disabled */
DISABLED,
/* multiprocAcceptAddr: disabled */
NON_APPLICABLE,
/* multiprocAddr: N/A */
NON_APPLICABLE,
/* multiprocAddrMask: N/A */
ENABLED,
/* enableInterrupt: enable internal interrupt
* handler for the software buffer */
UART_RX_INTR_MASK,
/* rxInterruptMask: enable INTR_RX.NOT_EMPTY to
* handle RX software buffer operations */
NON_APPLICABLE,
/* rxTriggerLevel: N/A */
UART_TX_INTR_MASK,
/* txInterruptMask: no TX interrupts on start up */
NON_APPLICABLE,
/* txTriggerLevel: N/A */
DISABLED,
/* enableByteMode: disabled */
DISABLED,
/* enableCts: disabled */
DISABLED,
/* ctsPolarity: disabled */
DISABLED,
/* rtsRxFifoLevel: disabled */
DISABLED,
/* rtsPolarity: disabled */
};
Document Number: 001-96075 Rev. *A
Page 9 of 198
PSoC 4 Serial Communication Block (SCB)
Page 10 of 198
PSoC® Creator™ Component Datasheet
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
The following example implements a function that changes the SCB configuration according to
the passed opMode, and returns the status of the configuration change. This function refers to
configuration structures provided for the I2C and UART previously.
The instance name of the SCB component is “Comm” and the instance name of the clock
component is “CommCLK”.
/* Operation mode: I2C slave or UART */
#define OP_MODE_UART
(0u)
#define OP_MODE_I2C
(1u)
/* Global variables to manage current operation mode and initialization state */
uint32 mode = OP_MODE_UART;
/***
* Function Name: ConfigurationChange
**
static cystatus ConfigurationChange(uint32 opMode)
{
cystatus status = CYRET_SUCCESS;
if (OP_MODE_I2C == opMode)
{
/***
* Configure SCB in I2C mode and enable component after completion.
***/
/* Disable component before re-configuration */
Comm_Stop();
/* Set clock divider to provide clock frequency to the SCB component
* to operated with desired data rate.
*/
CommCLK_SetFractionalDividerRegister(I2C_CLK_DIVIDER, 0u);
/* Configure SCB component. The configuration is stored in the I2C
* configuration structure.
*/
Comm_I2CInit(&configI2C);
/* Set read and write buffers for the I2C slave */
Comm_I2CSlaveInitWriteBuf(I2C_RX_BUFER_PTR, I2C_RX_BUFFER_SIZE);
Comm_I2CSlaveInitReadBuf (I2C_TX_BUFER_PTR, I2C_TX_BUFFER_SIZE);
/* Start component after re-configuration is complete */
Comm_Start();
}
else if (OP_MODE_UART == opMode)
{
/***
* Configure SCB in UART mode and enable component after completion
***/
Document Number: 001-96075 Rev. *A
Page 11 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
/* Disable component before re-configuration */
Comm_Stop();
/* Set clock divider to provide clock frequency to the SCB component
* to operated with desired data rate.
*/
CommCLK_SetFractionalDividerRegister(UART_CLK_DIVIDER, 0u);
/* Configure SCB component. The configuration is stored in the UART
* configuration structure.
*/
Comm_UartInit(&configUart);
/* Start component after re-configuration is complete */
Comm_Start();
}
else
{
status = CYRET_BAD_PARAM; /* Unknown operation mode - no action */
}
return (status);
}
Note The ConfigurationChange() is a custom function that is not part of the component API.
Note Before changing the configuration, the SCB component must be disabled.
Note The SCB_Init() function does not initialize the component when the mode is Unconfigured.
The SCB_“Mode”Init() specific APIs have to called.
API Names
Some APIs contain specific interface prefixes as part of their name. These APIs operate
correctly only when the component is configured to utilize this interface. For example, the
SCB_I2CSlaveStatus() function works with the I2C interface.
Other APIs are shared between two interfaces. In these cases, the API name contains each
interface. For example, the SCB_SpiUartWriteTxData() works with both the SPI or UART
interfaces.
APIs that do not belong to specific interfaces do not contain interface prefixes. For example,
SCB_Enable() or SCB_EnableInt().
Page 12 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
I2C
The I2C bus is an industry-standard, two-wire hardware interface developed by Philips. The
master initiates all communication on the I2C bus and supplies the clock for all slave devices. I2C
is an ideal solution when networking multiple devices on a single board or small system.
The component supports I2C Slave, Master, Multi-Master and Multi-Master-Slave configurations.
The component supports standard clock speeds up to 1000 kbps. It is compatible [1] with I2C
Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I2C-bus
specification [2] on the NXP web site at www.nxp.com. The component is compatible with other
third-party slave and master devices.
Input/Output Connections
This section describes the various input and output connections for the SCB component. An
asterisk (*) in the list of terminals indicates that the terminal may be hidden on the symbol under
the conditions listed in the description of that terminal.
clock – Input*
Clock that operates this block. The presence of this terminal varies depending on the Clock
from terminal parameter.
The interface-specific pins are buried inside the component because these pins use dedicated
connections and are not routable as general purpose signals. See the I/O System section in the
device Technical Reference Manual (TRM) for more information.
1
2.
The PSoC 4 I2C peripherals are not completely compliant with the I2C specification except PSoC 4100 BLE/
PSoC 4200 BLE/PSoC 4100M/PSoC 4200M which have GPIO_OVT pins. For detailed information refer to the
Device datasheet.
Refer to the I2C-Bus Specification (Rev. 6 from October 2012) on the NXP web site at www.nxp.com.
Document Number: 001-96075 Rev. *A
Page 13 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
Basic I2C Parameters
The I2C Basic tab has the following parameters:
Mode
This option determines which mode will be supported: Slave, Master, Multi-Master or MultiMaster-Slave.

Slave – Slave only operation (default)
Master – Master only operation
Multi-Master – Supports more than one master on the bus
Multi-Master-Slave – Simultaneous slave and multi-master operation
Data rate
This parameter is used to set the I2C data rate value up to 1000 kbps (400 kbps for PSoC 4000
family); the actual data rate may differ from the selected data rate due to available clock
frequency and component settings. The standard data rates are 100 (default), 400, and 1000
kbps. This parameter has no effect if the Clock from terminal option is enabled.
Refer to the Data rate configuration section for more information about provided options of the
data rate selection.
Page 14 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Actual data rate
The actual data rate displays the data rate at which the component will operate with current
settings. The factors that affect the actual data rate calculation are: the accuracy of the
component clock (internal or external) and oversampling factor (only for the Master modes). If
any of these parameters change the actual data rate is unknown. To calculate the new actual
data rate press the Apply button.
Note For Slave mode the actual data rate always provides maximum value for the selected data
rate mode (Standard-mode, Fast-mode, Fast-mode Plus).
Oversampling factor
This parameter defines the oversampling factor of the I 2C SCL clock; the number of component
clocks within one I2C SCL clock period.
For Slave mode, the oversampling factor is not applicable. The component configures the SCB
clock to be within the valid range for the selected data rate. The valid clock frequency range is
taken from the Table 1 on page 16.
For Master modes, the Oversampling factor is the sum of Low and High oversampling values.
These values are used to generate the Low and High phases of the I2C clock.
The valid range of the Oversampling factor values is 12–32. The default is 16.
Low
This parameter is only applicable for Master modes. It specifies the oversampling factor of the
I2C SCL clock low phase; the number of component clocks within one low period of the I2C SCL
clock. The minimum oversampling factor value is 7. The default is 8.
High
This parameter is only applicable for Master modes. It specifies the oversampling factor of the
I2C SCL clock high phase; the number of component clocks within one high period of the I2C
SCL clock. The minimum oversampling factor value is 5. The default is 8.
Manual oversample control
This option is only available for Master modes. It allows a choice between manual and automatic
selection of I2C Oversampling factor parameters.
In the case of manual oversample control all oversampling parameters are editable. The
oversampling factor is used to calculate internal clock frequency to achieve this amount of
oversampling for the defined Data rate: fSCBCLK = Data rate * Oversampling factor. The
oversampling Low and High values are editable but sum of them must be equal to Oversampling
factor.
In the case of automatic oversample control all oversampling parameters are disabled and
calculated by the GUI. The GUI requests an internal clock that is in range provided in the Table 2
Document Number: 001-96075 Rev. *A
Page 15 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
on page 16 for the selected data rate. Creator creates a clock in this range and returns the clock
frequency to the GUI. The GUI uses this clock frequency and the selected data rate to calculate
the oversampling value. The oversampling values Low and High are adjusted to meet the
request data rate.
Note Refer to the Clock from terminal section to get more information about possible deviation of
requested clock frequency and actual value.
Clock from terminal
This check box allows choosing an internally configured clock (by the component) or an
externally configured clock (by the user) for component operation. Refer to the Oversampling
factor section to understand relationship between component clock frequency and the
component parameters.
When this option is enabled, the component does not control the data rate, but displays the
actual data rate based on the user-connected clock source frequency and the component
oversampling factor (only for the Master modes). When this option is not enabled, the clock
configuration is provided by the component. The clock source frequency is calculated or selected
by the component based on the Data rate parameter and Oversampling factor (only for the
Master mode).
The following tables show the valid ranges for the component clock for each data rate. When
using the Clock from terminal option, ensure that the external clock is within these ranges.
Table 1. I2C Slave clock frequency ranges
Standard-mode
Fast-mode
Fast-mode Plus
(0-100 kbps)
(0-400 kbps)
(0-1000 kbps)
Parameter
fSCB
Min
Max
Min
Max
Min
Max
Units
1.55
12.8
7.82
15.38
15.84
48.0
MHz
Note For Slave mode, if the clock frequency is less than lower limit of 1.55 MHz, an error is
generated while building the project.
Table 2. I2C Master modes clock frequency ranges
Parameter
Standard-mode
Fast-mode
Fast-mode Plus
(0-100 kbps)
(0-400 kbps)
(0-1000 kbps)
Min
Max
Min
Max
Min
Max
Units
1.55
3.2
7.82
10.00
14.32
25.8
MHz
Oversampling Low
8
16
13
16
9
16
–
Oversampling High
8
16
8
16
6
16
–
fSCB
Page 16 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Taking into account the ranges provided in Table 2 on page 16 for clock frequency and
oversampling the calculated data rate ranges are provided in Table 3 on page 17.
It is possible to create data rates that are outside of the ranges provided in Table 3 on page 17.
However creating these data rates requires using clock frequencies or oversampling outside of
the ranges provided in Table 2 on page 16. If a clock frequency or oversampling is used outside
of the range provided in Table 2 on page 16 certain I2C parameters in the I2C specification may
be violated. To determine which specifications are violated refer to the I2C spec parameters
calculation section.
Table 3. I2C master modes data rates ranges
Parameter
Standard-mode
Fast-mode
Fast-mode Plus
(0-100 kbps)
(0-400 kbps)
(0-1000 kbps)
Min
Max
Min
Max
Min
Max
Units
48
100
244
400
447
1000
kbps
Data rate
Note PSoC Creator is responsible for providing requested clock frequency (internal or external
clock) based on current design clock configuration. When the requested clock frequency with
requested tolerance cannot be created, a warning about the clock accuracy range is generated
while building the project. This warning contains the actual clock frequency value created by
PSoC Creator. To remove this warning you must either change the system clock, component
settings or external clock to fit the clocking system requirements.
Byte mode
This option is only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M
devices. It allows doubling the TX and RX FIFO depth from 8 to 16 bytes. Increasing FIFO depth
improves performance of I2C operation, as more bytes can be transmitted or received without
software interaction.
Slave address (7-bits)
This is the I2C address that will be recognized by the slave. It is only applicable for slave modes.
This address is the 7-bit right-justified slave address and does not include the R/W bit. A slave
address between 0x08 and 0x7F may be selected; the default is 0x08.
The value may be entered as decimal or hexadecimal; for hexadecimal numbers type ‘0x’ before
the address. The binary input format is supported as well.
Document Number: 001-96075 Rev. *A
Page 17 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Slave address mask
This parameter is used to mask bits of the slave address during the address match procedure.
Bit 0 of the address mask corresponds to the read/write direction bit and is always a do not care
in the address match.

Bit value 0 – excludes bit from address comparison.
Bit value 1 – the bit needs to match with the corresponding bit of the I2C slave address.
The following example shows the 7-bit slave address is 0x1B and the 8-bit address Mask is
0xDE.
7-bits Slave address
R/W
Address
0
0
1
1
0
1
1
x
Mask
1
1
0
1
1
1
1
0
Result
0
0
x
1
0
1
1
x
x = Do not care
Thus the matched 7-bit slave addresses are 0x1B and 0x0B.
The value may be entered as decimal or hexadecimal; for hexadecimal numbers type ‘0x’ before
the address. The binary input format is supported as well.
Accept matching address in RX FIFO
This parameter determines whether to accept a matched I 2C slave address in the RX FIFO or
not. This can be useful when more than one I2C address is implemented in a single SCB. In
order to access this address a callback function needs to be registered with the
SCB_SetI2cAddressCustomInterruptHandler() function. Inside this call back function the address
can be read out of the RX FIFO, and then appropriate action can be taken based on the address
in the FIFO. This may include a status update or changing read or write buffer. The callback
function must return the decision made to ACK or NACK the address. The NACK or ACK
command is executed by the I2C slave ISR. If the callback function is not registered the accepted
addresses are ACKed and the address is read from the RX FIFO and discarded.
For more information, refer to the Accept matching address RX FIFO section under the I2C
chapter in this document.
Note If this option is checked and the address is not read in a callback function the address will
appear in the write buffer. This may not be desirable behavior.
Accept general call address
This option enables the hardware to accept the I2C general call address (0x00). In order to
access this general call address a callback function needs to be registered with the
SCB_SetI2cAddressCustomInterruptHandler() function. Inside this callback function the general
Page 18 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
call address accept status can be checked, and then appropriate action can be taken based on
the address in the FIFO. This may include status update, changing read or write buffer. The
callback function must return the decision made to ACK or NACK the address. The NACK or
ACK command is executed by the I2C slave ISR. If the callback function is not registered the
general call address is ACKed.
For more information, refer to the Accept General Call section under the I2C chapter in this
document.
Note The general call address accept does not cause wakeup event to occur.
Enable wakeup from Deep Sleep Mode
Use this option to enable the component to wake the system from Deep Sleep when a slave
address match occurs. It is only available for Slave or Multi-Master-Slave mode.
For PSoC 4100/PSoC 4200 devices, the Slave address (7-bits) must be even (bit 0 equal zero)
when this option is enabled.
For all supported devices, the data rate must be less than or equal to 400 kbps for Multi-MasterSlave mode when this option is enabled.
Refer to the Low power modes section under the I2C chapter in this document; refer also to the
Power Management APIs section of the System Reference Guide for more information.
Advanced I2C Parameters
Document Number: 001-96075 Rev. *A
Page 19 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
The I2C Advanced tab contains the following parameters:
Slew rate
This option allows to control slew rate setting of the SCL and SDA pins. The slow slew rate
increases the fall time on the lines, reducing EMI and coupling with neighboring signals. For
devices supporting GPIO Over-Voltage Tolerance (GPIO_OVT) pins, I2C FM+ options should be
used when I2C data rate is greater than 400 kbps. This option also requires the I2C bus voltage
to be defined. Refer to the Device Datasheet to determine which pins are GPIO_OVT capable.
Default is fast.
Notes

GPIO_OVT pins are fully compliant with the I2C specification (except for hot swap
capability during I2C active communication), but the slew rate must be set appropriately:
□
Slew rate "Slow" for Standard mode (100 kbps) and Fast mode (400 kbps)
□
Slew rate "I2C FM+" for Fast mode plus (1 Mbps)
Common GPIO pins are not completely compliant with the I2C specification. Refer to the
Device Datasheet for the details.

Slew rate settings are applied to all pins of the associated port.
I2C bus voltage (V)
This option is only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M
devices. It specifies the voltage applied to the I2C pull up resistors when Slew rate is I2C FM+.
The voltage no less than applied to I2C pulls up resistors must be provided by the VDDD supply
input, otherwise the I2C pins cannot be placed. Valid values of VDDD are determined by the
settings in the Design-Wide Resources System Editor (in the <project>.cydwr file). This range
check is performed outside this dialog; the results appear in the Notice List window if the check
fails. Default is 3.3 V.
Page 20 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
External Electrical Connections
As shown in the following figure, the I2C bus requires external pull-up resistors. The pull-up
resistors (RP) are primarily determined by the supply voltage, bus speed, and bus capacitance.
For detailed information on how to calculate the optimum pull-up resistor value for your design
we recommend using the UM10204 I2C-bus specification and user manual Rev. 6, available from
the NXP website at www.nxp.com.
Figure 1. Connection of Devices to the I2C Bus
+VDD
pull-up
resistors
Rp
Rp
SDA (Serial Data Line)
SCL (Serial Clock Line)
Device 1
Device 2
For most designs, the default values shown in the following table provide excellent performance
without any calculations. The default values were chosen to use standard resistor values
between the minimum and maximum limits.
Table 4. Recommended Default Pull-up Resistor Values
Standard Mode
(0 – 100 kbps)
Fast Mode
(0 – 400 kbps)
Fast Mode Plus
(0 – 1000 kbps)
Units
4.7 k, 5%
1.74 k, 1%
620, 5%
Ω
These values work for designs with 1.8 V to 5.0V VDD, less than 200 pF bus capacitance (CB), up
to 25 µA of total input leakage (IIL), up to 0.4 V output voltage level (VOL), and a max VIH of 0.7 *
VDD.
Standard Mode and Fast Mode can use either GPIO [1] or GPIO_OVT PSoC pins. Fast Mode
Plus requires use of GPIO_OVT pins to meet the VOL spec at 20 mA. Calculation of custom pullup resistor values is required if; your design does not meet the default assumptions, you use
series resistors (RS) to limit injected noise, or you want to maximize the resistor value for low
power consumption.
Calculation of the ideal pull-up resistor value involves finding a value between the limits set by
three equations detailed in the NXP I2C specification. These equations are:
Equation 1: RPMIN = (VDD(max) – VOL(max)) / IOL(min)
Document Number: 001-96075 Rev. *A
Page 21 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
Equation 2: RPMAX = TR(max) / 0.8473 x CB(max)
Equation 3: RPMAX = VDD(min) – (VIH(min) + VNH(min)) / IIH(max)
Equation parameters:

VDD = Nominal supply voltage for I2C bus
VOL = Maximum output low voltage of bus devices.
IOL= Low level output current from I2C specification
TR = Rise Time of bus from I2C specification
CB = Capacitance of each bus line including pins and PCB traces
VIH = Minimum high level input voltage of all bus devices
VNH = Minimum high level input noise margin from I2C specification
IIH = Total input leakage current of all devices on the bus
The supply voltage (VDD) limits the minimum pull-up resistor value due to bus devices maximum
low output voltage (VOL) specifications. Lower pull-up resistance increases current through the
pins and can therefore exceed the spec conditions of VOH. Equation 1 is derived using Ohm’s law
to determine the minimum resistance that will still meet the VOL specification at 3 mA for standard
and fast modes, and 20 mA for fast mode plus at the given VDD.
Equation 2 determines the maximum pull-up resistance due to bus capacitance. Total bus
capacitance is comprised of all pin, wire, and trace capacitance on the bus. The higher the bus
capacitance the lower the pull-up resistance required to meet the specified bus speeds rise time
due to RC delays. Choosing a pull-up resistance higher than allowed can result in failing timing
requirements resulting in communication errors. Most designs with five of fewer I2C devices and
up to 20 centimeters of bus trace length have less than 100 pF of bus capacitance.
A secondary effect that limits the maximum pull-up resistor value is total bus leakage calculated
in Equation 3. The primary source of leakage is I/O pins connected to the bus. If leakage is too
high, the pull-ups will have difficulty maintaining an acceptable VIH level causing communication
errors. Most designs with five or fewer I2C devices on the bus have less than 10 µA of total
leakage current.
Internal Pull-Ups
PSoC also has an internal pull-up resistor for each pin that can be used instead of external pullup resistors connected to the I2C bus. These resistors are weak (5.6k Ω); therefore, their usage
is limited to Standard mode operation according to Table 4 on page 21. Refer to Device
Datasheet parameter RPULLUP for resistor value specification. It is recommended to use external
I2C pull-up resistors because their value can be changed if needed later in the design.
Page 22 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
The I2C pins SCL and SDA are buried inside the SCB component. The drive mode for these pins
is “Open Drain, Drives Low” for use with external pull-up resistors on the I2C bus. To enable use
of the PSoC internal pull-up resistor, the drive mode of the pin must be changed to “Resistive Pull
Up.” The SCB component GUI does not provide this option; therefore, the drive mode must be
changed by firmware. The pin names are generated from the component name in the schematic and
may require updating. The following code must be added before starting the component:
/* Change SCL and SDA pins drive mode to Resistive Pull Up */
SCB_scl_SetDriveMode(SCB_scl_DM_RES_UP);
SCB_sda_SetDriveMode(SCB_sda_DM_RES_UP);
I2C APIs
Application Programming Interface (API) functions allow you to configure the component using
software. The following table lists and describes the interface to each function. The subsequent
section discusses each function in more detail.
By default, PSoC Creator assigns the instance name “SCB_1” to the first instance of a
component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is “SCB”.
Function
Description
SCB_Start()
Starts the SCB component.
SCB_Init()
Initialize the SCB component according to defined parameters in the
customizer.
SCB_Enable()
Enables the SCB component operation.
SCB_Stop()
Disable the SCB component.
SCB_Sleep()
Prepares the SCB component to enter Deep Sleep.
SCB_Wakeup()
Prepares component for Active mode operation after Deep Sleep.
SCB_I2CInit()
Configures the SCB component for operation in I2C mode. Only applicable
when component is in unconfigured mode.
SCB_I2CSlaveStatus()
Returns slave status flags.
SCB_I2CSlaveClearReadStatus()
Returns the slave read status flags and clears slave read status flags.
SCB_I2CSlaveClearWriteStatus()
Returns the slave write status and clears the slave write status flags.
SCB_I2CSlaveSetAddress()
Sets slave address, a value between 0 and 127 (0x00 to 0x7F).
SCB_I2CSlaveSetAddressMask()
Sets slave address mask, a value between 0 and 254 (0x00 to 0xFE).
SCB_I2CSlaveInitReadBuf()
Sets up the slave receive data buffer (master <- slave).
SCB_I2CSlaveInitWriteBuf()
Sets up the slave write buffer (master -> slave).
Document Number: 001-96075 Rev. *A
Page 23 of 198
PSoC 4 Serial Communication Block (SCB)
Function
PSoC® Creator™ Component Datasheet
Description
SCB_I2CSlaveGetReadBufSize()
Returns the number of bytes read by the master since
SCB_I2CSlaveClearReadBuf() was called.
SCB_I2CSlaveGetWriteBufSize()
Returns the number of bytes written by the master since
SCB_I2CSlaveClearWriteBuf() was called.
SCB_I2CSlaveClearReadBuf()
Resets the read buffer counter to zero.
SCB_I2CSlaveClearWriteBuf()
Resets the write buffer counter to zero.
SCB_I2CMasterStatus()
Returns the master status.
SCB_I2CMasterClearStatus()
Returns the master status and clears the status flags.
SCB_I2CMasterWriteBuf()
Writes the referenced data buffer to a specified slave address.
SCB_I2CMasterReadBuf()
Reads data from the specified slave address and places the data in the
referenced buffer.
SCB_I2CMasterSendStart()
Generates a start condition and sends specified slave address.
SCB_I2CMasterSendRestart()
Generates a restart condition and sends specified slave address.
SCB_I2CMasterSendStop()
Generates a stop condition.
SCB_I2CMasterWriteByte()
Writes a single byte. This is a manual command that should only be used with
the SCB_I2CMasterSendStart() or SCB_I2CMasterSendRestart() functions.
SCB_I2CMasterReadByte()
Reads a single byte. This is a manual command that should only be used
with the SCB_I2CMasterSendStart() or SCB_I2CMasterSendRestart()
functions.
SCB_I2CMasterGetReadBufSize() Returns the number of bytes that have been transferred with the
SCB_I2CMasterReadBuf() function.
SCB_I2CMasterGetWriteBufSize() Returns the number of bytes that have been transferred with the
SCB_I2CMasterWriteBuf() function.
SCB_I2CMasterClearReadBuf()
Resets the read buffer pointer back to the beginning of the buffer.
SCB_I2CMasterClearWriteBuf()
Resets the write buffer pointer back to the beginning of the buffer.
void SCB_Start(void)
Description:
Invokes SCB_Init() and SCB_Enable(). After this function call the component is enabled
and ready for operation. This is the preferred method to begin component operation.
When configuration is set to “Unconfigured SCB”, the component must first be initialized
to operate in one of the following configurations: I2C, SPI, UART or EZ I2C. Otherwise
this function does not enable the component.
Parameters:
None
Return Value:
None
Side Effects:
None
Page 24 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_Init(void)
Description:
Initializes SCB component to operate in one of selected configurations: I2C, SPI, UART
or EZ I2C.
When the configuration is set to “Unconfigured SCB”, this function does not do any
initialization. Use mode-specific initialization APIs instead: SCB_I2CInit, SCB_SpiInit,
SCB_UartInit or SCB_EzI2CInit.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_Enable(void)
Description:
Enables SCB component operation: activates the hardware and internal interrupt.
For I2C and EZ I2C modes the interrupt is internal and mandatory for operation. For SPI
and UART modes the interrupt can be configured as none, internal or external.
The SCB configuration should be not changed when the component is enabled. Any
configuration changes should be made after disabling the component.
When configuration is set to “Unconfigured SCB”, the component must first be initialized
to operate in one of the following configurations: I2C, SPI, UART or EZ I2C, using the
mode-specific initialization API. Otherwise this function does not enable the component.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_Stop(void)
Description:
Disables the SCB component: disable the hardware and internal interrupt. It also
disables all TX interrupt sources so as not to cause an unexpected interrupt trigger
because after the component is enabled, the TX FIFO is empty.
Refer to the function SCB_Enable() for the interrupt configuration details.
This function disables the SCB component without checking to see if communication is
in progress. Before calling this function it may be necessary to check the status of
communication to make sure communication is complete. If this is not done then
communication could be stopped mid byte and corrupted data could result.
Parameters:
None
Return Value:
None
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 25 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
void SCB_Sleep(void)
Description:
Prepares the SCB component to enter Deep Sleep.
The “Enable wakeup from Deep Sleep Mode” selection has an influence on this function
implementation:
 Checked: configures the component to be wakeup source from Deep Sleep.
 Unchecked: stores the current component state (enabled or disabled) and disables
the component. See SCB_Stop() function for details about component disabling.
Call the SCB_Sleep() function before calling the CyPmSysDeepSleep() function. Refer
to the PSoC Creator System Reference Guide for more information about power
management functions and Low power section of this document for the selected mode.
This function should not be called before entering Sleep.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_Wakeup(void)
Description:
Prepares the SCB component for Active mode operation after Deep Sleep.
The “Enable wakeup from Deep Sleep Mode” selection has influence on this function
implementation:
 Checked: restores the component Active mode configuration.
 Unchecked: enables the component if it was enabled before enter Deep Sleep.
This function should not be called after exiting Sleep.
Parameters:
None
Return Value:
None
Side Effects:
Calling the SCB_Wakeup() function without first calling the SCB_Sleep() function may
produce unexpected behavior.
Page 26 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_I2CInit(SCB_I2C_INIT_STRUCT *config)
Description:
Configures the SCB for I2C operation.
This function is intended specifically to be used when the SCB configuration is set to
“Unconfigured SCB” in the customizer. After initializing the SCB in I2C mode using this
function, the component can be enabled using the SCB_Start() or SCB_Enable() function.
This function uses a pointer to a structure that provides the configuration settings. This
structure contains the same information that would otherwise be provided by the customizer
settings.
Parameters:
config: pointer to a structure that contains the following list of fields. These fields match the
selections available in the customizer. Refer to the customizer for further description of the
settings.
Field
uint32 mode
Description
Mode of operation for I2C. The following defines are available choices:

SCB_I2C_MODE_SLAVE

SCB_I2C_MODE_MASTER

SCB_I2C_MODE_MULTI_MASTER

SCB_I2C_MODE_MULTI_MASTER_SLAVE
uint32 oversampleLow
Oversampling factor for the low phase of the I2C clock. Ignored for Slave
mode operation. The oversampling factors need to be chosen in
conjunction with the clock rate in order to generate the desired rate of I2C
operation.
uint32 oversampleHigh
Oversampling factor for the high phase of the I2C clock. Ignored for Slave
mode operation.
uint32 enableMedianFilter
This field is left for compatibility and its value is ignored. Median filter is
enabled or disabled depends on the data rate and operation mode.
uint32 slaveAddr
7-bit slave address. Ignored for non-slave modes.
uint32 slaveAddrMask
8-bit slave address mask. Bit 0 must have a value of 0. Ignored for nonslave modes.
uint32 acceptAddr
0 – disable
1 – enable
When enabled the matching address is received into the RX FIFO.
The callback function has to be registered to handle the address accepted
in the RX FIFO. Refer to section Accept matching address RX FIFO for
more information.
uint32 enableWake
0 – disable
1 – enable
Ignored for non-slave modes.
uint8 enableByteMode
Ignored for all devices other than PSoC 4100 BLE/PSoC 4200 BLE/PSoC
4100M/PSoC 4200M
0 – disable
1 – enable
When enabled the TX and RX FIFO depth is 16 bytes.
uint16 dataRate
Data rate in kbps used while the of I2C is in operation. Valid values are
between 1 and 1000.
Note This filed must be initialized for correct operation if Unconfigured SCB
was utilized with previous version of the component.
Document Number: 001-96075 Rev. *A
Page 27 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint8 acceptGeneralAddr
0 – disable
1 – enable
When enabled the I2C general call address (0x00) will be accepted by the
I2C hardware and trigger an interrupt
The callback function has to be registered to handle a general call address.
Refer to section Accept General Call for more information.
Return Value:
None
Side Effects:
None
Page 28 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_I2CSlaveStatus(void)
Description:
Returns the slave’s communication status.
Parameters:
None
Return Value:
uint32: Current status of I2C slave.
This status incorporates read and write status constants. Each constant is a bit field
value. The value returned may have multiple bits set to indicate the status of the read or
write transfer.
Slave Status constants
SCB_I2C_SSTAT_RD_CMPLT
Description
Slave read transfer complete. Set when master indicates
it is done reading by sending a NAK [3].
The read error condition status bit must be checked to
ensure that the read transfer was completed successfully.
SCB_I2C_SSTAT_RD_BUSY
Slave read transfer is in progress. Set when master
addresses slave with a read, cleared when RD_CMPLT is
set.
SCB_I2C_SSTAT_RD_OVFL
Master attempted to read more bytes than are in buffer.
Slave continually returns 0xFF byte in this case.
SCB_I2C_SSTAT_RD_ERR
Slave captured error on the bus during a read transfer.
The sources of error are: misplaced Start or Stop
condition or lost arbitration while slave drives SDA.
SCB_I2C_SSTAT_WR_CMPLT
Slave write transfer complete. Set at reception of a Stop
or ReStart condition.
The write error condition status bit must be checked to
ensure that write transfer was completed successfully.
SCB_I2C_SSTAT_WR_BUSY
Slave write transfer is in progress. Set when the master
addresses the slave with a write, cleared when
WR_CMPLT is set.
SCB_I2C_SSTAT_WR_OVFL
Master attempted to write past end of buffer. Further
bytes are ignored.
SCB_I2C_SSTAT_WR_ERR
Slave captured error on the bus during write transfer. The
sources of error are: misplaced Start or Stop condition or
lost arbitration while slave drives SDA.
The write buffer may contain invalid bytes or part of the
data transfer when SCB_I2C_SSTAT_WR_ERR is set. It
is recommended to discard write buffer content in this
case.
Side Effects:
3
None
NAK is an abbreviation for negative acknowledgment or not acknowledged. I 2C documents commonly use NACK
while the rest of the networking world uses NAK. They mean the same thing.
Document Number: 001-96075 Rev. *A
Page 29 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
uint32 SCB_I2CSlaveClearReadStatus(void)
Description:
Clears the read status flags and returns their values. No other status flags are affected.
Parameters:
None
Return Value:
uint32: Current read status of slave. See the SCB_I2CSlaveStatus() function for constants.
Side Effects:
This function does not clear SCB_I2C_SSTAT_RD_BUSY.
uint32 SCB_I2CSlaveClearWriteStatus(void)
Description:
Clears the write status flags and returns their values. No other status flags are affected.
Parameters:
None
Return Value:
uint32: Current write status of slave. See the SCB_I2CSlaveStatus() function for constants.
Side Effects:
This function does not clear SCB_I2C_SSTAT_WR_BUSY.
void SCB_I2CSlaveSetAddress(uint32 address)
Description:
Sets the I2C slave address
Parameters:
uint32 address: I2C slave address. This address is the 7-bit right-justified slave address
and does not include the R/W bit.
The address value is not checked to see if it violates the I2C spec. The preferred addresses
are between 8 and 120 (0x08 to 0x78).
Return Value:
None
Side Effects:
None
void SCB_I2CSlaveSetAddressMask(uint32 addressMask)
Description:
Sets the I2C slave address
Parameters:
uint32 addressMask: I2C slave address mask.
Bit value 0 – excludes bit from address comparison.
Bit value 1 – the bit needs to match with the corresponding bit of the I2C slave address.
The range of valid values is between 0 and 254 (0x00 to 0xFE). The LSB of the address
mask must be 0 because it corresponds to R/W bit within I2C slave address byte.
Return Value:
None
Side Effects:
None
Page 30 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_I2CSlaveInitReadBuf(uint8 * rdBuf, uint32 bufSize)
Description:
Sets the buffer pointer and size of the read buffer. This function also resets the transfer
count returned with the SCB_I2CSlaveGetReadBufSize() function.
Parameters:
uint8* rdBuf: Pointer to the data buffer to be read by the master.
uint32 bufSize: Size of the buffer exposed to the I2C master.
Return Value:
None
Side Effects:
If this function is called during a bus transaction, data from the previous buffer location
and the beginning of the current buffer may be transmitted.
void SCB_I2CSlaveInitWriteBuf(uint8 * wrBuf, uint32 bufSize)
Description:
Sets the buffer pointer and size of the write buffer. This function also resets the transfer
count returned with the SCB_I2CSlaveGetWriteBufSize() function.
Parameters:
uint8* wrBuf: Pointer to the data buffer to be written by the master.
uint32 bufSize: Size of the write buffer exposed to the I2C master.
Return Value:
None
Side Effects:
If this function is called during a bus transaction, data may be received in the previous
buffer and the current buffer location.
uint32 SCB_I2CSlaveGetReadBufSize(void)
Description:
Returns the number of bytes read by the I2C master since the
SCB_I2CSlaveInitReadBuf() or SCB_I2CSlaveClearReadBuf() function was called.
The maximum return value is the size of the read buffer.
Parameters:
None
Return Value:
uint32: Bytes read by master. If the transfer is not yet complete, it returns zero until
transfer completion.
Side Effects:
The returned value is not valid if SCB_I2C_SSTAT_RD_ERR was captured by the
slave.
Document Number: 001-96075 Rev. *A
Page 31 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
uint32 SCB_I2CSlaveGetWriteBufSize(void)
Description:
Returns the number of bytes written by the I2C master since the
SCB_I2CSlaveInitWriteBuf() or SCB_I2CSlaveClearWriteBuf() function was called.
The maximum return value is the size of the write buffer.
Parameters:
None
Return Value:
uint32: Bytes written by master. If the transfer is not yet complete, it returns the byte
count transferred so far.
Side Effects:
The returned value is not valid if SCB_I2C_SSTAT_WR_ERR was captured by the
slave.
void SCB_I2CSlaveClearReadBuf(void)
Description:
Resets the read pointer to the first byte in the read buffer. The next byte read by the
master will be the first byte in the read buffer.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_I2CSlaveClearWriteBuf(void)
Description:
Resets the write pointer to the first byte in the write buffer. The next byte written by the
master will be the first byte in the write buffer.
Parameters:
None
Return Value:
None
Side Effects:
None
Page 32 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_I2CMasterStatus(void)
Description:
Returns the master’s communication status.
Parameters:
None
Return Value:
uint32: Current status of I2C master. This status incorporates status constants. Each
constant is a bit field value. The value returned may have multiple bits set to indicate the
status of the read or write transfer.
Master Status constants
SCB_I2C_MSTAT_RD_CMPLT
Description
Read transfer complete.
The error condition status bits must be checked
to ensure that read transfer was completed
successfully.
SCB_I2C_MSTAT_WR_CMPLT
Write transfer complete.
The error condition status bits must be checked
to ensure that write transfer was completed
successfully.
SCB_I2C_MSTAT_XFER_INP
Transfer in progress.
SCB_I2C_MSTAT_XFER_HALT
Transfer has been halted. The I2C bus is
waiting for ReStart or Stop condition
generation.
SCB_I2C_MSTAT_ERR_SHORT_XFER
Error condition: Write transfer completed
before all bytes were transferred.
The slave NAKed the byte which was expected
to be ACKed.
SCB_I2C_MSTAT_ERR_ADDR_NAK
Error condition: Slave did not acknowledge
address.
SCB_I2C_MSTAT_ERR_ARB_LOST
Error condition: Master lost arbitration during
communications with slave.
SCB_I2C_MSTAT_ERR_BUS_ERROR
Error condition: bus error occurred during
master transfer due to misplaced Start or Stop
condition on the bus.
SCB_I2C_MSTAT_ERR_ABORT_XFER
Error condition: Slave was addressed by
another master while master performed the
start condition generation. As a result, master
has automatically switched to slave mode and
is responding. The master transaction has not
taken place
This error condition only applicable for MultiMaster-Slave mode.
SCB_I2C_MSTAT_ERR_XFER
Side Effects:
Error condition: This is the ORed value of all
error conditions provided above.
None
Document Number: 001-96075 Rev. *A
Page 33 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
uint32 SCB_I2CMasterClearStatus(void)
Description:
Clears all status flags and returns the master status.
Parameters:
None
Return Value:
uint32: Current status of master. See the SCB_I2CMasterStatus() function for
constants.
Side Effects:
None
Page 34 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_I2CMasterWriteBuf(uint32 slaveAddress, uint8 * wrData, uint32 cnt,
uint32 mode)
Description:
Automatically writes an entire buffer of data to a slave device. Once the data transfer is
initiated by this function, further data transfer is handled by the included ISR.
Enables the I2C interrupt and clears SCB_ I2C_MSTAT_WR_CMPLT status.
Parameters:
uint32 slaveAddress: Right-justified 7-bit Slave address (valid range 8 to 120).
uint8 wrData: Pointer to buffer of data to be sent.
uint32 cnt: Number of bytes of buffer to send.
uint32 mode: Transfer mode defines:
(1) Whether a start or restart condition is generated at the beginning of the transfer,
and
(2) Whether the transfer is completed or halted before the stop condition is generated
on the bus.
Transfer mode, mode constants may be ORed together.
Transfer Mode constants
Description
SCB_I2C_MODE_COMPLETE_XFER
Perform complete transfer from Start to Stop.
SCB_I2C_MODE_REPEAT_START
Send Repeat Start instead of Start.
A Stop is generated after transfer is
completed unless NO_STOP is specified.
SCB_I2C_MODE_NO_STOP
Execute transfer without a Stop.
The following transfer expected to perform
ReStart.
Return Value:
uint32: Error status.
Error Status constants
Description
SCB_I2C_MSTR_NO_ERROR
Function complete without error. The master
started the transfer.
SCB_I2C_MSTR_BUS_BUSY
Bus is busy. Nothing was sent on the bus. The
attempt has to be retried.
SCB_I2C_MSTR_NOT_READY
Master is not ready for to start transfer.
A master still has not completed previous
transaction or a slave operation is in progress (in
multi-master-slave configuration).
Nothing was sent on the bus. The attempt has to
be retried.
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 35 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_I2CMasterReadBuf(uint32 slaveAddress, uint8 * rdData, uint32 cnt,
uint32 mode)
Description:
Automatically reads an entire buffer of data from a slave device. Once the data transfer is
initiated by this function, further data transfer is handled by the included ISR.
Enables the I2C interrupt and clears SCB_ I2C_MSTAT_RD_CMPLT status.
Parameters:
uint32 slaveAddress: Right-justified 7-bit Slave address (valid range 8 to 120).
uint8 rdData: Pointer to buffer where to put data from slave.
uint32 cnt: Number of bytes of buffer to read.
uint32 mode: Transfer mode defines:
(1) Whether a start or restart condition is generated at the beginning of the transfer, and
(2) Whether the transfer is completed or halted before the stop condition is generated on
the bus.
Transfer mode, mode constants may be ORed together. See SCB_I2CMasterWriteBuf()
function for constants.
Return Value:
uint32: Error status.
Error Status constants
Description
SCB_I2C_MSTR_NO_ERROR
Function complete without error. The master started
the transfer.
SCB_I2C_MSTR_BUS_BUSY
Bus is busy. Nothing was sent on the bus. The
attempt has to be retried.
SCB_I2C_MSTR_NOT_READY
Master is not ready for to start transfer.
A master still has not completed previous transaction
or a slave operation is in progress (in multi-masterslave configuration).
Nothing was sent on the bus. The attempt has to be
retried.
Side Effects:
None
uint32 SCB_I2CMasterGetReadBufSize(void)
Description:
Returns the number of bytes that has been transferred with an
SCB_I2CMasterReadBuf() function.
Parameters:
None
Return Value:
uint32: Byte count of transfer. If the transfer is not yet complete, it returns the byte count
transferred so far.
Side Effects:
This function returns an invalid value if SCB_I2C_MSTAT_ERR_ARB_LOST or
SCB_I2C_MSTAT_ERR_BUS_ERROR occurred during the read transfer.
Page 36 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_I2CMasterGetWriteBufSize(void)
Description:
Returns the number of bytes that have been transferred with an
SCB_I2CMasterWriteBuf() function.
Parameters:
None
Return Value:
uint32: Byte count of transfer. If the transfer is not yet complete, it returns zero unit
transfer completion.
Side Effects:
This function returns an invalid value if SCB_I2C_MSTAT_ERR_ARB_LOST or
SCB_I2C_MSTAT_ERR_BUS_ERROR occurred during the write transfer.
void SCB_I2CMasterClearReadBuf(void)
Description:
Resets the read buffer pointer back to the first byte in the buffer.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_I2CMasterClearWriteBuf(void)
Description:
Resets the write buffer pointer back to the first byte in the buffer.
Parameters:
None
Return Value:
None
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 37 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
uint32 SCB_I2CMasterSendStart(uint32 slaveAddress, uint32 bitRnW)
Description:
Generates Start condition and sends slave address with read/write bit. Disables the I2C
interrupt.
This function is blocking. It does not return until the Start condition and address byte are
sent, a ACK/NAK is received, or errors have occurred.
Parameters:
uint32 slaveAddress: Right justified 7-bit Slave address (valid range 8 to 120).
uint32 bitRnW: Direction of the following transfer. It is defined by read/write bit within
address byte.
Direction constants
Return Value:
Description
SCB_I2C_WRITE_XFER_MODE
Set write direction for the following transfer.
SCB_I2C_READ_XFER_MODE
Set read direction for the following transfer.
uint32: Error status.
Error Status constants
Description
SCB_I2C_MSTR_NO_ERROR
Function complete without error.
SCB_I2C_MSTR_BUS_BUSY
Bus is busy. Nothing was sent on the bus. The
attempt has to be retried.
SCB_I2C_MSTR_NOT_READY
Master is not ready for to start transfer.
A master still has not completed previous
transaction or a slave operation is in progress (in
multi-master-slave configuration).
Nothing was sent on the bus. The attempt has to
be retried.
SCB_I2C_MSTR_ERR_LB_NAK
Error condition: Last byte was NAKed.
SCB_I2C_MSTR_ERR_ARB_LOST
Error condition: Master lost arbitration.
SCB_I2C_MSTR_ERR_BUS_ERR
Error condition: Master encountered a bus error.
Bus error is misplaced start or stop detection.
SCB_I2C_MSTR_ERR_ABORT_START Error condition: The start condition generation
was aborted due to beginning of Slave operation.
This error condition is only applicable for MultiMaster-Slave mode.
Side Effects:
Page 38 of 198
None
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_I2CMasterSendRestart(uint32 slaveAddress, uint32 bitRnW)
Description:
Generates ReStart condition and sends slave address with read/write bit.
If the last transaction was a read the NAK is sent before the ReStart to complete the
transaction.
This function is blocking and does not return until the ReStart condition and address are
sent, a ACK/NAK is received, or errors have occurred.
Parameters:
uint32 slaveAddress: Right-justified 7-bit Slave address (valid range 8 to 120).
uint32 bitRnW: Direction of the following transfer. It is defined by read/write bit within
address byte. See SCB_I2CMasterSendStart() function for constants.
Return Value:
uint32: Error status. See SCB_I2CMasterSendStart() function for constants.
Side Effects:
A valid Start or ReStart condition must be generated before calling this function. This
function does nothing if Start or ReStart conditions failed before this function was called.
For read transaction, at least one byte has to be read before ReStart generation.
uint32 SCB_I2CMasterSendStop(void)
Description:
Generates Stop condition on the bus. The NAK is generated before Stop in case of a
read transaction.
At least one byte has to be read if a Start or ReStart condition with read direction was
generated before.
This function is blocking and does not return until a Stop condition is generated or error
occurred.
Parameters:
None
Return Value:
uint32: Error status. See the SCB_MasterSendStart() command for constants.
Side Effects:
A valid Start or ReStart condition must be generated before calling this function. This
function does nothing if Start or ReStart condition failed before this function was called.
For read transaction, at least one byte has to be read before Stop generation.
Document Number: 001-96075 Rev. *A
Page 39 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_I2CMasterWriteByte(uint32 theByte)
Description:
Sends one byte to a slave.
This function is blocking and does not return until the byte is transmitted or an error
occurs.
Parameters:
uint32 theByte: Data byte to send to the slave.
Return Value:
uint32: Error status.
Error Status constants
Side Effects:
Description
SCB_I2C_MSTR_NO_ERROR
Function complete without error.
SCB_I2C_MSTR_NOT_READY
Master is not active master on the bus. A Slave
operation may be in progress. Nothing was sent on
the bus. The attempt has to be retried.
SCB_I2C_MSTR_ERR_LB_NAK
Error condition: Last byte was NAKed.
SCB_I2C_MSTR_ERR_ARB_LOST
Error condition: Master lost arbitration.
SCB_I2C_MSTR_ERR_BUS_ERR
Error condition: Master encountered a bus error.
Bus error is misplaced start or stop detection.
A valid Start or ReStart condition must be generated before calling this function. This
function does nothing if Start or ReStart conditions failed before this function was called.
uint32 SCB_I2CMasterReadByte(uint32 ackNack)
Description:
Reads one byte from a slave and generates ACK or prepares to generate NAK. The
NAK will be generated before Stop or ReStart condition by SCB_I2CMasterSendStop()
or SCB_I2CMasterSendRestart() function appropriately.
This function is blocking. It does not return until a byte is received or an error occurs.
Parameters:
uint32 ackNack: Response to received byte.
Response constants
SCB_I2C_ACK_DATA
Description
Generates ACK.
The master notifies slave that transfer continues.
SCB_I2C_NAK_DATA
Prepares to generate NAK.
The master will notify slave that transfer is
completed.
Return Value:
uint32: Byte read from the slave. In case of error the MSB of returned data is set to 1.
Side Effects:
A valid Start or ReStart condition must be generated before calling this function. This
function does nothing and returns invalid byte value if Start or ReStart conditions failed
before this function was called.
Page 40 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Global Variables
Knowledge of these variables is not required for normal operations.
Variable
Description
SCB_initVar
SCB_initVar indicates whether the SCB component has been initialized. The variable is initialized
to 0 and set to 1 the first time SCB_Start() is called. This allows the component to restart without
reinitialization after the first call to the SCB_Start() routine.
If reinitialization of the component is required, then the SCB_Init() function can be called before
the SCB_Start() or SCB_Enable() function.
I2C Function Appliance
Slave
Master
MultiMaster
MultiMasterSlave
SCB_I2CInit()
+
+
+
+
SCB_I2CSlaveStatus()
+
–
–
+
SCB_I2CSlaveClearReadStatus()
+
–
–
+
SCB_I2CSlaveClearWriteStatus()
+
–
–
+
SCB_I2CSlaveSetAddress()
+
–
–
+
SCB_I2CSlaveSetAddressMask()
+
–
–
+
SCB_I2CSlaveInitReadBuf()
+
–
–
+
SCB_I2CSlaveInitWriteBuf()
+
–
–
+
SCB_I2CSlaveGetReadBufSize()
+
–
–
+
SCB_I2CSlaveGetWriteBufSize()
+
–
–
+
SCB_I2CSlaveClearReadBuf()
+
–
–
+
SCB_I2CSlaveClearWriteBuf()
+
–
–
+
SCB_I2CMasterStatus()
–
+
+
+
SCB_I2CMasterClearStatus()
–
+
+
+
SCB_I2CMasterWriteBuf()
–
+
+
+
SCB_I2CMasterReadBuf()
–
+
+
+
SCB_I2CMasterSendStart()
–
+
+
+
SCB_I2CMasterSendRestart()
–
+
+
+
SCB_I2CMasterSendStop()
–
+
+
+
SCB_I2CMasterWriteByte()
–
+
+
+
SCB_I2CMasterReadByte()
–
+
+
+
Function
Document Number: 001-96075 Rev. *A
Page 41 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Slave
Master
MultiMaster
MultiMasterSlave
SCB_I2CMasterGetReadBufSize()
–
+
+
+
SCB_I2CMasterGetWriteBufSize()
–
+
+
+
SCB_I2CMasterClearReadBuf()
–
+
+
+
SCB_I2CMasterClearWriteBuf()
–
+
+
+
Function
Bootloader Support
The SCB component in I2C mode can be used as a communication component for the
Bootloader. You should use the following configurations to support communication protocol from
an external system to the Bootloader:

Mode: Slave or Multi-Master-Slave
Data Rate: Must match Host (boot device) data rate
Slave Address: Must match Host (boot device) selected slave address
For more information about the Bootloader, refer to the Bootloader component datasheet.
The following API functions are provided for Bootloader use.
Function
Description
SCB_CyBtldrCommStart()
Starts the I2C component and enables its interrupt.
SCB_CyBtldrCommStop()
Disable the I2C component and disables its interrupt.
SCB_CyBtldrCommReset()
Sets read and write I2C buffers to the initial state and resets the slave status.
SCB_CyBtldrCommRead()
Allows the caller to read data from the bootloader host (the host writes the data).
SCB_CyBtldrCommWrite()
Allows the caller to write data to the bootloader host (the host writes the data).
void SCB_CyBtldrCommStart(void)
Description:
Starts the I2C component and enables its interrupt.
Every incoming I2C write transaction is treated as a command for the bootloader.
Every incoming I2C read transaction returns 0xFF until the bootloader provides a response
to the executed command.
Parameters:
None
Return Value:
None
Side Effects:
None
Page 42 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_CyBtldrCommStop(void)
Description:
Disables the I2C component and disables its interrupt.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_CyBtldrCommReset(void)
Description:
Sets read and write I2C buffers to the initial state and resets the slave status.
Parameters:
None
Return Value:
None
Side Effects:
None
cystatus SCB_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)
Description:
Allows the caller to read data from the bootloader host (the host writes the data). The
function handles polling to allow a block of data to be completely received from the host
device.
Parameters:
uint8 pData[]: Pointer to the block of data to be read from bootloader host.
uint16 size: Number of bytes to be read from bootloader host.
uint16 *count: Pointer to variable to write the number of bytes actually read by the
bootloader host.
uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout.
Return Value:
cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the value
that best describes the problem. For more information, refer to the “Return Codes” section of
the System Reference Guide.
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 43 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
cystatus SCB_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8
timeOut)
Description:
Allows the caller to write data to the bootloader host (the host reads the data). The function
does not use timeout and returns after data has been copied into the slave read buffer. This
data available to be read by the bootloader host until following host data write.
Parameters:
const uint8 pData[]: Pointer to the block of data to send to the bootloader host.
uint16 size: Number of bytes to send to bootloader host.
uint16 *count: Pointer to variable to write the number of bytes actually written to the
bootloader host.
uint8 timeOut: The timeout is not used by this function. The function returns as soon as
data is copied into the slave read buffer.
Return Value:
cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the value
that best describes the problem. For more information refer to the “Return Codes” section of
the System Reference Guide.
Side Effects:
None
I2C Functional Description
This component supports I2C Slave, Master, Multi-Master, and Multi-Master-Slave
configurations. The following sections provide an overview of how to use the component in these
configurations.
This component requires that you enable global interrupts since the I 2C hardware is interruptdriven. Even though this component requires interrupts, you do not need to add any code to the
ISR (interrupt service routine). The component services all interrupts (data transfers)
independent of your code. The memory buffers allocated for this interface look like simple dualport memory between your application and the I2C master/slave.
Slave Operation
The slave interface consists of two buffers in memory, one for data written to the slave by a
master and a second buffer for data read by a master from the slave. Remember that reads and
writes are from the perspective of the I2C master. The I2C slave read and write buffers are set by
the initialization commands below. These commands do not allocate memory, but instead copy
the array pointer and size to the internal component variables. You must instantiate the arrays
used for the buffers because they are not automatically generated by the component. The same
buffer may be used for both read and write buffers, but you must be careful to manage the data
properly.
void SCB_I2CSlaveInitReadBuf(uint8 * rdBuf, uint32 bufSize)
void SCB_I2CSlaveInitWriteBuf(uint8 * wrBuf, uint32 bufSize)
Using the functions above sets a pointer and byte count for the read and write buffers. The
bufSize for these functions may be less than or equal to the actual array size, but it should never
be larger than the available memory pointed to by the rdBuf or wrBuf pointers.
Page 44 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Figure 2. Slave Buffer Structure
M e m o ry
0xFFFF
u in t 8 r d B u f[1 0] ;
I2 C _ S la v e I n it R e a d B u f (r d B u f, 1 0) ;
In d e x
0x1243
0x09
u in t 8 w r B u f [8] ;
0x08
I2 C _ S la v e I n it W r it e B u f (w r B u f, 8) ;
0x07
In d e x
0x06
I2 C R e a d
B u ffe r
0x05
0x07
0x123A
0x04
0x1237
0x03
0x05
0x04
0x02
0x03
0x01
0x00
0x06
I2 C W r it e
B u ffe r
0x02
0x1230
0x01
0x00
0x0000
When the SCB_I2CSlaveInitReadBuf() or SCB_I2CSlaveInitWriteBuf() function is called, the
internal index is set to the first value in the array pointed to by rdBuf and wrBuf, respectively. As
bytes are read or written by the I2C master, the index is incremented until the offset is one less
than the bufSize. At any time the number of bytes transferred may be queried by calling either
SCB_I2CSlaveGetReadBufSize() or SCB_I2CSlaveGetWriteBufSize() for the read and write
buffers, respectively. Reading or writing more bytes than are in the buffers causes an overflow.
The overflow status is set in the slave status byte and may be read with the
SCB_I2CSlaveStatus() API.
To reset the index back to the beginning of the array, use the following commands:
void SCB_I2CSlaveClearReadBuf(void)
void SCB_I2CSlaveClearWriteBuf(void)
This resets the index back to zero. The next byte read or written by the I2C master is the first
byte in the array. Before these clear buffer commands are used, the data in the arrays should be
read or updated.
Multiple reads or writes by the I2C master continue to increment the array index until the clear
buffer commands are used or the array index attempts to grow beyond the array size. Figure 3
shows an example where an I2C master has executed two write transactions. The first write was
four bytes and the second write was six bytes. The sixth byte in the second transaction was
NAKed by the slave to signal that the end of the buffer had occurred. If the master tried to write a
seventh byte for the second transaction or started to write more bytes with a third transaction,
each byte would be NAKed and discarded until the buffer is reset.
Document Number: 001-96075 Rev. *A
Page 45 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Using the SCB_I2CSlaveClearWriteBuf() function after the first transaction resets the index back
to zero and causes the second transaction to overwrite the data from the first transaction. Make
sure data is not lost by overflowing the buffer. The data in the buffer should be processed by the
slave before resetting the buffer index.
Figure 3. System Memory
System Memory
uint8 wrBuf[10];
0xFFFF
I2C_SlaveInitWriteBuf((uint8 *) wrBuf, 10);
Index
Read or Write
Buffer
Visible by
I2C Master
9
Trans2 Byte6
8
Trans2 Byte5
7
Trans2 Byte4
6
Trans2 Byte3
5
Trans2 Byte2
4
Trans2 Byte1
3
Trans1 Byte4
2
Trans1 Byte3
1
Trans1 Byte2
0
Trans1 Byte1
Transaction 2
Transaction 1
0x1239
0x1230
0x0000
Both the read and write buffers have four status bits to signal transfer complete, transfer in
progress, and buffer overflow. When a transfer starts, the busy flag is set. When the transfer is
complete, the transfer complete flag is set and the busy flag is cleared. If a second transfer is
started, both the busy and transfer complete flags may be set at the same time. The following
table shows read and write status flags.
Slave Status Constants
Description
SCB_I2C_SSTAT_RD_CMPLT
Slave read transfer complete.
SCB_I2C_SSTAT_RD_BUSY
Slave read transfer in progress (busy).
SCB_I2C_SSTAT_RD_OVFL
Master attempted to read more bytes than are in buffer.
SCB_I2C_SSTAT_RD_ERR
Slave captured error on the bus while read transfer.
SCB_I2C_SSTAT_WR_CMPLT
Slave write transfer complete.
SCB_I2C_SSTAT_WR_BUSY
Slave Write transfer in progress (busy).
SCB_I2C_SSTAT_WR_OVFL
Master attempted to write past end of buffer.
SCB_I2C_SSTAT_WR_ERR
Slave captured error on the bus while write transfer.
Page 46 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
The following code example initializes the write buffer then waits for a transfer to complete. Once
the transfer is complete, the data is then copied into a working array to handle the data. In many
applications, the data does not have to be copied to a second location, but instead can be
processed in the original buffer. You could create an almost identical read buffer example by
replacing the write functions and constants with read functions and constants. Processing the
data may mean new data is transferred into the slave buffer instead of out.
uint8 wrBuf[10u];
uint8 userArray[10u];
uint32 byteCnt;
uint32 status;
/* Initialize write buffer before call SCB_Start */
SCB_I2CSlaveInitWriteBuf((uint8 *) wrBuf, 10u);
/* Start I2C Slave operation */
SCB_Start();
/* The code below is not protected from the interruption. This might be required
to not cause buffer update by the following I2C write transaction while it is
handled.*/
/* Wait for I2C master to complete a write */
status = SCB_I2CSlaveStatus();
if(0u != (status & SCB_I2C_SSTAT_WR_CMPLT))
{
if(0u == (status & SCB_I2C_SSTAT_WR_ERR))
{
byteCnt = SCB_I2CSlaveGetWriteBufSize();
for(i=0; i < byteCnt; i++)
{
userArray[i] = wrBuf[i]; /* Copy data to local array */
}
}
/* Clean-up status and buffer pointer */
SCB_I2CSlaveClearWriteStatus();
SCB_I2CSlaveClearWriteBuf();
}
Multiple address support
The I2C slave component is able to support more than a single slave address. Multiple slave
addresses are handled by a user written callback function that is registered with the component.
Whenever an address is received, the hardware will stretch the clock while the user callback
function is called. The callback function is responsible for evaluating the received address and
returning an ACK or NACK depending on whether or not the address is valid. This is also an
opportunity for the application to store the received address and change I 2C buffer pointers
based on the received address, if needed. Once the callback function returns, the hardware will
handle performing the ACK or NACK on the I2C bus depending on the return value from the
callback function.
Document Number: 001-96075 Rev. *A
Page 47 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
The callback function is registered with the component using the
SCB_SetI2cAddressCustomInterruptHandler() function by passing a pointer to the callback
function as an argument. If the function is not registered, all accepted addresses are ACKed but
the same I2C buffer will be used for all I2C communication.
The component provides two options to enable multiple addresses reception: accept matching
address RX FIFO and accept general call. The following chapters describe the usage of these
options.
Accept matching address RX FIFO
The I2C slave has two settings to configure the slave address: slave address and mask. The
slave address defines a specific slave address while the mask defines a range of accepted
addresses. This range may differ from a single address to 128 different addresses. The accepted
addresses are called matched as they match acceptance criteria. Refer to section Slave address
mask for more information on how to configure the slave address and mask to accept more than
a single slave address.
Enabling the “Accept matching address RX FIFO” option in the I2C Basic Tab allows an
application to evaluate two or more slave addresses. This option forces the component to place
all matched addresses in the RX FIFO and call the user defined custom callback function, which
is responsible for evaluating the matched address and deciding whether the address should be
ACK’d or NACK’d and perform any additional address specific processing.
The following code provides an example of custom function which handles two address
addresses (7-bits): 0x24 and 0x30. The slave address is 0x24 (7-bits) and slave mask is 0xD6
(8-bits). The accepted matched addresses (7-bits) are 0x20, 0x30, 0x24 and 0x34.
/* Address 1 read and write buffers */
#define ADDR1_BUFFER_SIZE
(10u)
uint8 addr1BufRead[ADDR1_BUFFER_SIZE];
uint8 addr1BufWrite[ADDR1_BUFFER_SIZE];
/* Address 2 read and write buffers */
#define ADDR2_BUFFER_SIZE
(20u)
uint8 addr2BufRead[ADDR2_BUFFER_SIZE];
uint8 addr2BufWrite[ADDR2_BUFFER_SIZE];
/* Store the address which was more recently accessed */
uint8 activeAddress;
#define I2C_SLAVE_ADDRESS1 (0x24u)
#define I2C_SLAVE_ADDRESS2 (0x34u)
uint32 AddressAccepted(void)
{
uint32 response;
/* Set default response as NAK */
response = SCB_I2C_NAK_ADDR;
/* Read 7-bits right justified slave address */
activeAddress = SCB_GET_I2C_7BIT_ADDRESS(SCB_RX_FIFO_RD_REG);
Page 48 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
switch(activeAddress)
{
case (I2C_SLAVE_ADDRESS1):
/* Address 1: Setup buffers for read and write */
SCB_I2CSlaveInitReadBuf (addr1BufRead, ADDR1_BUFFER_SIZE);
SCB_I2CSlaveInitWriteBuf(addr1BufWrite, ADDR1_BUFFER_SIZE);
response = SCB_I2C_ACK_ADDR;
break;
case (I2C_SLAVE_ADDRESS2):
/* Address 2: Setup buffers for read and write */
SCB_I2CSlaveInitReadBuf (addr2BufRead, ADDR2_BUFFER_SIZE);
SCB_I2CSlaveInitWriteBuf(addr2BufWrite, ADDR2_BUFFER_SIZE);
response = SCB_I2C_ACK_ADDR;
break;
default:
/* NAK all other accepted addresses.
* The SCB_I2C_SSTAT_WR_CMPLT or SCB_I2C_SSTAT_RD_CMPLT flags are not
* affected when address is NACKed */
break;
}
return (response);
}
int main()
{
/* Register address callback function */
SCB_SetI2cAddressCustomInterruptHandler(&AddressAccepted);
/* Start I2C slave operation */
SCB_Start();
CyGlobalIntEnable;
for(;;)
{
if (0u != (SCB_I2CSlaveStatus() & SCB_I2C_SSTAT_WR_CMPLT))
{
if (I2C_SLAVE_ADDRESS1 == activeAddress)
{
/* Handle slave address 1: master writes */
}
else
{
/* Handle slave address 2: master writes */
}
/* Clean-up status and buffer pointer */
SCB_I2CSlaveClearWriteBuf();
Document Number: 001-96075 Rev. *A
Page 49 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
SCB_I2CSlaveClearWriteStatus();
}
if (0u != (SCB_I2CSlaveStatus() & SCB_I2C_SSTAT_RD_CMPLT))
{
if (I2C_SLAVE_ADDRESS1 == activeAddress)
{
/* Handle slave address 1: master reads */
}
else
{
/* Handle slave address 2: master reads */
}
/* Clean-up status and buffer pointer */
SCB_I2CSlaveClearReadBuf();
SCB_I2CSlaveClearReadStatus();
}
}
}
Note All slave functions return the values related to the most recent slave address which was
accessed by the master.
Note Any slave matched address wakes device from deep sleep independently whether it will be
ACKed or NACKed.
Accept General Call
The general call address is used for addressing every device connected to the I2C-bus at the
same time. In the default I2C configuration, the I2C slave ignores the general call address and will
generate a NAK response. Enabling the “Accept general call address” option in the I2C Basic
Tab forces the component to accept the general call address and will call the user generated
custom callback function after an address (the specific slave address or general call address) is
received. The interrupt source SCB_INTR.SLAVE_I2C_GENERAL notifies that general call
address is received.
The following code provides an example of a custom function which handles the general call
address and a single slave address.
/* Slave read and write buffers */
#define SLAVE_BUFFER_SIZE
(10u)
uint8 slaveBufWrite[SLAVE_BUFFER_SIZE];
uint8 slaveBufRead[SLAVE_BUFFER_SIZE];
/* Gen call write buffer */
#define GEN_CALL_BUFFER_SIZE
(2u)
uint8 genCallBufWrite[GEN_CALL_BUFFER_SIZE];
/* Store the address which was more recently accessed */
uint8 activeAddress;
#define I2C_SLAVE_ADDRESS
(SCB_I2C_SLAVE_ADDRESS)
#define I2C_GENERAL_CALL_ADDRESS
(0x00u)
Page 50 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 AddressAccepted(void)
{
uint32 response;
/* ACK slave address or general call address access */
response = SCB_I2C_ACK_ADDR;
/* Prepare for general call address */
if (0u != (SCB_GetSlaveInterruptSourceMasked() & SCB_INTR_SLAVE_I2C_GENERAL))
{
/* Setup only write buffer as R/W bit is always 0 */
SCB_I2CSlaveInitWriteBuf(genCallBufWrite, GEN_CALL_BUFFER_SIZE);
/* Set active address to be general call */
activeAddress = I2C_GENERAL_CALL_ADDRESS;
}
/* Prepare for slave address access */
else
{
/* Restore slave write buffer */
SCB_I2CSlaveInitWriteBuf(slaveBufWrite, SLAVE_BUFFER_SIZE);
/* Set active address to be slave address */
activeAddress = I2C_SLAVE_ADDRESS;
}
return (response);
}
int main()
{
/* Register address callback function */
SCB_SetI2cAddressCustomInterruptHandler(&AddressAccepted);
/* Start I2C slave operation */
SCB_Start();
CyGlobalIntEnable;
for(;;)
{
if (0u != (SCB_I2CSlaveStatus() & SCB_I2C_SSTAT_WR_CMPLT))
{
if (I2C_SLAVE_ADDRESS == activeAddress)
{
/* Handle slave address: master writes */
}
else
{
/* Handle general call address: master writes */
}
/* Clean-up status and buffer pointer */
SCB_I2CSlaveClearWriteBuf();
Document Number: 001-96075 Rev. *A
Page 51 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
SCB_I2CSlaveClearWriteStatus();
}
}
}
Note All slave functions return the values related to the most recent slave address which was
accessed by the master.
Note The general call address wakes up the device from deep sleep.
Master/Multi-Master Operation
Master and Multi-Master operation are basically the same, with two exceptions. When operating
in Multi-Master mode, the bus should always be checked to see if it is busy. Another master may
already be communicating with another slave. In this case, the program must wait until the
current operation is complete before issuing a start transaction. The program looks at the return
value, which sets a busy status if another master has control of the bus.
The second difference is that, in Multi-Master mode, two masters can start at the exact same
time. If this happens, one of the two masters loses arbitration. You must check for this condition
after each byte is transferred. The component automatically checks for this condition and
responds with an error if arbitration is lost.
There are two options when operating the I2C master: manual and automatic. In automatic mode,
a buffer is created to hold the entire transfer. In the case of a write operation, the buffer is
prefilled with the data to be sent. If data is to be read from the slave, a buffer at least the size of
the packet needs to be allocated. To write an array of bytes to a slave in automatic mode, use
the following function.
uint32 SCB_I2CMasterWriteBuf(uint32 slaveAddress, uint8 * wrData, uint32 cnt,
uint32 mode)
The slaveAddress variable is a right-justified 7-bit slave address of 0 to 127. The component API
automatically appends the write flag to the LSb of the address byte. The array of data to transfer
is pointed to with the second parameter, wrData. The cnt parameter is the number of bytes to
transfer. The last parameter, mode, determines how the transfer starts and stops. A transaction
may begin with a restart instead of a start, or halt before the stop sequence. These options allow
back-to-back transfers where the last transfer does not send a stop and the next transfer issues
a restart instead of a start.
A read operation is almost identical to the write operation. The same parameters with the same
constants are used.
uint32 SCB_I2CMasterReadBuf(uint32 slaveAddress, uint8 * rdData, uint32 cnt,
uint32 mode);
Both of these functions return status. See the status table for the SCB_I2CMasterStatus()
function return value. Since the read and write transfers complete in the background during the
I2C interrupt code, the SCB_I2CMasterStatus() function can be used to determine when the
transfer is complete. A code snippet that shows a typical write to a slave follows.
Page 52 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
SCB_I2CMasterClearStatus(); /* Clear any previous status */
SCB_I2CMasterWriteBuf(8u, (uint8 *) wrData, 10u, SCB_I2C_MODE_COMPLETE_XFER);
for(;;)
{
if(0u != (SCB_I2CMasterStatus() & SCB_I2C_MSTAT_WR_CMPLT))
{
/* Transfer complete. Check Master status to make sure that transfer
completed without errors. */
break;
}
}
The I2C master can also be operated manually. In this mode, each part of the write transaction is
performed with individual commands.
status = SCB_I2CMasterSendStart(8u, SCB_I2C_WRITE_XFER_MODE);
if(SCB_I2C_MSTR_NO_ERROR == status)
/* Check if transfer completed without
errors */
{
/* Send array of 5 bytes */
for(i=0; i<5u; i++)
{
status = SCB_I2CMasterWriteByte(userArray[i]);
if(SCB_I2C_MSTR_NO_ERROR != status)
{
break;
}
}
}
SCB_I2CMasterSendStop();
/* Send Stop */
A manual read transaction is similar to the write transaction except the last byte should be
NAKed. The example below shows a typical manual read transaction.
status = SCB_I2CMasterSendStart(8u, SCB_I2C_READ_XFER_MODE);
if(SCB_I2C_MSTR_NO_ERROR == status)
/* Check if transfer completed without
errors */
{
/* Read array of 5 bytes */
for(i=0; i<5u; i++)
{
if(i < 4u)
{
userArray[i] = SCB_I2CMasterReadByte(SCB_I2C_ACK_DATA);
}
else
{
userArray[i] = SCB_I2CMasterReadByte(SCB_I2C_NAK_DATA);
}
}
}
SCB_I2CMasterSendStop();
/* Send Stop */
Document Number: 001-96075 Rev. *A
Page 53 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
Multi-Master-Slave Mode Operation
Both Multi-Master and Slave are operational in this mode. The component may be addressed as
a slave, but firmware may also initiate master mode transfers. In this mode, when a master loses
arbitration during an address byte, the slave hardware checks which winning master addressed
it. In case of an address match, the slave becomes active.
For Master and Slave operation examples look at the Slave Operation and Master sections.
Low power modes
The component in I2C mode is able to be a wakeup source from Sleep and Deep Sleep low
power modes.
Sleep mode is identical to Active from a peripheral point of view. No configuration changes are
required in the component or code before entering/exiting sleep. Any communication intended to
the slave causes an interrupt to occur and leads to wakeup. Any master activity that involves an
interrupt to occur leads to wakeup.
Master modes (Master, Multi-Master) are not able to be a wakeup source from Deep Sleep. This
capability is only available for slave modes (Slave, Multi-Master-Slave). The slave has to be
configured properly to enable this functionality. The “Enable wakeup from Deep Sleep Mode”
must be checked in the I2C configuration dialog. The SCB_Sleep() and SCB_Wakeup()
functions must be called before/after entering/exiting Deep Sleep.
The wakeup event is a slave address match. The externally clocked logic performs address
matching, when the address matches an interrupt request is generated, thus waking up the
device. The slave stretches the SCL line until control is passed to its interrupt routine to ACK the
address. The wakeup interrupt source is disabled in the interrupt handler or by SCB_Wakeup()
after address match has occurred.
Before entering Deep Sleep, the ongoing transaction intended for the slave has to be completed.
The following code is suggested:
/* Enter critical section to lock the slave state */
uint8 intState = CyEnterCriticalSection();
/* Check if slave is busy */
status = (SCB_I2CSlaveStatus() & (SCB_I2C_SSTAT_RD_BUSY | SCB_I2C_SSTAT_WR_BUSY));
if (0u == status)
{
/* Slave is not busy: enter Deep Sleep */
SCB_Sleep();
/* Configure the slave to be wakeup source */
CySysPmDeepSleep();
/* Exit critical section to continue slave operation */
CyExitCriticalSection(intState);
SCB_Wakeup();
/* Configure the slave to active mode operation */
}
Page 54 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
else
{
/* Slave is busy. Do not enter Deep Sleep.
*/
/* Exit critical section to continue slave operation */
CyExitCriticalSection(intState);
}
For devices other than PSoC 4100 /PSoC 4200, the component clock must be disabled before
calling SCB_Sleep(), and then enabled after calling SCB_Wakeup(); otherwise, the SCL will lock
up after wakeup from Deep Sleep. Disabling and re-enabling the component clock is managed
by the SCB_Sleep() and SCB_Wakeup() APIs when the Clock from terminal option is disabled.
Otherwise, when the Clock from terminal option is enabled, the code provided above requires
modification to enable and disable the clock source connected to the SCB component. Review
the following modified code and highlighted in blue (ScbClock – the instance name of clock
component connected to the SCB):
if(0u == status)
{
SCB_Sleep();
/* Configure the slave to be wakeup source */
ScbClock_Stop(); /* Disable the SCB clock */
CySysPmDeepSleep();
/* Exit critical section to continue slave operation */
CyExitCriticalSection(intState);
SCB_Wakeup();
/* Configure the slave to active mode operation */
ScbClock _Start(); /* Enable the SCB clock */
}
For devices other than PSoC 4100 /PSoC 4200 configured in Multi-Master-Slave mode only, in
order for the component to be a wake-up source from deep sleep, the configuration of the
component must be changed before deep sleep and after the part wakes from deep sleep. This
configuration change occurs automatically in the SCB_Sleep() function, and any function that
starts an I2C master transaction. During this configuration change the component is disabled.
After the configuration has been changed, it is re-enabled. During the time it is disabled, any
incoming addresses to the slave will be NAKed; the external master will have to retry to access
the slave.
Figure 4. Master transaction wakes up device on slave address match
SCB_Sleep()
call
Transfer to other slave
Or bus IDLE
Address
match
S
Address
R/W
SCB_Wakeup()
call
Clock streching
A
Data
A
P
Device wakeup time
Active
Deep Sleep
Document Number: 001-96075 Rev. *A
Mode transition
Active
Page 55 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
Data rate configuration
For correct operation of I2C mode the component must meet the data rate requirement of the
connected I2C bus. For master mode this means the master data rate cannot be faster than the
slowest slave in the system. For slave mode this means the slave cannot be slower than the
fastest master in the system.
For slave mode the frequency of the connected clock source is the only parameter used in
determining the maximum data rate the slave can operate at. The connected clock is the clock
that runs the SCB, not SCL. The frequency of the connected clock source must be fast enough
to provide enough oversampling of the SCL and SDA signals to ensure that all I 2C specifications
are meet. Table 1 provides the ranges of allowed clock frequencies for the standard I 2C data
rates (Standard Mode, Fast Mode, and Fast-mode Plus). There are two ways to control the
frequency of the connected clock for slave mode:
1. Use a clock component that is internal to the SCB component (this clock still uses clock
divider resources). Based on the data rate set in the GUI the component asks PSoC
Creator to create a clock with a frequency in the range provided in Table 1 on page 16.
2. Connect a user configurable clock to the SCB component. This option is enabled by
checking the “Clock from terminal” control. In this mode it is the user’s responsibility to
ensure the connected clock frequency is in the range provided in Table 1 on page 16. If
the frequency is not in that range then proper I2C operation is no longer guaranteed.
Independent of the chosen method the component will display the actual data rate. This is the
maximum data rate at which the slave can operate. If the system data rate is faster than the
displayed actual data rate correct I2C operation is no longer guaranteed.
For I2C master mode the data rate is determined by the connected component clock, and the
oversampling factor. These two factors are used to set the frequency of SCL, one SCL period is
equal to the period of the connected clock multiplied by the oversampling factor. The
oversampling factor is divided into low and high to enable independent control of the high and
low phases of SCL. The low and high oversampling factor can be configured independently but
their sum has to be equal to overall oversampling. In order to ensure that the master meets all
I2C specifications the connected clock frequency and oversampling factor must be within a
specified range. Table 2 on page 16 provides a range of clock frequencies and oversampling
factors for the standard I2C data rates.
The component provides three methods to configure data rate:
1. Set the desired data rate and disable Manual oversampling control. This option uses a
clock component that is internal to the SCB component (this clock still uses clock divider
resources). Based on the data rate set in the GUI the component asks PSoC Creator to
create a clock with a frequency in the range provided in Table 2 on page 16. When
available clock frequency is returned the oversampling factors low and high are calculated
to meet the set data rate, and the oversampling ranges provided in Table 2 on page 16.
2. Select desired data rate and enable Manual oversampling control. This option uses a
clock component that is internal to the SCB component (this clock still uses clock divider
resources). The component asks PSoC Creator to create a clock frequency equal to
Page 56 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
desired (Data rate * Oversampling). The oversampling is controlled by the user. This
method is left to provide backward compatibility with previous versions of component.
3. Connect a user configurable clock to the SCB component. This option is enabled by
checking the “Clock from terminal” control. The user still uses the GUI to configure the
oversampling factor low and high. This method provides full control of the data rate
configuration.
Independent of chosen method the component displays actual data rate for Master. This data
rate might differ from the observed data rate on the bus due to the tR and tF time.
I2C spec parameters calculation
The ranges provided in Table 2 on page 16 assume worst case conditions on the bus; often a
bus will never experience worst case conditions. The following section describes how to
calculate various I2C parameters based on the connected clock frequency and oversampling
factors. This information can be used to determine if the chosen connected clock frequency and
oversampling factor meet I2C specifications on your I2C bus.
To find the frequency of the connected clock open the PSoC Creator Design-Wide Resources
(DWR) file, and open the Clock Tab. If you used an internal clock look for a clock name that
contains the component instance name with the suffix “_SCBCLK”. If you used the clock from
terminal option, look for the name of your clock. The Nominal frequency has to be taken but it
might differ from the Desired frequency due to design clock configuration.
Also the clock accuracy should be taken to account. The master device generates fSCL with the
accuracy of the provided clock source. Therefore when maximum data rate (for selected data
rate mode) is used the slave has to tolerate this inaccuracy otherwise the fSCL has to be reduced
or more accurate clock source provided.
The slave device is less sensitive to clock accuracy than the master as only when clock
frequency is close to low or high limit (for the selected data rate mode) is provided the clock
source accuracy has to be taken into account. The clock should not run too slow due negative
deviation as well as too fast due to positive deviation. The slave has wide range of allowed
clocks therefore selecting clock frequency in range (low limit + negative deviation) to (high limit –
positive deviation) eliminates effect of the clock source accuracy.
For master modes Table 2 on page 16 contains the ranges of clock frequencies for the selected
data rate. Keeping the clock frequency within these ranges ensures that tVD;DAT and tVD;ACK
parameters from I2C spec are met.
For Data rates of 0-400 kbps:
tVD;DAT = (3/ fSCBCLK) + tR_0%_70% + 90 nsec
For Data rates of 401-1000 kbps:
tVD;DAT = (4/ fSCBCLK) + tR_0%_70%
Note tR_0%_70% is the rising time from 0% to 70% to be measured for specific I2C bus.
Note The same equation applies for tVD;ACK
Document Number: 001-96075 Rev. *A
Page 57 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
Meeting tVD;DAT parameter ensures that tSU;DAT parameters is also met.
Meeting tLOW and tHIGH parameter ensures that tBUF, tSU;STA, tHD;STA and tSU;STO parameters are also
met. To calculate tLOW and tHIGH the use following equation:
tLOW = ((1/ fSCBCLK) * Oversampling factor Low) – tF
tHIGH = ((1/ fSCBCLK) * Oversampling factor High) – tR
fSCBCLK is a frequency of the connected component clock; Oversampling factor Low and High are
parameters of the component.
Note The tF and tR values have to be measured for specific I2C bus.
Note Calculated tHIGH value might be less than observed on the bus due to clock synchronization
in the device. The device resets its internal counter of tHIGH when it detects a low level on SCL
line while expecting high level. Therefore when tR and internal device delay is greater than one
component clock period – tHIGH is extended. This causes the data rate to be less than expected.
For the slave mode the Table 1 on page 16 contains the ranges of clock frequencies for the
selected data rate. Keep the clock frequency within these ranges to ensure that the slave meets
all parameters of I2C specification.
Page 58 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
EZI2C [4]
The I2C bus is an industry standard, two-wire hardware interface developed by Philips®. The
master initiates all communication on the I2C bus and supplies the clock for all slave devices.
The EZI2C Slave implements an I2C register-based slave device. It is compatible [1] with I2C
Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I2C-bus
specification.
The EZI2C Slave is a unique implementation of an I2C slave in that all communication between
the master and slave is handled in the ISR (Interrupt Service Routine) and requires no
interaction with the main program flow. The interface appears as shared memory between the
master and slave. Once the EZI2C_Start() function is called, there is little need to interact with
the API.
Input/Output Connections
This section describes the various input and output connections for the SCB component. An
asterisk (*) in the list of terminals indicates that the terminal may be hidden on the symbol under
the conditions listed in the description of that terminal.
clock – Input*
Clock that operates this block. The presence of this terminal varies depending on the Clock
from terminal parameter.
The interface-specific pins are buried inside the component because these pins use dedicated
connections and are not routable as general purpose signals. See the I/O System section in the
device Technical Reference Manual (TRM) for more information.
4
This is a firmware implementation of the EZI2C protocol on top of I2C (non-EZ mode). All communication
between the master and slave is handled in the ISR (Interrupt Service Routine). The data buffer has to be
allocated in the RAM. The SCB component does not support EZI2C (EZ-mode), which uses a 32-bytes hardware
buffer.
Document Number: 001-96075 Rev. *A
Page 59 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
Basic EZI2C Parameters
The EZI2C Basic tab has the following parameters:
Data rate
This parameter is used to set the I2C data rate value up to 1000 kbps (400 kbps for PSoC 4000
family); the actual data rate may differ from the selected data rate due to available clock
frequency. The standard data rates are 100 (default), 400, and 1000 kbps. The Data rate is
limited to a maximum of 400 kbps if the Clock stretching option is disabled. This parameter has
no effect if the Clock from terminal parameter is enabled.
Actual data rate
Actual data rate displays the data rate at which the component will operate with current settings.
The selected data rate could be different from actual data rate. The factors that affect the actual
data rate calculation are: system clock and accuracy of the component clock (internal or
external). When a change is made to any of the component parameters that affect the actual
data rate, it becomes unknown. To calculate the new actual data rate press the Apply button.
Note The actual data rate always provides maximum value for the selected data rate mode
(Standard-mode (100 kbps), Fast-mode (400 kbps), Fast-mode Plus (1000 kbps)).
Page 60 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Clock from terminal
This parameter allows choosing between an internally configured clock (by the component) or an
externally configured clock (by the user) for the component operation.
When this control is enabled, the component does not control the data rate, but displays the
actual data rate based on the user-connected clock source frequency. When this control is not
enabled, the clock configuration is provided by the component. The clock source frequency is
selected by the component based on the Data rate parameter. The table below shows the valid
ranges for the component clock for each data rate. When using clock from terminal ensure that
the external clock is within these ranges.
Table 5. EZI2C Slave clock frequency ranges
Parameter
fSCB
Standard-mode
Fast-mode
Fast-mode Plus
(0-100 kbps)
(0-400 kbps)
(0-1000 kbps)
Min
Max
Min
Max
Min
Max
Units
1.55
12.8
7.82
15.38
15.84
48.0
MHz
Note When the clock frequency is less than the lower limit of 1.55 MHz, an error is generated
while building the project.
Note PSoC Creator is responsible for providing requested clock frequency (internal or external
clock) based on current design clock configuration. When the requested clock frequency with
requested tolerance cannot be created, a warning about the clock accuracy range is generated
while building the project. This warning contains the actual clock frequency value created by
PSoC Creator. To remove this warning you must either change the system clock, component
settings or external clock to fit the clocking system requirements.
Clock stretching
This parameter applies clock stretching on the SCL line if the EZ I2C slave is not ready to
respond. Enabling this option ensures consistent slave operation for any EZ I 2C slave interrupt
latency because the I2C transaction is paused by clock stretching. Without the clock stretching
option enabled, the design needs to service the EZ I2C slave interrupt fast enough to provide
correct slave operation.
Byte mode
This option is only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M
devices. It allows doubling the TX and RX FIFO depth from 8 to 16 bytes. Increasing the FIFO
depth improves performance of EZ I2C operation when clock stretching is enabled, as more
bytes can be transmitted or received without software interaction. This option does not improve
EZ I2C operation when clock stretching is disabled; therefore, it is not available for this mode.
Document Number: 001-96075 Rev. *A
Page 61 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
Number of addresses
This option determines whether 1 (default) or 2 independent I2C slave addresses are recognized.
If two addresses are recognized, then address detection will be performed in software. When the
Clock Stretching option is disabled, the number of address choices is restricted to 1.
Primary slave address (7-bits)
This is an I2C address that will be recognized by the slave as the primary address. This address
is the 7-bit right-justified slave address and does not include the R/W bit. A slave address
between 0x08 and 0x7F may be selected; the default is 0x08.
The value may be entered as decimal or hexadecimal; for hexadecimal numbers type ‘0x’ before
the address.
Secondary slave address (7-bits)
This is an I2C address that will be recognized by the slave as the secondary address. This
address is the 7-bit right-justified slave address and does not include the R/W bit. A slave
address between 0x08 and 0x7F may be selected; the default is 0x09. Refer to Preferable
Secondary Address Choice.
The value may be entered as decimal or hexadecimal; for hexadecimal numbers type ‘0x’ before
the address.
Sub-address size
This option determines what range of data can be accessed. You can select a sub-address of 8
bits (default) or 16 bits. If you use a sub-address size of 8 bits, the master can only access data
offsets between 0 and 255. You may also select a sub-address size of 16 bits. That will allow the
I2C master to access data arrays of up to 65,535 bytes.
Enable wakeup from Deep Sleep Mode
Use this option to enable the component to wake the system from Deep Sleep when a slave
address match occurs.
Enabling this option adds the following restrictions (only for PSoC 4100/PSoC 4200 devices):

Clock stretching must be enabled
Slave address (7-bits) must be even (bit 0 equal zero)
Refer to the Low power modes section in the EZI2C chapter of this document and Power
Management APIs section of the System Reference Guide for more information.
Page 62 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Advanced EZI2C Parameters
The EZI2C Advanced tab contains the following parameters:
Slew rate
This option allows to control slew rate setting of the SCL and SDA pins. The slow slew rate
increases the fall time on the lines, reducing EMI and coupling with neighboring signals. For
devices supporting GPIO Over-Voltage Tolerance (GPIO_OVT) pins, I2C FM+ options should be
used when I2C data rate is greater than 400 kbps. This option also requires the I2C bus voltage
to be defined. Refer to the Device Datasheet to determine which pins are GPIO_OVT capable.
Default is fast.
Notes

GPIO_OVT pins are fully compliant with the I2C specification but the slew rate must be set
appropriately:
□
Slew rate "Slow" for Standard mode (100 kbps) and Fast mode (400 kbps)
□
Slew rate "I2C FM+" for Fast mode plus (1 Mbps)
Common GPIO pins are not completely compliant with the I2C specification. Refer to the
Device Datasheet for the details.

Slew rate settings are applied to all pins of the associated port.
Document Number: 001-96075 Rev. *A
Page 63 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
I2C bus voltage (V)
This option is only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M
devices. It specifies the voltage applied to the I2C pull up resistors when Slew rate is I2C FM+.
The voltage no less than applied to I2C pulls up resistors must be provided by the VDDD supply
input, otherwise the I2C pins cannot be placed. Valid values of VDDD are determined by the
settings in the Design-Wide Resources System Editor (in the <project>.cydwr file). This range
check is performed outside this dialog; the results appear in the Notice List window if the check
fails. Default is 3.3 V.
External Electrical Connections
Refer to the External Electrical Connections section for I2C.
Internal pull ups
Refer to the Internal Pull-Ups section for I2C.
EZI2C APIs
Application Programming Interface (API) functions allow you to configure the component using
software. The following table lists and describes the interface to each function. The subsequent
section discusses each function in more detail.
By default, PSoC Creator assigns the instance name “SCB_1” to the first instance of a
component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is “SCB”.
Function
Description
SCB_Start()
Starts the SCB component.
SCB_Init()
Initialize the SCB component according to defined parameters in the
customizer.
SCB_Enable()
Enables the SCB component operation.
SCB_Stop()
Disable the SCB component.
SCB_Sleep()
Prepares the SCB component to enter Deep Sleep.
SCB_Wakeup()
Prepares component for Active mode operation after Deep Sleep.
SCB_EzI2CInit()
Configures the SCB component for operation in EZ I2C mode. Only
applicable when the component is in unconfigured mode.
SCB_EzI2CGetActivity()
Returns EZ I2C slave status.
SCB_EzI2CSetAddress1()
Sets the primary EZ I2C slave address.
SCB_EzI2CGetAddress1()
Returns the primary EZ I2C slave address.
Page 64 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
Function
PSoC 4 Serial Communication Block (SCB)
Description
SCB_EzI2CSetBuffer1()
Sets up the data buffer to be exposed to the I2C master on a primary
slave address request.
SCB_EzI2CSetReadBoundaryBuffer1()
Sets the read only boundary of the data buffer to be exposed by I2C
master by the primary address request.
SCB_EzI2CSetAddress2()
Sets the secondary EZ I2C slave address.
SCB_EzI2CGetAddress2()
Returns the secondary EZ I2C slave address.
SCB_EzI2CSetBuffer2()
Sets up the data buffer to be exposed to the I2C master on a secondary
slave address request.
SCB_EzI2CSetReadBoundaryBuffer2()
Sets the read boundary of the data buffer to be exposed by I2C master
by the secondary address request.
void SCB_Start(void)
Description:
Invokes SCB_Init() and SCB_Enable(). After this function call the component is enabled
and ready for operation. This is the preferred method to begin component operation.
When configuration is set to “Unconfigured SCB”, the component must first be initialized
to operate in one of the following configurations: I2C, SPI, UART or EZ I2C. Otherwise
this function does not enable component.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_Init(void)
Description:
Initializes the SCB component to operate in one of the selected configurations: I2C, SPI,
UART or EZ I2C.
When configuration set to “Unconfigured SCB”, this function does not do any
initialization. Use mode-specific initialization APIs instead: SCB_I2CInit, SCB_SpiInit,
SCB_UartInit or SCB_EzI2CInit.
Parameters:
None
Return Value:
None
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 65 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
void SCB_Enable(void)
Description:
Enables SCB component operation: activates the hardware and internal interrupt.
For I2C and EZ I2C modes the interrupt is internal and mandatory for operation. For SPI
and UART modes the interrupt can be configured as none, internal or external.
The SCB configuration should be not changed when the component is enabled. Any
configuration changes should be made after disabling the component.
When configuration is set to “Unconfigured SCB”, the component must first be initialized
to operate in one of the following configurations: I2C, SPI, UART or EZ I2C, Using the
mode-specific initialization API. Otherwise this function does not enable the component.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_Stop(void)
Description:
Disables the SCB component: disable the hardware and internal interrupt. It also
disables all TX interrupt sources so as not to cause an unexpected interrupt trigger
because after the component is enabled, the TX FIFO is empty.
Refer to the function SCB_Enable() for the interrupt configuration details.
This function disables the SCB component without checking to see if communication is
in progress. Before calling this function it may be necessary to check the status of
communication to make sure communication is complete. If this is not done then
communication could be stopped mid byte and corrupted data could result.
Parameters:
None
Return Value:
None
Side Effects:
None
Page 66 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_Sleep(void)
Description:
Prepares component to enter Deep Sleep.
The “Enable wakeup from Deep Sleep Mode” selection has an influence on this function
implementation:
 Checked: configures the component to be wakeup source from Deep Sleep.
 Unchecked: stores the current component state (enabled or disabled) and disables
the component. See SCB_Stop() function for details about component disabling.
Call the SCB_Sleep() function before calling the CyPmSysDeepSleep() function. Refer
to the PSoC Creator System Reference Guide for more information about power
management functions.
This function should not be called before entering Sleep.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_Wakeup(void)
Description:
Prepares component to Active mode operation after Deep Sleep.
The “Enable wakeup from Deep Sleep Mode” selection influences this function
implementation:
 Checked: restores the component Active mode configuration.
 Unchecked: enables the component if it was enabled before enter Deep Sleep.
This function should not be called after exiting Sleep.
Parameters:
None
Return Value:
None
Side Effects:
Calling the SCB_Wakeup() function without first calling the SCB_Sleep() function may
produce unexpected behavior.
Document Number: 001-96075 Rev. *A
Page 67 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_EzI2CInit(SCB_EZI2C_INIT_STRUCT *config)
Description:
Configures the SCB for EZ I2C operation.
This function is intended specifically to be used when the SCB configuration is set to
“Unconfigured SCB” in the customizer. After initializing the SCB in EZ I2C mode, the
component can be enabled using the SCB_Start() or SCB_Enable() function.
This function uses a pointer to a structure that provides the configuration settings. This
structure contains the same information that would otherwise be provided by the
customizer settings.
Parameters:
config: pointer to a structure that contains the list of fields. These fields match the
selections available in the customizer. Refer to the customizer for further description of the
settings.
Field
uint32 enableClockStretch
Description
0 – disable
1 – enable
When enabled the SCL is stretched as required for proper
operation.
uint32 enableMedianFilter
This field is left for compatibility and its value is ignored.
Median filter is disabled for EZI2C mode.
uint32 numberOfAddresses
Number of supported addresses:
SCB_EZI2C_ONE_ADDRESS
SCB_EZI2C_TWO_ADDRESSES
uint32 primarySlaveAddr
Primary 7-bit slave address.
uint32 secondarySlaveAddr
Secondary 7-bit slave address.
uint32 subAddrSize
Size of sub-address:
SCB_EZI2C_SUB_ADDR8_BITS
SCB_EZI2C_SUB_ADDR16_BITS
uint32 enableWake
0 – disable
1 – enable
When enabled the matching address generates a wakeup
request.
uint8 enableByteMode
Ignored for all devices other than PSoC 4100 BLE/PSoC
4200 BLE/PSoC 4100M/PSoC 4200M.
0 – disable
1 – enable
When enabled the TX and RX FIFO depth is 16 bytes.
Return Value:
None
Side Effects:
None
Page 68 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_EzI2CGetActivity(void)
Description:
Returns EZ I2C slave status.
The read, write and error status flags reset to zero after this function call.
The busy status flag is cleared when the transaction intended for the EZ I2C slave
completes.
This function disables EZ I2C slave interrupt during execution to operate correctly. This
may have significant impact to correctness of EZ I2C slave operation when the clock
stretching option is disabled. The amount of time that the interrupt is disabled should be
less than the maximum EZ I2C slave interrupt latency. Refer to section Clock Stretching
Disable for more details.
Parameters:
None
Return Value:
uint32: Current status of EZ I2C slave.
This status incorporates a number of status constants. Each constant is a bit field value.
The value returned may have multiple bits set to indicate the status of the transfer.
Slave Status Constants
SCB_EZI2C_STATUS_READ1
Description
Read transfer complete. The transfer used the primary
slave address.
The error condition status bit must be checked to
ensure that read transfer was completed successfully.
SCB_EZI2C_STATUS_WRITE1
Write transfer complete. The buffer content was
modified. The transfer used the primary slave address.
The error condition status bit must be checked to
ensure that write transfer was completed successfully.
SCB_EZI2C_STATUS_READ2
Read transfer complete. The transfer used the
secondary slave address.
The error condition status bit must be checked to
ensure that read transfer was completed successfully.
SCB_EZI2C_STATUS_WRITE2
Write transfer complete. The buffer content was
modified. The transfer used the secondary slave
address
The error condition status bit must be checked to
ensure that write transfer was completed successfully.
SCB_EZI2C_STATUS_BUSY
A transfer intended for the primary or secondary
address is in progress. The status bit is set after an
address match and cleared on a Stop or ReStart
condition.
SCB_EZI2C_STATUS_ERR
An error occurred during a transfer intended for the
primary or secondary slave address. The sources of
error are: misplaced Start or Stop condition or lost
arbitration while slave drives SDA.
The write buffer may contain invalid byte or part of the
transaction when SCB_EZI2C_STATUS_ERR and
SCB_EZI2C_STATUS_WRITE1/2 is set. It is
recommended to discard buffer content in this case.
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 69 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
void SCB_EzI2CSetAddress1(uint32 address)
Description:
Sets the primary EZ I2C slave address.
Parameters:
uint32 address: primary I2C slave address.
This address is the 7-bit right-justified slave address and does not include the R/W bit.
The address value is not checked to see if it violates the I2C spec. The preferred
addresses are in the range between 8 and 120 (0x08 to 0x78).
Return Value:
None
Side Effects:
None
uint32 SCB_EzI2CGetAddress1(void)
Description:
Returns primary the EZ I2C slave address.
This address is the 7-bit right-justified slave address and does not include the R/W bit.
Parameters:
None
Return Value:
uint32: Primary I2C slave address.
Side Effects:
None
void SCB_EzI2CSetBuffer1(uint32 bufSize, uint32 rwBoundary, volatile uint8 * buffer)
Description:
Sets up the data buffer to be exposed to the I2C master on a primary slave address
request.
Parameters:
uint32 bufSize: Size of the data buffer in bytes.
uint32 rwBoundary: number of data bytes starting from the beginning of the buffer with
read and write access. Data bytes located at offset rwBoundary or greater are read
only.
This value must be less than or equal to the buffer size.
uint8* buffer: Pointer to the data buffer.
Return Value:
None
Side Effects:
Calling this function in the middle of a transaction intended for the primary slave
address leads to unexpected behavior.
Page 70 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_EzI2CSetReadBoundaryBuffer1(uint32 rwBoundary)
Description:
Sets the read only boundary in the data buffer to be exposed to the I2C master on a
primary slave address request.
Parameters:
uint32 rwBoundary: number of data bytes starting from the beginning of the buffer with
read and write access. Data bytes located at offset rwBoundary or greater are read
only.
This value must be less than or equal to the buffer size.
Return Value:
None
Side Effects:
Calling this function in the middle of a transaction intended for the primary slave
address leads to unexpected behavior.
void SCB_EzI2CSetAddress2(uint32 address)
Description:
Sets the secondary EZ I2C slave address.
Parameters:
uint32 address: secondary I2C slave address.
This address is the 7-bit right-justified slave address and does not include the R/W bit.
The address value is not checked to see if it violates the I2C spec. The preferred
addresses are in the range between 8 and 120 (0x08 to 0x78).
Return Value:
None
Side Effects:
None
uint32 SCB_EzI2CGetAddress2(void)
Description:
Returns the secondary EZ I2C slave address.
This address is the 7-bit right-justified slave address and does not include the R/W bit.
Parameters:
None
Return Value:
uint32: Secondary I2C slave address.
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 71 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_EzI2CSetBuffer2(uint32 bufSize, uint32 rwBoundary, volatile uint8 * buffer)
Description:
Sets up the data buffer to be exposed to the I2C master on a secondary slave address
request.
Parameters:
uint32 bufSize: Size of the data buffer in bytes.
uint32 rwBoundary: number of data bytes starting from the beginning of the buffer with
read and write access. Data bytes located at offset rwBoundary or greater are read
only.
This value must be less than or equal to the buffer size.
uint8* buffer: Pointer to the data buffer.
Return Value:
None
Side Effects:
Calling this function in the middle of a transaction intended for the secondary slave
address leads to unexpected behavior.
void SCB_EzI2CSetReadBoundaryBuffer2(uint32 rwBoundary)
Description:
Sets the read only boundary in the data buffer to be exposed to the I2C master on a
secondary address request.
Parameters:
uint32 rwBoundary: number of data bytes starting from the beginning of the buffer with
read and write access. Data bytes located at offset rwBoundary or greater are read
only.
This value must be less than or equal to the buffer size.
Return Value:
None
Side Effects:
Calling this function in the middle of a transaction intended to the secondary slave
address leads to unexpected behavior.
Global Variables
Knowledge of these variables is not required for normal operations.
Variable
SCB_initVar
Description
SCB_initVar indicates whether the SCB component has been initialized. The variable is initialized
to 0 and set to 1 the first time SCB_Start() is called. This allows the component to restart without
reinitialization after the first call to the SCB_Start() routine.
If reinitialization of the component is required, then the SCB_Init() function can be called before
the SCB_Start() or SCB_Enable() function.
Page 72 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Bootloader Support
The SCB component in EZ I2C mode cannot be used as a communication component for the
Bootloader.
EZI2C Functional Description
This component supports an I2C slave device with one or two I2C addresses. Either address may
access a memory buffer defined in RAM or flash data space. Flash memory buffers are read
only, while RAM buffers may be read/write. The addresses are right justified.
When using this component, you must enable global interrupts because the I2C hardware is
interrupt driven. Even though this component requires interrupts, you do not need to add any
code to the ISR (Interrupt Service Routine). The component services all interrupts (data
transfers) independently from your code. The memory buffers allocated for this interface look like
simple dual-port memory between your application and the I2C master.
If required, you can create a higher-level interface between a master and slave by defining
semaphores and command locations in the data structure.
Memory Interface
To an I2C master the interface looks very similar to a common I2C EEPROM. The EZ I2C buffer
can be configured as a variable, array, or structure but it is preferable to use an array. The buffer
acts as a shared memory interface between your program and an I2C master through the I2C
bus. The component permits read and write I2C master access to the specified buffer memory
and prevents any access outside the buffer or write access into a read only region.
For example, the buffer for the primary slave address is configured using the code below. The
buffer elements from 4 to 9 are read only.
#define BUFFER_SIZE
#define BUFFER_RW_BOUNDARY
(0x0Au)
(0x04u)
uint8 ezi2cBuffer[BUFFER_SIZE];
SCB_EzI2CSetBuffer1(BUFFER_SIZE, BUFFER_RW_BOUNDARY, ezi2cBuffer);
The buffer ezi2cBuffer is allocated in memory as shown in Figure 5.
Document Number: 001-96075 Rev. *A
Page 73 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Figure 5. EZ I2C buffer exposed to an I2C master
RAM
0x00FF
Access type
Exposed Buffer
ezi2cBuffer[9]
ezi2cBuffer[8]
Read Only
ezi2cBuffer[7]
0x0016
ezi2cBuffer[6]
ezi2cBuffer[5]
ezi2cBuffer[4]
ezi2cBuffer[3]
0x000D
Read/Write
ezi2cBuffer[2]
ezi2cBuffer[1]
ezi2cBuffer[0]
0x0000
To configure the whole buffer for read and write access, the buffer size and read/write boundary
need to use the same value. For example:
SCB_EzI2CSetBuffer1(BUFFER_SIZE, BUFFER_SIZE, ezi2cBuffer);
Handling endianness
The EZ I2C buffer can be set up as a variable. A variable with a size of more than one byte will
require knowledge of endianness (little-endian or big-endian). The endianness will determine the
byte order on the I2C bus. It is the I2C master’s responsibility to handle byte ordering properly.
uint16 ezi2cBuffer = 0xAABB;
#define BUFFER_SIZE (2u)
SCB_EzI2CSetBuffer1(BUFFER_SIZE, BUFFER_SIZE, (uint8 *) &ezi2cBuffer);
All PSoC 4 devices are little-endian devices, so the master will read these two bytes in order as:
0xBB 0xAA.
Handling structures
The EZ I2C buffer can be set up as structure. The compiler lays out structures in memory and
may add extra bytes. This is called byte padding. The compiler will add these bytes to align the
fields of the structure to match the requirements of the Cortex-M0. This processor does not
support unaligned access to multi-byte fields. When using a structure, the application must take
Page 74 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
this alignment into account. If fields need to be packed, then a byte array should be used instead
of a structure.
Handling a status byte
To define a higher level protocol, a status byte placed inside the EZ I2C buffer may be required.
This status byte would be modified by the I2C master, but the compiler is not aware that an
interrupt routine may modify this buffer. This can result in the compiler optimizing a while loop
that tests for a change in the status byte. The keyword volatile must be used to inform the
compiler that the status byte might change state even though no statements in the program
appear to change it.
Code example:
#define BUFFER_SIZE
#define STATUS_BYTE_POS
(0x0Au)
(0u)
volatile uint8 ezi2cBuffer[BUFFER_SIZE];
SCB_EzI2CSetBuffer1(BUFFER_SIZE, BUFFER_SIZE, ezi2cBuffer);
ezi2cBuffer[STATUS_BYTE_POS] = 0x01u;
while(0x01u == ezi2cBuffer[STATUS_BYTE_POS])
{
/* Wait for status byte to be changed by the master */
}
Interface as Seen by an External Master
The EZ I2C slave component supports basic read and write operations for the read/write region
and read operations for the read-only region. The two I2C address interfaces contain separate
data buffers that are addressed with separate base addresses. The base address is an index
within the EZ I2C buffer, its range is 0 to buffer size - 1. The base address comes first, followed
by the data bytes. The base address size depends on Sub-address size parameter: one byte
(Sub-address size = 8bits) or two bytes (Sub-address size = 16bits). The sub-address size of 8
bits is used to access buffers up to 256 bytes and sub-address size of 16 bits is used for buffers
up to 65535 bytes. In the case of a two byte address, the first byte is the high byte and the
second is the low byte of the 16-bit value Figure 6.
For example, the desired base address to access is 0x0201: high byte is 0x02 and low is 0x01.
Document Number: 001-96075 Rev. *A
Page 75 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Figure 6. The 8-bit and 16-bit Sub-Address Size
MSB
LSB
BASE ADDRESS
LSB MSB
MSB
BASE ADDRESS HIGH
LSB
BASE ADDRESS LOW
For write operations, a base address is always provided and is one or two bytes depending on
the configuration. This base address is retained and will be used for later read operations.
Following the base address is a sequence of bytes that are written into the buffer starting from
the base address location. The buffer index is incremented for each written byte, but this does
not affect the base address, which is retained. The length of a write operation is limited by the
maximum buffer read/write region size. The EZ I2C slave behaves differently on the I2C bus
when a master attempts to write outside the read/write region or past the end of the buffer
depending on the setting for Clock Stretching:

Enabled: the byte is NAKed by the slave and the master has to stop the current
transaction. The NAKed byte is discarded by the slave.
Disabled: all written bytes are ACKed by the slave, but these bytes are discarded.
Figure 7. I2C Master writes X bytes to the EZ I2C Slave buffer
Base
Address (n)
Slave Address
Data[n+x]
Data[n+1]
Stop
ACK
ACK
ACK
ACK
Write
ACK
A A A A A A A R
B B B B B B B B
D D D D D D D D
D D D D D D D D
D D D D D D D D
A
A
A
A
A P
6 5 4 3 2 1 0 W
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
Start
S
Data[n]
Data from EZ I2C Slave component
Data from I2C master
A read operation always starts from the base address set by the most recent write operation.
The buffer index is incremented for each read byte. Two sequential read operations start from
the same base address no matter how many bytes were read. The length of a read operation is
not limited by the maximum size of the data buffer. The EZ I2C slave returns 0xFF bytes if the
read operation passes the end of the buffer.
Page 76 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Figure 8. I2C Master reads X bytes from the EZ I2C Slave buffer
Slave Address
Data[n+x]
Data[n+2]
Data[n+1]
Stop
NACK
ACK
ACK
ACK
Read
ACK
A A A A A A A R
D D D D D D D D
D D D D D D D D
D D D D D D D D
D D D D D D D D
A
A
A
A
A P
6 5 4 3 2 1 0 W
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
Start
S
Data[n]
Typically, a read operation requires the base address to be updated before starting the read. In
this case, the write and read operations need to be combined together. The I 2C master may use
ReStart or Stop/Start conditions to combine the operations. The write operation only sets the
base address and the following read operation will start reading from the new base address. In
cases where the base address remains the same, there is no need for a write operation to be
performed.
Figure 9. I2C Master sets the base address and reads X bytes from the EZ I2C Slave buffer
Base
Address (n)
Slave Address
Stop
NACK
ACK
ACK
Read
ACK
ReStart
ACK
A A A A A A A R
B B B B B B B B
S A A A A A A A R
D D D D D D D D
D D D D D D D D
A
A
A
A
A P
6 5 4 3 2 1 0 W
7 6 5 4 3 2 1 0
r 6 5 4 3 2 1 0 W
7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
Write
Start
S
Data[n+x]
Data[n]
Slave Address
Detailed descriptions of the I2C bus and its implementation are available in the complete I2C
specification on the NXP website, and by referring to the device datasheet.
Data Coherency
Although a data buffer may include a data structure larger than a single byte, a Master read or
write operation consists of multiple single-byte operations. This can cause a data coherency
problem, because there is no mechanism to guarantee that a multi-byte read or write will be
synchronized on both sides of the interface (Master and Slave). For example, consider a buffer
that contains a single two-byte integer. While the master is reading the two-byte integer one byte
at a time, the slave may have updated the entire integer between the time the master read the
first byte of the integer (LSB) and was about to read the second byte (MSB). The data read by
the master may be invalid, since the LSB was read from the original data and the MSB was read
from the updated value.
You must provide a mechanism on the master, slave, or both that guarantees that updates from
the master or slave do not occur while the other side is reading or writing the data. The
SCB_EzI2CGetActivity() function can be used to develop an application-specific mechanism.
Note The buffer setup APIs are not interrupt protected and must be called when the component
is disabled or the slave is not busy.
Document Number: 001-96075 Rev. *A
Page 77 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
Clock Stretching
Clock stretching pauses a transaction by holding the SCL line low. The transaction cannot
continue until the SCL line is released allowing the signal to go high again. The support of clock
stretching is an optional feature of the I2C spec. For that reason, the EZ I2C slave provides an
option to enable or disable this feature.
Clock Stretching Enable
Enabling the clock stretching option makes is possible for the slave to insert a pause into the
transaction at the byte level. This allows for consistent EZ I2C slave operation for any slave
interrupt latency. The drawback is that the master has to support clock stretching as well.
Clock Stretching Disable
Disabling clock stretching configures the EZ I2C slave to operate with an optimized interrupt
service routine. This allows the EZ I2C slave to operate without clock stretching. Despite the
optimization, the slave interrupt still must be serviced fast enough. The maximum time that the
slave interrupt service can be delayed is defined as the maximum EZ I2C slave interrupt latency.
A design that does not satisfy the required maximum EZ I2C slave interrupt latency will cause
erroneous slave behavior. It is recommended to enable clock stretching if the design cannot
satisfy the required maximum EZ I2C slave interrupt latency. When selecting the clock stretching
disable option, refer also to the following:

Maximum slave interrupt latency
Transactions chained with ReStart
Slave busy management
Page 78 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Maximum slave interrupt latency
All master transactions begin with a Start condition. The slave hardware detects this condition
and generates an interrupt request, which starts slave operation (Figure 10). The ReStart
condition has the same effect on the slave as Start condition, except previous transaction
completion flags have to be set; service of the ReStart condition has greater priority.
Figure 10. EZ I2C slave starts operation
Start / ReStart
condition is detected
S
A A A A A A A
R A
6 5 4 3 2 1 0
EZI2C interrupt
request
CPU operation
Task
ISR
Task
tTX UPDATE
Master drives the bus
Slave drives the bus
EZI2C interrupt
hander
The time between starting the slave interrupt handler to the moment when the TX FIFO has been
updated with the first byte is referred as tTX UPDATE[5] [6] (Figure 10). The TX FIFO update consists
of clearing the TX FIFO and writing a byte from the slave buffer into the TX FIFO. The TX FIFO
update must be completed before the master starts reading the first data byte. Otherwise, a
number of issues can occur, including: reading old the TX FIFO content, clock stretching when
the TX FIFO is cleared [7], or reading a partial byte due to the TX FIFO clear in the middle of the
byte transfer.
The constraint applied to the TX FIFO update during the master read transaction causes the
maximum slave interrupt latency to be defined as maximum delay, which can be inserted from
the Start condition detection by the slave hardware, to the start of the execution of the slave
interrupt handler (Figure 11 on page 80).
5
This time depends on design settings such as CPU clock, compiler, optimization, etc.
6
This time does not include interrupt latency of the Cortext-M0 processor.
7
The slave hardware stretches the clock when TX FIFO is empty.
Document Number: 001-96075 Rev. *A
Page 79 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Therefore, the maximum interrupt latency must be less than the master address byte transmit
time (tADDRESS) plus slave ACK bit transmit time (tACK). But taking to account TX FIFO update
constraint, the maximum interrupt latency must be less than:
tMAX LATENCY = (tADDRESS + tACK) – tTX UPDATE = (8bits / fSCL + 1bit / fSCL) –
tTX UPDATE = 9 / fSCL – tTX UPDATE
For example I2C data rate of 100 kbps, the maximum interrupt latency must be less than:
tMAX LATENCY = 9 / fSCL – tTX UPDATE = 90 uS – tTX UPDATE
The number of CPU cycles to put the first byte into TX FIFO is calculated in the EZ I2C interrupt.
This number is equal to 71 cycles (mode Release, Compiler GCC, optimization Size). Taking into
account that the maximum interrupt latency of the Cortext-M0 processor is 16 cycles; the number
of cycles is increased to 87.
With the assumption that clock configuration of the design is internal IMO and HFCLK = SYSCLK
= 24 MHz, the tMAX LATENCY is calculated for the I2C data rate of 100 kbps. The accuracy of the
internal IMO is +/-2%; therefore, the number of CPU cycles is increased by 2% and equal to
~89 cycles. The tTX UPDATE = 89 / SYSCLK = 3.71uS. Referring to the above equation, the
maximum interrupt latency is equal to:
tMAX LATENCY = 9 / fSCL – tTX UPDATE = 90 uS – tTX UPDATE = 90 uS – 3.71 uS = 86.29 uS
Figure 11. EZ I2C slave maximum interrupt latency
Start / ReStart
condition is detected
A A A A A A A
D D D D D D D
R A
6 5 4 3 2 1 0
7 6 5 4 3 2 1
S
tACK
tADDRESS
EZI2C interrupt
request
CPU operation
Task
Maximum slave interrupt latency
tMAX LATENCY
Master drives the bus
ISR
Task
tTX UPDATE
EZI2C interrupt
hander
Slave drives the bus
Design recommendations:
1. Use the highest possible SYSCLK frequency, as it runs the CPU to reduce execution time
of the EZ I2C slave interrupt.
Page 80 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
2. Use optimization options of the compiler as it reduces the number of instructions to
execute in the EZ I2C slave interrupt.
3. Set the EZ I2C interrupt priority to be the highest in the design. If there are other interrupts
with the same priority, make sure that their execution time is less than EZ I2C maximum
interrupt latency.
4. Calculate the duration of the each critical section in the design and compare with the
EZ I2C maximum interrupt latency to make sure that design meets criteria.
Transactions chained with ReStart
A common use case is for the master to write the base address, and then using a repeated start
(no Stop) read data from the slave starting at the base address (Figure 12 on page 82). The
base address (or data byte) written by the master is received into the RX FIFO and must be
serviced by the slave interrupt handler (Figure 12, case 1). The service of the RX FIFO has
greater priority than the ReStart condition service because the base address may have been
updated by the master write transaction, and it is used for the TX FIFO update. The time spent to
service the RX FIFO might affect the service of the ReStart condition. If this is the case
(Figure 12, case 2), the maximum interrupt latency is reduced by the time it takes to service the
RX FIFO after the ReStart condition is detected:
tMAX LATENCY = 9 / fSCL – (tRX DELAY + tTX UPDATE)
The RX FIFO service will affect tMAX LATENCY when it takes longer than (1bit / fSCL + tLOW + tSU;STA),
(where 1bit / fSCL is duration of ACK condition generation, tLOW and tSU;STA minimum values for
the selected bus speed mode). For data rate 100 kbps this time equal to: 10 uS + 4.7 uS + 4.7
uS = 19.4 uS.
The longest RX FIFO service path in the EZ I2C interrupt is consumed by the handling of base
address written by the master (tRX SERVICE). It consumes 100 CPU cycles (mode Release,
Compiler GCC, optimization Size). Taking into account that the maximum interrupt latency of the
Cortext-M0 processor is 16 cycles; the number of cycles is increased to 116.
With the assumption that clock configuration of the design is internal IMO and HFCLK = SYSCLK
= 24 MHz, the tRX SERVICE is calculated. The accuracy of the internal IMO is +/-2%; therefore, the
number of CPU cycles is increased by 2% and equal to ~118 cycles. The tRX SERVICE = 118 /
SYSCLK = 4.92 uS which is less than 19.4 uS, therefore tRX DELAY = 0 uS.
The master ReStart timings must be examined; the I2C spec provides minimum values. Some
masters before ReStart generation extend tLOW to prepare for the next transaction, but it is device
specific. If there is possibility to control this time, the RX FIFO service effect on the maximum
interrupt latency can be eliminated by increasing tLOW before ReStart until tRX DELAY is equal to
zero.
Document Number: 001-96075 Rev. *A
Page 81 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Figure 12. Master set base address and read data
ReStart condition
is detected
Get byte from
RX FIFO
Start condition is detected
S
Stop condition
is detected
Add byte
into TX FIFO
A A A A A A A
D D D D D D D D
A A A A A A A
D D D D D D D D
W A
A Sr
R A
A
6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
P
Case 1:
EZI2C interrupt
request
CPU operation
Task
ISR
Task
ISR
tTX UPDATE
ISR
Task
ISR
tTX UPDATE
ISR
Task
ISR
Task
Task
Task
Case 2:
EZI2C interrupt
request
CPU operation
Task
ISR
Task
ISR
tTX UPDATE
ISR
Task
ISR
tTX UPDATE
Task
tRX DELAY
A
Sr
SDA
SCL
tLOW
Page 82 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Slave busy management
The SCB_EzI2CGetActivity() API and SCB_Sleep() API use address match status to track slave
busy status. This event is triggered by hardware on the rising edge of 8th SCL within the address
byte for PSoC 4100/PSoC 4200 devices and on falling edge of 8th SCL for other PSoC4 devices
(Figure 13, black circle 2).
To be used as slave busy status, the address match is cleared by firmware on the Start / ReStart
or Stop condition (Figure 13, black circle 1). If Start / ReStart interrupt service is delayed for
maximum interrupt latency, the address match status is cleared too early (Figure 13, red circle
1).
This causes incorrect slave busy reporting. For correct slave busy status reporting, the maximum
interrupt latency must be reduced to 1.5 bit / fSCL for PSoC 4100/PSoC 4200 devices and to 1 bit
/ fSCL for other PSoC4 devices. As an alternative, the SCB hardware bus busy status can be
used to manage bus activity. See the SCB_I2C_STATUS register bit SCB_BUS_BUSY
description in Technical Reference Manual (TRM) for more information.
Figure 13. Slave busy management
Stop condition
is detected
Add byte
into TX FIFO
Start/ReStart
condition is detected
S
A A A A A A A
D D D D D D D D
R A
A
6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
P
EZI2C interrupt
request
CPU operation
Task
ISR
Task
ISR
ISR
Task
Task
CPU operation
Task
ISR
Maximum slave interrupt latency
Task
tTX UPDATE
2
Address match
status
1
1
Address match status is cleared by firmware
2
Address match status is set by hardware
Document Number: 001-96075 Rev. *A
1
1
Page 83 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
Preferable Secondary Address Choice
The hardware address-match-logic uses address bit masking to support both addresses. The
address mask defines which bits in the address are treated as non-significant while performing
an address match. One non-significant bit results in two matching addresses; two bits will match
4 and so on. Due to this reason, it is preferable to select a secondary address that is different
from the primary by one bit. The address mask in this case makes one bit non-significant. If the
two addresses differ by more than a single bit, then the extra addresses that will pass the
hardware match and will rely on firmware address matching to generate a NAK.
For example:

Primary address = 0x24 and secondary address = 0x34, only one bit differs. Only the two
addresses are treated as matching by the hardware.
Primary address = 0x24 and secondary address = 0x30, two bits differ. Four addresses
are treated as matching by the hardware: 0x24, 0x34, 0x20 and 0x30. Firmware is
required to ACK only the primary and secondary addresses 0x24 and 0x30 and NAK all
others 0x20 and 0x34.
Low power modes
The component in EZ I2C mode is able to be a wakeup source from Sleep and Deep Sleep low
power modes.
Sleep mode is identical to Active from a peripheral point of view. No configuration changes are
required in the component or code before entering/exiting this mode. Any communication
intended to the slave causes interrupt to occur and leads to wakeup.
Deep Sleep mode requires that the slave be properly configured to be a wakeup source. The
“Enable wakeup from Deep Sleep Mode” must be checked in the I2C configuration dialog. The
SCB_Sleep() and SCB_Wakeup() functions must be called before/after entering/exiting Deep
Sleep.
The wakeup event is slave address match. The externally clocked logic performs address
matching and when a matched address is detected the hardware generated an interrupt request.
But the slave behavior after address match depends on clock stretching option selection.
Clock stretching enable: the slave stretches SCL line until control is passed to the slave
interrupt routine to ACK the address.
Before entering Deep Sleep, the on-going transaction intended for the slave must be completed
as suggested in the following code:
/* Enter critical section to lock the slave state */
uint8 intState = CyEnterCriticalSection();
/* Check if slave is busy */
status = (SCB_EzI2CGetActivity() & SCB_EZI2C_STATUS_BUSY);
if (0u == status)
Page 84 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
{
/* Slave is not busy: enter Deep Sleep */
SCB_Sleep();
/* Configure the slave to be wakeup source */
CySysPmDeepSleep();
/* Exit critical section to continue slave operation */
CyExitCriticalSection(intState);
SCB_Wakeup();
/* Configure the slave to active mode operation */
}
else
{
/* Slave is busy. Do not enter Deep Sleep.
*/
/* Exit critical section to continue slave operation */
CyExitCriticalSection(intState);
}
For devices other than PSoC 4100 /PSoC 4200, the component clock must be disabled before
calling SCB_Sleep(), and then enabled after calling SCB_Wakeup(); otherwise, the SCL will lock
up after wakeup from Deep Sleep. Disabling and re-enabling the component clock is managed
by the SCB_Sleep() and SCB_Wakeup() APIs when the Clock from terminal option is disabled.
Otherwise, when the Clock from terminal option is enabled, the code provided above requires
modification to enable and disable the clock source connected to the SCB component. Review
the following modified code and highlighted in blue (ScbClock – the instance name of clock
component connected to the SCB):
if (0u == status)
{
/* Slave is not busy: enter to Deep Sleep */
SCB_Sleep();
/* Configure the slave to be wakeup source */
ScbClock_Stop(); /* Disable the SCB clock */
CySysPmDeepSleep();
/* Exit critical section to continue slave operation */
CyExitCriticalSection(intState);
ScbClock _Start(); /* Enable SCB clock */
}
Figure 14. Master transfer wakes up device on slave address match (Clock stretching
enable)
SCB_Sleep()
call
Transfer to other slave
Or bus IDLE
Address
match
S
Address
R/W
SCB_Wakeup()
call
Clock streching
A
Data
A
P
Device wakeup time
Active
Deep Sleep
Document Number: 001-96075 Rev. *A
Mode transition
Active
Page 85 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Note The values for the primary and secondary addresses affect the range of matched
addresses. The preferable choice for the secondary address is when it differs from the primary
only by one bit. If it differs by more than one bit, then some transactions that are not intended for
this device will still wake the device from deep sleep. The address is going to be NAKed in this
case.
Clock stretching disable: the slave NAKs the matched address and any subsequent
transactions until the device wakes up.
Before entering Deep Sleep, the ongoing transaction intended for the slave must be completed.
The waiting loop is implemented inside the SCB_Sleep() function. This function is blocking and
waits until the slave is free to configure it to be a wakeup source. For proper SCB_Sleep()
function operation the slave busy status has to be managed properly by the EZI2C slave(refer to
the Slave busy management section for more information). After reconfiguration, the sampling of
the address match event is started and the device has time to enter Deep Sleep mode. To
operate correctly in active mode, the slave configuration must be restored back by
SCB_Wakeup(). The agreement between slave and master must be concluded so as not to
access the slave after wakeup until SCB_Wakeup() is executed. The following code is
suggested:
SCB_Sleep(); /* Wait for the slave to be free and configures it to be wakeup
source */
CySysPmDeepSleep();
SCB_Wakeup(); /* Configure the slave to active mode operation */
Note The interrupts are required for the slave operations and global interrupts must be enabled
before calling SCB_Sleep().
Figure 15. Master transfer wakes up device on slave address match (Clock stretching
disable)
SCB_Sleep()
call
Transfer to other slave
Or bus IDLE
Active
Page 86 of 198
Address
match
S
Address
Deep Sleep
R\W
A
SCB_Wakeup()
call
Bus IDLE
Mode transition
S
Address
R\W
A
Data
A
P
Active
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
SPI
This component provides an industry-standard, 4-wire SPI interface. Three different SPI
protocols or modes are supported:

Original SPI protocol as defined by Motorola.
TI: Uses a short pulse on “spi_select” to indicate start of transaction.
National Semiconductor (Microwire): Transmission and Receptions occur separately.
In addition to the standard 8-bit word length, the component supports a configurable 4 to 16-bit
data width for communicating at nonstandard SPI data widths.
Input/Output Connections
This section describes the various input and output connections for the SCB component. An
asterisk (*) in the list of terminals indicates that the terminal may be hidden on the symbol under
the conditions listed in the description of that terminal.
clock – Input*
Clock that operates this block. The presence of this terminal varies depending on the Clock
from terminal parameter.
interrupt – Output*
This signal can only be connected to an interrupt component or left unconnected. The presence
of this terminal varies depending on the Interrupt parameter.
rx_tr_out – Output*
This signal can only be connected to a DMA channel trigger input. This signal is used to trigger a
DMA transaction. The output of this terminal is controlled by the RX FIFO level. The presence of
this terminal varies depending RX Output parameter.
Document Number: 001-96075 Rev. *A
Page 87 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
tx_tr_out – Output*
This signal can only be connected to a DMA channel trigger input. This signal is used to trigger a
DMA transaction. The output of this terminal is controlled by the TX FIFO level. The presence of
this terminal varies depending TX Output parameter.
The interface-specific pins are buried inside component because these pins use dedicated
connections and are not routable as general purpose signals. See the I/O System section in the
device Technical Reference Manual (TRM) for more information.
Note The input buffer of buried output pins is disabled so as not to cause current linkage in low
power mode. Reading the status of these pins always returns zero. To get the current status, the
input buffer must be enabled before status read.
Page 88 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Basic SPI Parameters
The SPI Basic tab contains the following parameters:
Mode
This option determines in which SPI mode the SCB operates.

Slave – Slave only operation (default)
Master – Master only operation
Document Number: 001-96075 Rev. *A
Page 89 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
Sub mode
This option determines what SPI sub-modes are supported:

Motorola – The original SPI protocol as defined by Motorola (default).
TI (Start Coincides) – The Texas Instruments’ SPI protocol.
TI (Start Precedes) – The Texas Instruments’ SPI protocol.
National Semiconductor (Microwire) – The National Semiconductor's Microwire
protocol.
SCLK mode
This parameter defines the serial clock phase and clock polarity mode for communication.

CPHA = 0, CPOL= 0 – Data is driven on a falling edge of SCLK. Data is captured on a
rising edge of SCLK. SCLK idles low.This is default mode.

CPHA = 0, CPOL= 1 – Data is driven on a rising edge of SCLK. Data is captured on a
falling edge of SCLK. SCLK idles high.

CPHA = 1, CPOL= 0 – Data is driven on a rising edge of SCLK. Data is captured on a
falling edge of SCLK. SCLK idles low

CPHA = 1, CPOL= 1 – Data is driven on a falling edge of SCLK. Data is captured on a
rising edge of SCLK. SCLK idles high
Refer to the section Motorola sub mode operation in the SPI chapter of this document for more
information.
Data rate
This parameter is used to set the SPI data rate value up to 8000 kbps; the actual rate may differ
based on available clock frequency and component settings. The standard data rates are 500,
1000 (default), 2000, 4000 to 8000 in multiples of 2000 kbps. This parameter has no effect if the
Clock from terminal parameter is enabled.
Actual data rate
The actual data rate displays the data rate at which the component will operate with current
settings. The factors that affect the actual data rate calculation are: the accuracy of the
component clock (internal or external) and oversampling factor (only for the Master mode). When
a change is made to any of the component parameters that affect actual data rate, it becomes
unknown. To calculate the new actual data rate press the Apply button.
Page 90 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Note For Slave mode the actual data rate always provides maximum value for the selected clock
frequency. As external Master parameters are unknown, the assumption was made that MISO is
sampled in the leading edge of SCLK.
Refer to the Slave data rate section for actual data rate calculation which takes to account
external environment timing conditions.
Oversampling
This parameter defines the oversampling factor of the SPI clock; the number of component
clocks within one SPI clock period. Oversampling factor is used to calculate the internal
component clock frequency required to achieve this amount of oversampling as follows:
SCBCLK = Data rate * Oversampling factor.

For Slave mode, only the component clock source frequency is important. The
oversampling value is used to create a clock fast enough to operate at the selected data
rate. Refer to the Maximum data rate calculation section for more information. The
created clock is equal to the (data rate * Oversampling).
For Master mode, the oversampling value is used for serial clock signal (SCLK)
generation. The oversampling is equal to number of component clocks within one SPI
clock period. When the oversampling is even the first and second phase of the clock
period are the same. Otherwise the first phase of the clock signal period is one
component clock cycle longer than the second phase. The level of the first phase of the
clock period depends on CPOL settings: 0 – low level and 1 – high level.
An oversampling factor maximum value is 16 and minimum depends on component settings. For
Master the minimum oversampling factor value is 6. For Slave the minimum oversampling value
6 (Median filter is disabled) or 8 (Median filter is enabled).
Clock from terminal
This parameter allows choosing between an internally configured clock (by the component) or an
externally configured clock (by the user) for the component operation. Refer to the
Oversampling section to understand relationship between component clock frequency and the
component parameters.
When this option is enabled, the component does not control the data rate, but displays the
actual data rate based on the user-connected clock source frequency and the component
oversampling factor (only for the Master mode). When this option is not enabled, the clock
configuration and Oversampling factor (only for the Master mode) is provided by the component.
The clock source frequency is calculated by the component based on the Data rate parameter.
Note PSoC Creator is responsible for providing requested clock frequency (internal or external
clock) based on current design clock configuration. When the requested clock frequency with
requested tolerance cannot be created, a warning about the clock accuracy range is generated
while building the project. This warning contains the actual clock frequency value created by
Document Number: 001-96075 Rev. *A
Page 91 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
PSoC Creator. To remove this warning you must either change the system clock, component
settings or external clock to fit the clocking system requirements.
Median filter
This parameter applies 3 taps digital median filter on the input line. The master has one input
line: MISO, and the slave has three input lines: SCLK, MOSI, and SS. This filter reduces the
susceptibility to errors. However, minimum oversampling factor value is increased. The default
value is a Disabled.
SCLK free running
This option is only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M
devices in Master mode. It allows master to generate SCLK continually. It is useful when master
SCLK is connected to the slave device which uses it for functional operation rather than just SPI
functionality.
The default value is a Disabled.
Enable late MISO sample
This option allows the master to sample the MISO signal by half of SCLK period later (on the
alternate serial clock edge). Late sampling addresses the round-trip delay associated with
transmitting SCLK from the master to the slave and transmitting MISO from the slave to the
master. The default value is a Disabled.
Enable wakeup from Deep Sleep Mode
Use this option to enable the component to wake the system from Deep Sleep when slave select
occurs.
To enable this option all of the following restrictions must be met:

Sub mode is Motorola
SCLK mode is CPHA = 0, CPOL = 0 (only for PSoC 4100/PSoC 4200 devices)
Interrupt is Internal
Refer to the Low power modes section under the SPI chapter in this document and Power
Management APIs section of the System Reference Guide for more information.
TX data bits
This option defines the bit width in a transmitted data frame. The default number of bits is a
single byte (8 bits). Any integer from 4 to 16 is a valid setting.
Page 92 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
RX data bits
This option defines the bit width in a received data frame. The default number of bits is a single
byte (8 bits). Any integer from 4 to 16 is a valid setting.
Note The number of TX data bits and RX data bits should be set the same for Motorola and
Texas Instruments sub-modes; they can be set different for National Semiconductor submode.
Bit order
The Bits order parameter defines the direction in which the serial data is transmitted. When set
to MSB first, the most-significant bit is transmitted first. When set to LSB first, the leastsignificant bit is transmitted first.
Remove SCLK
This option allows removal of the SCLK pin from the SPI interface. If selected, this pin is no
longer available in the Design-Wide Resources System Editor (in the <project>.cydwr file) on the
Pins Tab. The SCLK pin cannot be removed in Slave mode.
Remove MOSI
This option allows removal of the MOSI pin from the SPI interface. If selected, this pin is no
longer available in the Design-Wide Resources System Editor (in the <project>.cydwr file) on the
Pins Tab.
Remove MISO
This option allows removal of the MISO pin from the SPI interface. If selected, this pin is no
longer available in the Design-Wide Resources System Editor (in the <project>.cydwr file) on the
Pins Tab.
Number of SS
This parameter determines the number of SPI slave select lines. Only one slave select line is
available in Slave mode and it is not optional. The values between 0 and 4 are valid choices in
Master mode. The default number of lines is 1.
Transfer separation
This parameter determines if individual data transfers are separated by slave select de-selection
(only applicable for Master mode):

Continuous – The slave select line is held in active state until the end of transfer
(default).
The master assigns the slave select output after data has been written into the TX FIFO
and keeps it active as long as there are data elements to transmit. The slave select output
Document Number: 001-96075 Rev. *A
Page 93 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
becomes inactive when all data elements have been transmitted from the TX FIFO and
shifter register.
Note This can happen even in the middle of the transfer if the TX FIFO is not loaded fast
enough by the CPU or DMA. To overcome this behavior, the slave select can be
controlled by firmware. For more information about slave select control, refer to the Slave
select lines section.

Separated – Every data frame 4-16 bits is separated by slave select line de-selection by
one SCLK period.
SS0-SS3 polarity
This option is only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M
devices. It determines the active polarity of the slave select signal as Active Low (default) or
Active High. For other devices, only Active Low is available.
Each slave select line active polarity can be configured independently.
For Texas Instruments precede/coincide sub-modes the active polarity logic is inverted:

Active Low – Slave select line is inactive low and generated pulse is active high.
Active High – Slave select line is inactive high and generated pulse is active low.
Advanced SPI Parameters
Page 94 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
The SPI Advanced tab contains the following parameters:
RX buffer size
The RX buffer size parameter defines the size (in bytes/words) of memory allocated for a
receive data buffer. The minimum value is equal to the RX FIFO depth. The RX FIFO is
implemented in hardware. Values greater than the RX FIFO depth up to (232 – 2) imply using the
RX FIFO, and a circular software buffer controlled by the supplied APIs, and the internal interrupt
handler. The software buffer size is limited only by the available memory. The interrupt mode is
automatically set to internal and the RX FIFO not empty interrupt source is reserved if a software
buffer is used.

For 4100/PSoC 4200 devices, the RX and TX FIFO depth is equal to 8 bytes/words.
For PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M devices, the RX and TX
FIFO depth is equal to 8 bytes/words or 16 bytes; refer to Byte mode for more
information.
TX buffer size
The TX buffer size parameter defines the size (in bytes/words) of memory allocated for a
circular transmit data buffer. The TX buffer size minimum value is equal to the TX FIFO depth.
The TX FIFO is implemented in hardware. Values greater than the TX FIFO depth up to (232 – 1)
imply using the TX FIFO, circular software buffer controlled by the supplied APIs, and the
internal interrupt handler. The software buffer size is limited only by the available memory. The
interrupt mode is automatically set to the internal and the TX FIFO not full interrupt source is
reserved if a software buffer is used.

For 4100/PSoC 4200 devices, the RX and TX FIFO depth is equal to 8 bytes/words.
For PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M devices, the RX and TX
FIFO depth is equal to 8 bytes/words or 16 bytes; refer to Byte mode for more
information.
Byte mode
This option is only applicable to PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M
devices. It allows doubling the TX and RX FIFO depth from 8 to 16 bytes, by reducing the FIFO
width from 16bits to 8 bits. This implies that the number of TX and RX data bits must be less
than or equal to 8 bits. Increasing FIFO depth improves performance of SPI operation as more
bytes can be transmitted or received without software interaction.
Interrupt
This option determines what interrupt modes are supported None, Internal or External.

None – This option removes the internal interrupt component.
Document Number: 001-96075 Rev. *A
Page 95 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet

Internal – This option leaves the interrupt component inside the SCB component. The
predefined internal interrupt handler is hooked up to the interrupt. The Interrupt sources
option sets one or more interrupt sources, which trigger the interrupt. To add your own
code to the interrupt service routine you need to register a function using the
SCB_SetCustomInterruptHandler() function.

External – This option removes the internal interrupt and provides an output terminal.
Only an interrupt component can be connected to this terminal if an interrupt handler is
desired. The Interrupt sources option sets one or more interrupt sources, which trigger
the interrupt output.
Note For buffer sizes greater than the hardware FIFO depth, the component automatically
enables the internal interrupt sources required for proper internal software buffer operations. In
addition, the global interrupt enable must be explicitly enabled for proper buffer handling.
DMA
DMA is only available in PSoC 4100M/PSoC 4200M devices. The RX Output and TX Output
options determine if DMA output trigger terminals are available on the component symbol.
RX Output
This option determines if the rx_tr_out terminal is available on the component symbol. This
signal can only be connected to a DMA channel trigger input. The output of this terminal is
controlled by the RX FIFO level. This option is active only when RX buffer size equal to FIFO
depth.
TX Output
This option determines if the tx_tr_out terminal is available on the component symbol. This signal
can only be connected to a DMA channel trigger input. The output of this terminal is controlled by
the TX FIFO level. This option is active only when TX buffer size equal to FIFO depth.
Interrupt sources
The interrupt sources are either level or pulse. Level interrupt sources in the following list are
indicated with an asterisk (*). Refer to sections TX FIFO interrupt sources and RX FIFO interrupt
sources for more information about level interrupt sources operation. The SPI supports interrupts
on the following events:

SPI done – Master transfer done event: all data elements from the TX FIFO are sent. This
interrupt source triggers later than TX FIFO empty by the amount of time it takes to
transmit a single data element. The TX FIFO empty triggers when the last data element
from the TX FIFO goes to the shifter register. However, SPI done triggers after this data
element has been transmitted. This means SPI done will be asserted one SCLK clock
cycle earlier than the reception of the data element has been completed. It is
recommended to use SCB_SpiIsBusBusy() after checking SPI done to determine when
Page 96 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
the data element reception has been fully completed. As an alternative, the number of
received data elements can be checked to make sure that it is equal to the number of the
transmitted data elements.

TX FIFO not full * – TX FIFO is not full. At least one data element can be written into the
TX FIFO.

TX FIFO empty * – TX FIFO is empty.

SPI bus error – SPI slave deselected at an unexpected time during the SPI transfer.

RX FIFO full * – RX FIFO is full.
TX FIFO overflow – Firmware attempts to write to a full TX FIFO.
TX FIFO underflow – Hardware attempts to read from an empty TX FIFO.
TX FIFO level * – An interrupt request is generated whenever the number of data
elements in the TX FIFO is less than the value of TX FIFO level.
RX FIFO not empty * – RX FIFO is not empty. At least one data element is available in
the RX FIFO to be read.
RX FIFO overflow – Hardware attempts to write to a full RX FIFO.
RX FIFO underflow – Firmware attempts to read from an empty RX FIFO.
RX FIFO level * – An interrupt request is generated whenever the number of data
elements in the RX FIFO is greater than the value of RX FIFO level.
Notes
When RX buffer size is greater than the RX FIFO depth, the RX FIFO not empty interrupt
source is reserved by the component and used for the internal interrupt.
When TX buffer size is greater than the TX FIFO depth, the TX FIFO not full interrupt source is
reserved by the component and used for the internal interrupt.
FIFO level
The RX and TX FIFO level settings control behavior of the appropriate level interrupt sources as
well as RX and TX DMA triggers outputs.
RX FIFO
The interrupt or DMA trigger output signal remains active until the number of data elements in
the RX FIFO is greater than the value of RX FIFO level.
Document Number: 001-96075 Rev. *A
Page 97 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
TX FIFO
The interrupt or DMA trigger output signal remains active until the number of data elements in
the TX FIFO is less than the value of TX FIFO level.
SPI APIs
APIs allow you to configure the component using software. The following table lists and
describes the interface to each function. The subsequent sections discuss each function in more
detail.
By default, PSoC Creator assigns the instance name “SCB_1” to the first instance of a
component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is “SCB”.
Function
Description
SCB_Start()
Starts the SCB.
SCB_Init()
Initialize the SCB component according to defined parameters in the
customizer.
SCB_Enable()
Enables SCB component operation.
SCB_Stop()
Disable the SCB component.
SCB_Sleep()
Prepares component to enter Deep Sleep.
SCB_Wakeup()
Prepares component for Active mode operation after Deep Sleep.
SCB_SpiInit()
Configures the SCB for SPI operation.
SCB_SpiIsBusBusy()
Returns the current status on the bus.
SCB_SpiSetActiveSlaveSelect()
Selects the active slave select line. Only applicable in Master mode.
SCB_SpiSetSlaveSelectPolarity() Sets active polarity for the slave select line.
SCB_SpiUartWriteTxData()
Places a data entry into the transmit buffer to be sent at the next available bus
time.
SCB_SpiUartPutArray()
Places an array of data into the transmit buffer to be sent.
SCB_SpiUartGetTxBufferSize()
Returns the number of elements currently in the transmit buffer.
SCB_SpiUartClearTxBuffer()
Clears the transmit buffer and TX FIFO.
SCB_SpiUartReadRxData()
Retrieves the next data element from the receive buffer.
SCB_SpiUartGetRxBufferSize()
Returns the number of received data elements in the receive buffer.
SCB_SpiUartClearRxBuffer()
Clears the receive buffer and RX FIFO.
Page 98 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_Start(void)
Description:
Invokes SCB_Init() and SCB_Enable(). After this function call the component is enabled
and ready for operation. This is the preferred method to begin component operation.
When configuration is set to “Unconfigured SCB”, the component must first be initialized to
operate in one of the following configurations: I2C, SPI, UART or EZ I2C. Otherwise this
function does not enable component.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_Init(void)
Description:
Initializes the SCB component to operate in one of the selected configurations: I2C, SPI,
UART or EZ I2C.
When configuration is set to “Unconfigured SCB”, this function does not do any initialization.
Use mode-specific initialization APIs instead: SCB_I2CInit, SCB_SpiInit, SCB_UartInit or
SCB_EzI2CInit.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_Enable(void)
Description:
Enables SCB component operation: activates the hardware and internal interrupt.
For I2C and EZ I2C modes the interrupt is internal and mandatory for operation. For SPI and
UART modes the interrupt can be configured as none, internal or external.
The SCB configuration should be not changed when the component is enabled. Any
configuration changes should be made after disabling the component.
When configuration is set to “Unconfigured SCB”, the component must first be initialized to
operate in one of the following configurations: I2C, SPI, UART or EZ I2C. Otherwise this
function does not enable component.
Parameters:
None
Return Value:
None
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 99 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
void SCB_Stop(void)
Description:
Disables the SCB component: disable the hardware and internal interrupt. It also disables
all TX interrupt sources so as not to cause an unexpected interrupt trigger because after the
component is enabled, the TX FIFO is empty.
Refer to the function SCB_Enable() for the interrupt configuration details.
This function disables the SCB component without checking to see if communication is in
progress. Before calling this function it may be necessary to check the status of
communication to make sure communication is complete. If this is not done then
communication could be stopped mid byte and corrupted data could result.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_Sleep(void)
Description:
Prepares component to enter Deep Sleep.
The “Enable wakeup from Deep Sleep Mode” selection has an influence on this function
implementation:
 Checked: configures the component to be wakeup source from Deep Sleep.
 Unchecked: stores the current component state (enabled or disabled) and disables the
component. See SCB_Stop() function for details about component disabling.
Call the SCB_Sleep() function before calling the CyPmSysDeepSleep() function. Refer to
the PSoC Creator System Reference Guide for more information about power-management
functions.
This function should not be called before entering Sleep.
Parameters:
None
Return Value:
None
Side Effects:
None
Page 100 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_Wakeup(void)
Description:
Prepares component for Active mode operation after Deep Sleep.
The “Enable wakeup from Deep Sleep Mode” selection has influence to on this function
implementation:
 Checked: restores the component Active mode configuration.
 Unchecked: enables the component if it was enabled before enter Deep Sleep.
This function should not be called after exiting Sleep.
Parameters:
None
Return Value:
None
Side Effects:
Calling the SCB_Wakeup() function without first calling the SCB_Sleep() function may
produce unexpected behavior.
Document Number: 001-96075 Rev. *A
Page 101 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_SpiInit(SCB_SPI_INIT_STRUCT *config)
Description:
Configures the SCB for SPI operation.
This function is intended specifically to be used when the SCB configuration is set to
“Unconfigured SCB” in the customizer. After initializing the SCB in SPI mode, the
component can be enabled using the SCB_Start() or SCB_Enable() function.
This function uses a pointer to a structure that provides the configuration settings. This
structure contains the same information that would otherwise be provided by the
customizer settings.
Parameters:
config: pointer to a structure that contains the following list of fields. These fields match
the selections available in the customizer. Refer to the customizer for further description
of the settings.
Field
Description
uint32 mode
Mode of operation for SPI. The following defines are available
choices:
SCB_SPI_SLAVE
SCB_SPI_MASTER
uint32 submode
Submode of operation for SPI. The following defines are available
choices:
SCB_SPI_MODE_MOTOROLA
SCB_SPI_MODE_TI_COINCIDES
SCB_SPI_MODE_TI_PRECEDES
SCB_SPI_MODE_NATIONAL
uint32 sclkMode
Determines the sclk relationship for Motorola submode. Ignored for
other submodes. The following defines are available choices:
SCB_SPI_SCLK_CPHA0_CPOL0
SCB_SPI_SCLK_CPHA0_CPOL1
SCB_SPI_SCLK_CPHA1_CPOL0
SCB_SPI_SCLK_CPHA1_CPOL1
uint32 oversample
Oversampling factor for the SPI clock. Ignored for Slave mode
operation.
uint32 enableMedianFilter
0 – disable
1 – enable
uint32 enableLateSampling
0 – disable
1 – enable
Ignored for slave mode.
uint32 enableWake
0 – disable
1 – enable
Ignored for master mode.
uint32 rxDataBits
Number of data bits for RX direction.
Different dataBitsRx and dataBitsTx are only allowed for National
submode.
uint32 txDataBits
Number of data bits for TX direction.
Different dataBitsRx and dataBitsTx are only allowed for National
submode.
Page 102 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
uint32 bitOrder
PSoC 4 Serial Communication Block (SCB)
Determines the bit ordering. The following defines are available
choices:
SCB_BITS_ORDER_LSB_FIRST
SCB_BITS_ORDER_MSB_FIRST
uint32 transferSeperation
Determines whether transfers are back to back or have SS disabled
between words. Ignored for slave mode. The following defines are
available choices:
SCB_SPI_TRANSFER_CONTINUOUS
SCB_SPI_TRANSFER_SEPARATED
uint32 rxBufferSize
Size of the RX buffer in bytes/words (depends on rxDataBits
parameter). A value equal to the RX FIFO depth implies the usage
of buffering in hardware. A value greater than the RX FIFO depth
results in a software buffer.
The SCB_INTR _RX_NOT_EMPTY interrupt has to be enabled to
transfer data into the software buffer.
For 4100/PSoC 4200 devices, the RX and TX FIFO depth is equal
to 8 bytes/words. For PSoC 4100 BLE/PSoC 4200 BLE/PSoC
4100M/PSoC 4200M devices, the RX and TX FIFO depth is equal
to 8 bytes/words or 16 bytes (Byte mode is enabled).
uint8* rxBuffer
Buffer space provided for a RX software buffer:
 A NULL pointer must be provided to use hardware buffering.
 A pointer to an allocated buffer must be provided to use software
buffering. The buffer size must equal (rxBufferSize + 1) in bytes if
dataBitsRx is less or equal to 8, otherwise (2 * (rxBufferSize + 1))
in bytes.
The software RX buffer always keeps one element empty. For
correct operation the allocated RX buffer has to be one element
greater than maximum packet size expected to be received.
uint32 txBufferSize
Size of the TX buffer in bytes/words(depends on txDataBits
parameter). A value equal to the TX FIFO depth implies the usage
of buffering in hardware. A value greater than the TX FIFO depth
results in a software buffer.
For 4100/PSoC 4200 devices, the RX and TX FIFO depth is equal
to 8 bytes/words. For PSoC 4100 BLE/PSoC 4200 BLE/PSoC
4100M/PSoC 4200M devices, the RX and TX FIFO depth is equal
to 8 bytes/words or 16 bytes (Byte mode is enabled).
uint8* txBuffer
Buffer space provided for a TX software buffer:
 A NULL pointer must be provided to use hardware buffering.
 A pointer to an allocated buffer must be provided to use software
buffering. The buffer size must equal txBufferSize if dataBitsTx is
less or eqal to 8, otherwise (2* rxBufferSize).
uint32 enableInterrupt
0 – disable
1 – enable
The interrupt has to be enabled if software buffer is used.
Document Number: 001-96075 Rev. *A
Page 103 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 rxInterruptMask
Mask of enabled interrupt sources for the RX direction. This mask
is written regardless of the setting of the enable Interrupt field.
Multiple sources are enabled by providing a value that is the OR of
all of the following sources to enable:
 SCB_INTR_RX_FIFO_LEVEL
 SCB_INTR_RX_NOT_EMPTY
 SCB_INTR_RX_FULL
 SCB_INTR_RX_OVERFLOW
 SCB_INTR_RX_UNDERFLOW
 SCB_INTR_SLAVE_SPI_BUS_ERROR
uint32 rxTriggerLevel
FIFO level for an RX FIFO level interrupt. This value is written
regardless of whether the RX FIFO level interrupt source is
enabled.
uint32 txInterruptMask
Mask of enabled interrupt sources for the TX direction. This mask
is written regardless of the setting of the enable Interrupt field.
Multiple sources are enabled by providing a value that is the OR of
all of the following sources to enable:
 SCB_INTR_TX_FIFO_LEVEL
 SCB_INTR_TX_NOT_FULL
 SCB_INTR_TX_EMPTY
 SCB_INTR_TX_OVERFLOW
 SCB_INTR_TX_UNDERFLOW
 SCB_INTR_MASTER_SPI_DONE
uint32 txTriggerLevel
FIFO level for a TX FIFO level interrupt. This value is written
regardless of whether the TX FIFO level interrupt source is enabled.
uint8 enableByteMode
Ignored for all devices other than For PSoC 4100 BLE/PSoC 4200
BLE/PSoC 4100M/PSoC 4200M.
0 – disable
1 – enable
When enabled the TX and RX FIFO depth is 16 bytes. This implies
that number of TX and RX data bits must be less than or equal to 8.
uint8 enableFreeRunSclk
Ignored for all devices other than For PSoC 4100 BLE/PSoC 4200
BLE/PSoC 4100M/PSoC 4200M.
Enables continuous SCLK generation by the SPI master.
0 – disable
1 – enable
uint8 polaritySs
Ignored for all devices other than For PSoC 4100 BLE/PSoC 4200
BLE/PSoC 4100M/PSoC 4200M.
Active polarity of slave select lines 0-3. This is bitmask where bit
SCB_SPI_SLAVE_SELECT0 corresponds to slave select 0 polarity,
bit SCB_SPI_SLAVE_SELECT1 – slave select 1 polarity and so on.
Polarity constants are:
SCB_SPI_SS_ACTIVE_LOW
SCB_SPI_SS_ACTIVE_HIGH
Return Value:
None
Side Effects:
None
Page 104 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_SpiIsBusBusy(void)
Description:
Returns the current status on the bus. The bus status is determined using the slave
select signal.
 Motorola and National Semiconductor sub-modes: The bus is busy after the slave
select line is activated and lasts until the slave select line is deactivated.
 Texas Instrument sub-modes: The bus is busy at the moment of the initial pulse on
the slave select line and lasts until the transfer is complete.
If SPI Master is configured to use "separated transfers" (see Continuous versus
Separated Transfer Separation), the bus is busy during each element transfer and is
free between each element transfer. The Master does not activate SS line immediately
after data has been written into the TX FIFO.
Parameters:
None
Return Value:
uint32: Current status on the bus. If the returned value is nonzero, the bus is busy. If
zero is returned, the bus is free. The bus status is determined using the slave select
signal.
Side Effects:
None
void SCB_SpiSetActiveSlaveSelect(uint32 slaveSelect)
Description:
Selects one of the four slave select lines to be active during the transfer. After
initialization the active slave select line is 0.
The component should be in one of the following states to change the active slave select
signal source correctly:
 The component is disabled
 The component has completed transfer
This function does not check that these conditions are met.
This function is only applicable to SPI Master mode of operation.
Parameters:
uint32 slaveSelect: slave select line that will be active after the transfer.
Active Slave Select constants
Description
SCB_SPI_SLAVE_SELECT0
Slave select 0
SCB_SPI_SLAVE_SELECT1
Slave select 1
SCB_SPI_SLAVE_SELECT2
Slave select 2
SCB_SPI_SLAVE_SELECT3
Slave select 3
Return Value:
None
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 105 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_SpiSetSlaveSelectPolarity(uint32 slaveSelect, uint32 polarity)
Description:
Sets active polarity for the slave select line.
The component should be in one of the following states to change the active slave select
signal correctly:
 The component is disabled
 The component has completed transfer
This function does not check that these conditions are met.
Parameters:
uint32 slaveSelect: slave select line to change active polarity.
Slave Select constants
SCB_SPI_SLAVE_SELECT0
Description
Slave select 0.
For SPI slave mode the slave select 0 is only
valid argument due to slave select placement
constraint.
SCB_SPI_SLAVE_SELECT1
Slave select 1
SCB_SPI_SLAVE_SELECT2
Slave select 2
SCB_SPI_SLAVE_SELECT3
Slave select 3
uint32 Polarity: active polarity of slave select line.
Active Slave Select constants
Description
SCB_SPI_SS_ACTIVE_LOW
Slave select is active low
SCB_SPI_SS_ACTIVE_HIGH
Slave select is active high
Return Value:
None
Side Effects:
None
void SCB_SpiUartWriteTxData(uint32 txData)
Description:
Places a data entry into the transmit buffer to be sent at the next available bus time.
This function is blocking and waits until there is space available to put the requested
data in the transmit buffer.
Parameters:
uint32 txData: the data to be transmitted.
The amount of data bits to be transmitted depends on TX data bits selection (the data
bit counting starts from LSB of txDataByte).
Return Value:
None
Side Effects:
None
Page 106 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_SpiUartPutArray(const uint16/uint8 wrBuf[], uint32 count)
Description:
Places an array of data into the transmit buffer to be sent.
This function is blocking and waits until there is a space available to put all the
requested data in the transmit buffer.
The array size can be greater than transmit buffer size.
Parameters:
const uint16/uint8 wrBuf[]: pointer to an array of data to be placed in transmit buffer.
The width of the data to be transmitted depends on TX data width selection (the data bit
counting starts from LSB for each array element).
uint32 count: number of data elements to be placed in the transmit buffer.
Return Value:
None
Side Effects:
None
uint32 SCB_SpiUartGetTxBufferSize(void)
Description:
Returns the number of elements currently in the transmit buffer.
TX software buffer is disabled: Returns the number of used entries in TX FIFO.
TX software buffer is enabled: Returns the number of elements currently used in the
transmit buffer. This number does not include used entries in the TX FIFO. The transmit
buffer size is zero until the TX FIFO is not full.
Parameters:
None
Return Value:
uint32: Number of data elements ready to transmit.
Side Effects:
None
void SCB_SpiUartClearTxBuffer(void)
Description:
Clears the transmit buffer and TX FIFO.
Parameters:
None
Return Value:
None
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 107 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_SpiUartReadRxData(void)
Description:
Retrieves the next data element from the receive buffer.
RX software buffer is disabled: Returns data element retrieved from RX FIFO.
Undefined data will be returned if the RX FIFO is empty.
RX software buffer is enabled: Returns data element from the software receive buffer.
Zero value is returned if the software receive buffer is empty.
Parameters:
None
Return Value:
uint32: Next data element from the receive buffer. The amount of data bits to be
received depends on RX data bits selection (the data bit counting starts from LSB of
return value).
Side Effects:
None
uint32 SCB_SpiUartGetRxBufferSize(void)
Description:
Returns the number of received data elements in the receive buffer.
RX software buffer is disabled: Returns the number of used entries in RX FIFO.
RX software buffer is enabled: Returns the number of elements that were placed in the
receive buffer. This does not include the hardware RX FIFO.
Parameters:
None
Return Value:
uint32: Number of received data elements
Side Effects:
None
void SCB_SpiUartClearRxBuffer(void)
Description:
Clears the receive buffer and RX FIFO.
Parameters:
None
Return Value:
None
Side Effects:
None
Global Variables
Knowledge of these variables is not required for normal operations.
Variable
SCB_initVar
Description
SCB_initVar indicates whether the SCB component has been initialized. The variable is
initialized to 0 and set to 1 the first time SCB_Start() is called. This allows the
component to restart without reinitialization after the first call to the SCB_Start() routine.
If reinitialization of the component is required, then the SCB_Init() function can be called
before the SCB_Start() or SCB_Enable() function.
Page 108 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
Variable
SCB_rxBufferOverflow
PSoC 4 Serial Communication Block (SCB)
Description
SCB_rxBufferOverflow sets when internal software receive buffer overflow was
occurred.
Bootloader Support
The SCB component in SPI mode can be used as a communication component for the
Bootloader. You should use the following configuration to support the SPI communication
protocol from an external system to the Bootloader:

SPI Mode: Slave
Sub Mode: Motorola
Data Lines: MOSI, MISO, SCLK, SS
TX data bits and RX data bits: 8
SCLK mode: Must match Host (boot device)
Data rate: Must not be less than Host (boot device)
Note The slave uses input signal oversampling to allow the master to successfully
communicate with the slave at a data rate lower than what is selected in the Configure
dialog. However, when the component is used for the bootloading, the selected data rate
is used to calculate the byte-to-byte timeout interval. This timeout interval can be too small
if the data rate, used by the master to communicate with the slave, is significantly lower
than the data rate set in the Configure dialog. If the timeout interval is too small,
bootloading will fail because the slave is not able to receive data before the byte-to-byte
timeout expired. Refer to the SCB_CyBtldrCommRead details section for more
information about byte-to-byte timeout interval and options to change it.

Bit order: Must match Host (boot device)
RX buffer size: Must match or be greater that maximum size of packet received from
Host. The recommended RX buffer size value to select for bootloading use Bootloader
Host Tool (shipped with PSoC Creator) is 64.
TX buffer size: Must match or be greater that maximum size of packet transmitted to the
Host. The recommended TX buffer size value to select for bootloading use Bootloader
Host Tool (shipped with PSoC Creator) is 64.
For more information about the Bootloader, refer to the Bootloader component datasheet.
Document Number: 001-96075 Rev. *A
Page 109 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
The following API functions are provided for Bootloader use.
Function
Description
SCB_CyBtldrCommStart()
Starts the SPI component and enables its interrupt.
SCB_CyBtldrCommStop()
Disables the SPI component and its interrupt.
SCB_CyBtldrCommReset()
Resets SPI receive and transmit buffers.
SCB_CyBtldrCommRead()
Allows the caller to read data from the bootloader host (the host writes the data).
SCB_CyBtldrCommWrite()
Allows the caller to write data to the bootloader host (the host reads the data).
void SCB_CyBtldrCommStart(void)
Description:
Starts the SPI component and enables its interrupt (if TX or RX buffer size is greater
than FIFO depth).
Every incoming SPI transfer is treated as a command for the bootloader.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_CyBtldrCommStop(void)
Description:
Disables the SPI component and its interrupt.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_CyBtldrCommReset(void)
Description:
Resets SPI receive and transmit buffers.
Parameters:
None
Return Value:
None
Side Effects:
None
Page 110 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
cystatus SCB_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)
Description:
Allows the caller to read data from the bootloader host (the host writes the data). The
function handles polling to allow a block of data to be completely received from the host
device.
Parameters:
uint8 pData[]: Pointer to the block of data to be read from bootloader host.
uint16 size: Number of bytes to be read from bootloader host.
uint16 *count: Pointer to variable to write the number of bytes actually read by
bootloader host.
uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout.
Return Value:
cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the
value that best describes the problem. For more information, refer to the “Return
Codes” section of the System Reference Guide.
Side Effects:
None
cystatus SCB_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8
timeOut)
Description:
Allows the caller to write data to the bootloader host (the host reads the data). The
function handles polling to allow a block of data to be completely sent to the host
device.
Parameters:
const uint8 pData[]: Pointer to the block of data to send to the bootloader host.
uint16 size: Number of bytes to send to bootloader host.
uint16 *count: Pointer to variable to write the number of bytes actually written to
bootloader host.
uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout.
Return Value:
cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the
value that best describes the problem. For more information refer to the “Return Codes”
section of the System Reference Guide.
Side Effects:
None
SCB_CyBtldrCommRead details
The SPI interface does not provide start and stop conditions to define the start and end of a
transfer like I2C. Therefore, the following approach is used to define when command packet from
the host is received:
1) To determine when the start of a packet has occurred, the RX buffer is checked at a one
millisecond interval until the buffer size is non-zero or timeout is expired. As soon as at
least one data element has been received the communication component knows a packet
transfer has started and immediately begins looking for the end of the packet.
2) The transfer is completed if no new data elements are received within the byte-to-byte
timeout interval. This time interval is defined as the time consumed to transfer two data
elements with selected data rate. It is calculated by the component based on current data
Document Number: 001-96075 Rev. *A
Page 111 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
rate selection. If needed, the byte-to-byte interval can be changed by using global defines.
Open project Build Settings -> Compiler -> Command line and provide global define of the
interval in microseconds. For example, to change the interval to 40 microseconds:
-D DUT_UART_BYTE_TO_BYTE=40
SPI Functional Description
The Serial Peripheral Interface (SPI) protocol is a synchronous serial interface, with “singlemaster-multi-slave” topology. Devices operate in either master or slave mode. The master
initiates transfers of data frames. Multiple slaves are supported with individual slave select lines.
The SPI interface consists of four signals:

SCLK – Serial clock (output from master, input to the slave).
MOSI – Master output, slave input (output from the master, input to the slave).
MISO – Master input, slave output (input to the master, output from the slave).
SELECT – Slave select (typically an active low signal, output from the master, input to the
slave).
Figure 16. SPI Bus Connections Example
Page 112 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Motorola sub mode operation
This is the original SPI protocol defined by Motorola. It is a full duplex protocol: transmission and
reception occur at the same time.
The Motorola SPI protocol has four different modes that determine how data is driven and
captured on the MOSI and MISO lines. These modes are determined by clock polarity (CPOL)
and clock phase (CPHA).

CPHA = 0, CPOL= 0 – Data is driven on a falling edge of SCLK. Data is captured on a
rising edge of SCLK. The idle state of SCLK line is low.

CPHA = 0, CPOL= 1 – Data is driven on a rising edge of SCLK. Data is captured on a
falling edge of SCLK. The idle state of SCLK line is high.

CPHA = 1, CPOL= 0 – Data is driven on a rising edge of SCLK. Data is captured on a
falling edge of SCLK. The idle state of SCLK line is low.

CPHA = 1, CPOL= 1 – Data is driven on a falling edge of SCLK. Data is captured on a
rising edge of SCLK. The idle state of SCLK line is high.
Document Number: 001-96075 Rev. *A
Page 113 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Figure 17 illustrates driving and capturing of MOSI/MISO data as a function of CPOL and CPHA.
Figure 17. SPI Motorola frame format
CPOL = 0
CPHA = 0
SCLK
MISO /
MOSI
MSB
LSB
CPOL = 0
CPHA = 1
SCLK
MISO /
MOSI
MSB
LSB
CPOL = 1
CPHA = 0
SCLK
MISO /
MOSI
MSB
LSB
CPOL = 1
CPHA = 1
SCLK
MISO /
MOSI
Page 114 of 198
MSB
LSB
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Figure 18 illustrates a single 8-bit data transfer and two successive 8-bit data transfers in mode 0
(CPOL is '0', CPHA is '0').
Figure 18. SPI Motorola Data Transfer Example
CPOL = 0, CPHA = 0 single data transfer
SCLK
SELECT
MOSI
MISO
MSB
LSB
MSB
LSB
CPOL = 0, CPHA = 0 two successive data transfers
SCLK
SELECT
MOSI
MISO
MSB
MSB
LSB MSB
LSB
LSB MSB
LSB
Texas Instruments sub modes operation
The Texas Instruments’ SPI protocol redefines the use of the SS signal. It uses the signal to
indicate the start of a data transfer, rather than a low active slave select signal. This protocol only
supports CPHA = 1, CPOL= 0.
The start of a transfer is indicated by a high active pulse of a single bit transfer period. This pulse
may precede the transfer of the first data frame bit on one SCLK period, or may coincide with the
transmission of the first data bit. The transmitted clock SCLK is a free running clock.
Document Number: 001-96075 Rev. *A
Page 115 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Figure 19 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SS
pulse precedes the first data bit.
Note The SELECT pulse of the second data transfer coincides with the last data bit of the first
data transfer.
Figure 19. TI (Precede) Data Transfer Example
CPOL=0, CPHA=1 single data transfer
SCLK
SELECT
MOSI
MSB
LSB
MISO
MSB
LSB
CPOL=0, CPHA=1 two successive data transfers
SCLK
SELECT
MOSI
MSB
LSB MSB
LSB
MISO
MSB
LSB MSB
LSB
Page 116 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Figure 20 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SS
pulse coincides with the first data bit.
Figure 20. TI (Coincide) Data Transfer Example
CPOL=0, CPHA=1 single data transfer
SCLK
SELECT
MOSI
MSB
LSB
MISO
MSB
LSB
CPOL=0, CPHA=1 two successive data transfers
SCLK
SELECT
MOSI
MSB
LSB MSB
LSB
MISO
MSB
LSB MSB
LSB
National Semiconductor’s Microwire sub modes operation
The National Semiconductor's Microwire protocol is a half-duplex protocol. Rather than
transmission and reception occurring at the same time, transmission and reception take turns
(transmission happens before reception). A single “idle” bit transfer period separates
transmission from reception. This protocol only supports CPHA = 1, CPOL= 0.
Note The successive data transfers (transmission and reception) are NOT separated by an “idle”
bit transfer period.
The transmission data transfer size and reception data transfer size may differ.
Document Number: 001-96075 Rev. *A
Page 117 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Figure 21 illustrates a single data transfer and two successive data transfers. In both cases the
transmission data transfer size is 8 bits and the reception transfer size is 4 bits.
Figure 21. National Semiconductor's Microwire Data Transfer Example
CPOL=0, CPHA=0 single data transfer
SCLK
SELECT
MOSI
MSB
LSB
MSB
MISO
LSB
“idle” ‘0’ cycle
CPOL=0, CPHA=0 two successive data transfers
SCLK
SELECT
MOSI
MISO
MSB
MSB
LSB
MSB
“idle” ‘0’ cycle
Page 118 of 198
LSB
No “idle” cycle
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
MISO late sampling
The MISO is captured by Master by half of SCLK period later (on the alternate serial clock edge).
Late sampling addresses the round-trip delay associated with transmitting SCLK from the master
to the slave and transmitting MISO from the slave to the master.
Figure 22. Late MISO sampling example
CPOL = 0, CPHA = 0
SCLK
MISO
Normal sample
MSB
MISO
Late sample
LSB
MSB
LSB
Slave select lines
The slave select lines are used by the master to notify the slave device that it will communicate
with it. The master has control of four slave select lines, and one of them has to be chosen as
active before starting communication. To start communication, the data is written into the TX
FIFO. The master hardware then asserts the active slave select line and sends data to the
MOSI.
There are cases when firmware control of the slave select line is desired. In this case, the slave
select lines that are controlled by the master hardware need to be deactivated. There are two
options to do this:

Set the active slave select line to one that is not routed out to the pin. This option is
recommended when less than four slave select lines are used by the master. Example:
SPI master consumes 3 slave select lines SS0, SS1 and SS2. Call
SCB_SpiSetActiveSlaveSelect(SCB_SPIM_ACTIVE_SS3) to deactivate hardware
controlled slave select lines SS0-SS2.
Change the source of the control of the active slave select line in HSIOM (High Speed I/O
Matrix) from the SCB SPI interface to GPIO (CPU firmware control). Refer to the HighSpeed I/O Matrix description in the Technical Reference Manual (TRM) for more
information. This option is recommended when the master uses four slave select lines or
when multiplexing between hardware controlled and firmware controlled slave select lines
is required.
Document Number: 001-96075 Rev. *A
Page 119 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
SELECT and SCLK Timing Correlation
The master activates SELECT before starting the transfer and makes it inactive when the
transfer is completed. A minimum time is guaranteed before SELECT activation and the first
SCLK edge and SELECT deactivation and last SCLK edge. This time depends on the master
sampling edge, which is defined by CPHA settings. Thus, two combinations are available.
Figure 23. SELECT and SCLK Timing Correlation (PSoC 4100/PSoC 4200)
CPHA = 0
SCLK
SELECT
1 SCLK period
½ SCLK period
CPHA = 1
SCLK
SELECT
½ SCLK period
1 SCLK period
Note PSoC 4100/PSoC 4200 devices support only SCLK gated and active low SELECT polarity.
Page 120 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Figure 24. SELECT and SCLK Timing Correlation (PSoC 4100 BLE/PSoC 4200 BLE/PSoC
4100M/PSoC 4200M)
CPHA = 0
SCLK
SELECT
¾ SCLK period
¼ SCLK period
CPHA = 1
SCLK
SELECT
¼ SCLK period
¾ SCLK period
Note PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M devices support SCLK gated
and free running, as well as active low and high SELECT polarity. For all configurations, the
same correlation is preserved.
SELECT polarity
The SELECT line polarity for PSoC 4100/PSoC 4200 devices is active low. PSoC 4100
BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M devices provide the capability to select the
active polarity of the line as active low or active high.
Document Number: 001-96075 Rev. *A
Page 121 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
Figure 25. SELECT line polarity
Motorola and National Semiconductor's sub mode
SCLK
SELECT
Active Low
SELECT
Active High
Texas Instruments sub mode
SCLK
SELECT
Active Low
SELECT
Active High
Continuous versus Separated Transfer Separation
During separated data transfer, the SELECT line always changes from active to inactive state
between the individual data frames until completion of the transfer.
During continuous data transfer, the individual data frame is not necessarily separated by the
SELECT line inactivation. At the start of data transfer, the SELECT line is activated and keeps its
state active until the end of transfer. The end of transfer is defined as all data from the TX FIFO
and shifter register has been sent out. The alternative approach is to use the SPI Done interrupt
source (refer to the Interrupt sources section to understand the limitations of this approach).
Figure 18 on page 115 illustrates two continuous 8-bit data transfers in SCLK mode: CPHA=0,
CPOL= 0.
FIFO depth
The hardware provides two FIFOs. One is used for the receive direction, RX FIFO, and the other
for transmit direction, TX FIFO. The FIFO depth is 8 data elements. The width of each data
element is 16 bits. The data frame width is configurable from 4-16 bits. One element from the
FIFO is consumed regardless of the data frame width.
PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M devices provide the ability to
double the FIFO depth to be 16 data elements when the data frame width is 4-8 bits.
Software Buffer
Selecting RX or TX Buffer Size values greater than the FIFO depth enables usage of the RX or
TX FIFO and a circular software buffer. An array of the requested size is allocated internally by
the component for the TX software buffer. The allocated array for RX software buffer has one
Page 122 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
extra element that remains empty while in operation. Keeping this element empty simplifies
circular buffer operation. The interrupt option is automatically set to Internal, and the RX or TX
interrupt source is reserved to provide software buffer operation.
The internal interrupt is connected to the interrupt output. This interrupt runs a predefined
interrupt service routine. Its main purpose is to provide interaction between software buffers and
hardware RX or TX FIFO. The software buffer overflow can happen only for the RX direction.
The data elements read from the RX FIFO that do not fit into the software buffer are discarded.
This event is reported via global variable SCB_rxBufferOverflow. For the TX direction, the
provided APIs do not allow the software buffer overflow.
Interrupts
When RX buffer size or TX buffer size is greater than the FIFO depth, the RX FIFO not empty
or TX FIFO not full interrupt sources are reserved by the component for the internal software
buffers operations. Do not clear or disable them because it causes incorrect software buffer
operation. However, it is the user’s responsibility to clear interrupt events from other enabled
interrupt sources because they are not cleared automatically. Create a custom function that
clears these interrupt sources and register it using SCB_SetCustomInterruptHandler(). Each time
an internal interrupt handler executes, the custom function is called before handling software
buffer operation.
In case RX buffer size or TX buffer size is equal to the FIFO depth instead of software buffer
only the hardware TX or RX FIFO is used. In the Internal interrupt mode the interrupts are not
cleared automatically. It is user responsibility to do this. The External or None interrupt selection
is preferred in this case.
Low power modes
The component in SPI mode is able to be a wakeup source from Sleep and Deep Sleep low
power modes.
Sleep mode is identical to Active from a peripheral point of view. No configuration changes are
required in the component or code before entering/exiting this mode. Any communication
intended for the slave causes an interrupt to occur and leads to wakeup. Any master activity that
causes an interrupt to occur leads to wakeup.
The master mode is not able to be a wakeup source from Deep Sleep. This capability is only
available in slave mode. Deep Sleep mode requires that the slave be properly configured to be a
wakeup source. The “Enable wakeup from Deep Sleep Mode” must be checked in the SPI
configuration dialog. The SCB_Sleep() and SCB_Wakeup() functions must be called before/after
entering/exiting Deep Sleep.
In Master mode operation, the ongoing transfer must be completed before entering Deep Sleep,
because the SCB_Sleep() function disables the component and the transfer is stopped at this
moment. The transfer is completed when all data elements have been transferred from the
software buffer (if it is utilized), TX FIFO, and shifter register. Also, the slave select line must be
deactivated. Therefore, the preferred method for defining transfer completion is to check both
conditions mentioned above in a row, wait until all data elements have been transferred, and
Document Number: 001-96075 Rev. *A
Page 123 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
then wait for slave select deactivation. This method works reliably for any choice of slave select
Transfer separation configuration. The following code is suggested:
/* Wait until SPI Master completes transfer data */
while (0u != (SCB_SpiUartGetTxBufferSize() + SCB_GET_TX_FIFO_SR_VALID))
{
}
/* Wait until SPI Master de-activates slave select to ensure that the last
* data element has been completelly tranferred.
*/
while (0u != SCB_SpiIsBusBusy())
{
}
/* SPI Master is ready to enter Deep Sleep mode */
SCB_Sleep();
CySysPmDeepSleep();
In Slave mode operation, the device wakes up from Deep Sleep on detecting slave select
activation. Waking up takes time and the ongoing SPI transfer is negatively acknowledged –
"0xFF" bytes are sent out on the MISO line. The Master must poll the component again after the
device wake-up time is passed.
Slave data rate calculations
The SPI GUI calculates the actual data rate for master or slave devices. This value is based on
the parameters of the component and does not take to account such factors as: parameters of
external master or slave device as well as PCB delays. The master and slave parameters for
PSoC4 can be found in the DC and AC Electrical Characteristics of this document or Device
datasheet.
The main factor limiting the maximum data rate between master and slave is the round trip path
delay. This delay includes the PCB delay from the falling edge of SCLK at the pin of the master
to the SCLK pin of the slave, the internal slave delay from the falling edge of SCLK to MISO
transition, the PCB delay from the slave MISO pin to the master MISO pin, and the master setup
time. The following equation takes to account delays listed above:
tROUND_TRIP_DELAY = tSCLK_PD_PCB + tDSO_SLAVE + tMISO_PD_PCB + tDSI_MASTER

tSCLK_PD_PCB is the PCB path delay of SCLK from the pin of the master device to the pin of
the slave device.
tDSO_SLAVE is the time it takes the slave to change MISO after SCLK clock driving edge is
captured. This parameter commonly listed in the slave device datasheet.
tMISO_PD_PCB is the PCB path delay of MISO from the pin of the slave device to the pin of
the master device.
Page 124 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet

PSoC 4 Serial Communication Block (SCB)
tDSI_MASTER is the setup time of MISO signal to be sampled correctly by the master (the
MISO must be valid before SCLK clock capturing edge). This parameter commonly listed
in the master device datasheet.
When tROUND_TRIP_DELAY was calculated, the maximum communication data rate between master
and slave can be defined as following:
fSCLK (max) = 1 / (2* tROUND_TRIP_DELAY)
The assumption is made that master samples the MISO signal a half SCLK period after the
driving edge.
When master is capable of sampling the MISO signal a full of SCLK period after the driving edge
(late MISO sampling) the communication data rate is doubled and calculated as following:
fSCLK (max) = 1 / tROUND_TRIP_DELAY
Refer to the section MISO late sampling for more information about MISO sampling by the
master device.
As an example the fSCLK (max) is calculated for SCB SPI Master and Slave implemented on
PSoC 4100/PSoC 4200 devices. The design clock settings are following: IMO = HFCLK =
SYSCLK = 48 MHz. The clock source frequency connected to the SCB SPI Slave and Master
components is equal to 48MHz as well.
tDSO_SLAVE = TDSO = 42 + 3*tSCB = 42 + 3 * (1 / 48 MHz) = 105 ns
tDSI_MASTER = TDSI = 20 ns (Full clock, late MISO Sampling used)
For simplicity of the calculations assume that tSCLK_PD_PCB = 0 ns and tMISO_PD_PCB = 0 ns.
tROUND_TRIP_DELAY = tSCLK_PD_PCB + tDSO_SLAVE + tMISO_PD_PCB + tDSI_MASTER = 0 + 105 + 20 + 0 =
125 ns
fSCLK (max) = 1 / tROUND_TRIP_DELAY = 1 / 125 ns = 8 MHz
The SPI master is capable to generate maximum FSPI = 8 MHz and accordingly to calculation
above the MISO line will be sampled properly for this data rate.
For real applications the PCB delays would need to be added, and tDSO_SLAVE and tDSI_MASTER
adjusted to match the real master or slave device.
DMA Support
DMA is only available in PSoC 4100M/PSoC 4200M devices.
The SPI mode provides interface to DMA controller. The signals for transmit and receive
direction can be used to trigger a DMA transfer. To enable this signal, the “RX output” or “TX
output” option must be enabled on the component Advanced parameter tab. The RX and TX
trigger output signals are hard-wired to the DMA controller; their connection to another source
will result in a build error. These signals are level sensitive and require the RX or TX FIFO level
to be set. The signal behavior for the triggers is as follows:
Document Number: 001-96075 Rev. *A
Page 125 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)

RX trigger output – the signal remains active until the number of data elements in the RX
FIFO is greater than the value of RX FIFO level.

TX trigger output – the signal remains active until the number of data elements in the TX
FIFO is less than the value of TX FIFO level.
The following table specifies what DMA component configuration should be used when it is
connected to the SCB (SPI mode) component.
DMA Source / Destination
name
SCB_RX_FIFO_RD_PTR
Direction
Source
Source /
Destination transfer
width
Word /
DMA
request
signal
Destination
Data bits /
Byte or Halfword
Description
rx_tr_out
Level
sensitive
Receive FIFO
tx_tr_out
Level
sensitive
Transmit FIFO
Byte or Halfword
SCB_TX_FIFO_WR_PTR
DMA
trigger type
Note If the number of data bits selected is less or equal to 8 bits the transfer data element width
is byte, if the number of data bits is between 9 and 16 bits the width is halfword.
Note The SCB (SPI mode) clears request signal within 4 SYSCLK cycles therefore level
sensitive configuration of DMA has to be “wait 4 SYSCLK”.
Page 126 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
UART
The UART provides asynchronous communications commonly referred to as RS-232. Three
different UART-like serial interface protocols are supported:

UART – this is the standard UART.
□
UART Hardware flow control

SmartCard – similar to UART, but with the possibility to send a negative
acknowledgement.

IrDA – modification to the modulation scheme used for infrared communication.
Input/Output Connections
This section describes the various input and output connections for the SCB component. An
asterisk (*) in the list of terminals indicates that the terminals may be hidden on the symbol under
the conditions listed in the description of that terminals.
clock – Input*
Clock that operates this block. The presence of this terminal varies depending on the Clock
from terminal parameter.
interrupt – Output*
This signal can only be connected to an interrupt component or left unconnected. The presence
of this terminal varies depending on the Interrupt parameter.
rx_tr_out – Output*
This signal can only be connected to a DMA channel component. This signal is used to trigger a
DMA transaction. The output of this terminal is controlled by the RX FIFO level. The presence of
this terminal varies depending RX Output parameter.
Document Number: 001-96075 Rev. *A
Page 127 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
tx_tr_out – Output*
This signal can only be connected to a DMA channel component. This signal is used to trigger a
DMA transaction. The output of this terminal is controlled by the TX FIFO level.. The presence of
this terminal varies depending TX Output parameter.
The interface-specific pins are buried inside component because these pins use dedicated
connections and are not routable as general purpose signals. See the I/O System section in the
device Technical Reference Manual (TRM) for more information.
Note The input buffer of buried output pins is disabled so as not to cause current linkage in low
power mode. Reading the status of these pins always returns zero. To get the current status, the
input buffer must be enabled before a status read.
Basic UART Parameters
The UART Basic tab contains the following parameters:
Page 128 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Mode
This option determines the operating mode of the UART: Standard, SmartCard or IrDA. The
default mode is Standard.
Direction
This parameter defines the functional components you want to include in the UART. This can be
setup to be a bidirectional TX + RX (default), Receiver (RX only) or Transmitter (TX only).
Baud rate
This parameter defines the baud-rate configuration of the hardware for baud rate generation up
to 921600. The actual baud rate may differ based on available clock frequency and component
settings. This parameter has no effect if the Clock from terminal parameter is enabled. The
default is 115200.
Note The integer clock divider is used to provide the desired internal clock frequency to obtain
the specified baud rate (Clock from terminal option is disabled). To use a different clock source
configuration (for example: fractional clock divider), the clock must be provided externally to the
component by enabling the Clock from terminal option.
Actual baud rate
The actual data rate displays the data rate at which the component will operate with current
settings. The factors that affect the actual data rate calculation are: the accuracy of the
component clock (internal or external) and oversampling factor. When a change is made to any
of the component parameters that affect actual data rate, it becomes unknown. To calculate the
new actual data rate press the Apply button
Data bits
This parameter defines the number of data bits transmitted between start and stop of a single
UART transaction. Options are 5, 6, 7, 8 (default), or 9.

Eight data bits is the default configuration, sending a byte per transfer.
The 9-bit mode does not transmit 9 data bits; the ninth bit takes the place of the parity bit
as an indicator of address or data.
Parity
This parameter defines the functionality of the parity bit location in the transfer. This can be set to
None (default), Odd or Even.
Document Number: 001-96075 Rev. *A
Page 129 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
Stop bits
This parameter defines the number of stop bits implemented in the transmitter. This parameter
can be set to 1 (default), 1.5 or 2 data bits.
Oversampling
This parameter defines the oversampling factor of the UART interface; the number of the
component clocks within one UART bit time. Oversampling factor is used to calculate the internal
component clock frequency required to achieve this amount of oversampling for the selected
Data rate. An oversampling factor between 8 and 16 is the range of valid values. The default is
12.
For IrDA mode the oversampling values are predefined and Median filter is always enabled.
Clock from terminal
This parameter allows choosing between an internally configured clock (by the component) or an
externally configured clock (by the user) for component operation. Refer to the Oversampling
section to understand relationship between component clock frequency and the component
parameters.
When this option is enabled the component does not control the data rate, but displays the
actual data rate based on the user-connected clock source frequency and the component
oversampling factor. When this option is not enabled the clock configuration is provided by the
component. The clock source frequency is calculated or selected by the component based on
the Data rate parameter and Oversampling factor.
Note PSoC Creator is responsible for providing requested clock frequency (internal or external
clock) based on current design clock configuration. When the requested clock frequency with
requested tolerance cannot be created, a warning about the clock accuracy range is generated
while building the project. This warning contains the actual clock frequency value created by
PSoC Creator. To remove this warning you must either change the system clock, component
settings or external clock to fit the clocking system requirements.
Median filter
This parameter applies 3 taps digital median filter on input path of RX line. This filter reduces the
susceptibility to errors. The default value is a Disabled.
Retry on NACK
This option is applicable only for SmartCard mode. It enables retry on NACK feature. The Data
frame is retransmitted when a negative acknowledgement is received.
Inverting RX
This option is applicable only for IrDA mode. It enables the inversion of the incoming RX line
signal.
Page 130 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Enable wakeup from Deep Sleep Mode
Use this option to enable the component to wake the system from Deep Sleep on the start bit. It
is applicable for Standard mode when RX Direction is enabled.
Refer to the Low power modes section under UART chapter in this document and Power
Management APIs section of the System Reference Guide for more information.
Low power receiving
This option is applicable only when RX Direction is enabled. It enables IrDA low power receiver
mode.
Advanced UART Parameters
The UART Advanced tab contains the following parameters:
Document Number: 001-96075 Rev. *A
Page 131 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
RX buffer size
The RX buffer size parameter defines the size (in bytes/words) of memory allocated for a
receive data buffer. The RX buffer size minimum value is equal to the RX FIFO depth. The RX
FIFO is implemented in hardware. Values greater than the RX FIFO depth up to (232 – 2) imply
usage of the RX FIFO, a circular software buffer controlled by the supplied APIs, and internal
ISR. The software buffer size is limited only by the available memory. The interrupt mode is
automatically set to internal and the RX FIFO not empty interrupt source is reserved if a software
buffer is used.

For 4100/PSoC 4200 devices, the RX and TX FIFO depth is equal to 8 bytes/words.
For PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M devices, the RX and TX
FIFO depth is equal to 8 bytes/words or 16 bytes; refer to Byte mode for more
information.
TX buffer size
The TX buffer size parameter defines the size (in bytes/words) of memory allocated for a
transmit data buffer. The TX buffer size minimum value is equal to the TX FIFO depth. The TX
FIFO is implemented in hardware. Values greater than the TX FIFO depth up to (232 – 1) imply
usage of the TX FIFO, a circular software buffer controlled by the supplied APIs, and internal
ISR. The software buffer size is limited only by the available memory. The interrupt mode is
automatically set to the internal and the TX FIFO not full interrupt source is reserved if a software
buffer is used.

For 4100/PSoC 4200 devices, the RX and TX FIFO depth is equal to 8 bytes/words.
For PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M devices, the RX and TX
FIFO depth is equal to 8 bytes/words or 16 bytes; refer to Byte mode for more
information.
Byte mode
This option is only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M
devices. It allows doubling the TX and RX FIFO depth from 8 to 16 bytes. This implies that the
number of data bits must be less than or equal to 8 bits. Increasing the FIFO depth improves
performance of UART operation as more bytes can be transmitted or received without software
interaction.
Interrupt
This option determines what interrupt modes are supported None, Internal or External.

None – This option removes the internal interrupt component.
Internal – This option leaves the interrupt component inside the SCB component. The
predefined internal interrupt handler is hooked up to the interrupt. The Interrupt sources
Page 132 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
option sets one or more interrupt sources, which trigger the interrupt. To add your own
code to the interrupt service routine you need to register a function using the
SCB_SetCustomInterruptHandler() function.

External – This option removes the internal interrupt and provides an output terminal.
Only an interrupt component can be connected to the terminal if an interrupt handler is
desired. The Interrupt sources option sets one or more interrupt sources, which trigger
the interrupt output.
Note For buffer sizes greater than the hardware FIFO depth, the component automatically
enables the internal interrupt sources required for proper internal software buffer operations. In
addition, the global interrupt enable must be explicitly enabled for proper buffer handling.
DMA
DMA is only available in PSoC 4100M/PSoC 4200M devices. The provided options determine if
DMA output trigger terminals are available on the component symbol.
RX Output
This option determines if the rx_tr_out terminal is available on the component symbol. This
signal can only be connected to a DMA channel trigger input. The output of this terminal is
controlled by the RX FIFO level. This option is active only when RX buffer size equal to FIFO
depth.
TX Output
This option determines if the tx_tr_out terminal is available on the component symbol. This signal
can only be connected to a DMA channel trigger input. The output of this terminal is controlled by
the TX FIFO level. This option is active only when TX buffer size equal to FIFO depth.
Interrupt sources
The interrupt sources are either level or pulse. Level interrupt sources in the following list are
indicated with an asterisk (*). Refer to sections TX FIFO interrupt sources and RX FIFO interrupt
sources for more information about level interrupt sources operation. The UART supports
interrupts on the following events:

UART done – UART transmitter done event: all data elements from the TX FIFO are sent.
This interrupt source triggers later than TX FIFO empty by time it takes to transmit a
single data element. The TX FIFO empty triggers when the last data element from the TX
FIFO goes to the shifter register. However UART done triggers after this data element has
been transmitted.

TX FIFO not full * – TX FIFO is not full. At least one data element can be written into the
TX FIFO.

TX FIFO empty * – TX FIFO is empty.
Document Number: 001-96075 Rev. *A
Page 133 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet

TX FIFO overflow – Firmware attempts to write to a full TX FIFO.

TX NACK – UART transmitter received a negative acknowledgement in SmartCard mode.

RX FIFO not empty * – RX FIFO is not empty. At least one data element is available in
the RX FIFO to be read.

RX FIFO full * – RX FIFO is full.
TX FIFO underflow – Hardware attempts to read from an empty TX FIFO.
TX lost arbitration – UART lost arbitration: the value driven on the TX line is not the
same as the value observed on the RX line. This condition event is useful when
transmitter and receiver share a TX/RX line. This is the case in SmartCard mode.
TX FIFO level * – An interrupt request is generated whenever the number of data
elements in the TX FIFO is less than the value of TX FIFO level.
RX FIFO overflow – Hardware attempts to write to a full RX FIFO.
RX FIFO underflow – Firmware attempts to read from an empty RX FIFO.
RX frame error – Frame error in received data frame. This can be either a start or stop
bit(s) error:
□
Start bit error – after the detection of the beginning of a start bit period (RX line
changes from '1' to '0'), the middle of the start bit period is sampled erroneously
(RX line is '1').
Note A start bit error is detected BEFORE a data frame is received.
□
Stop bit error: the RX line is sampled as '0', but a '1' was expected.
Note A stop bit error may result in failure to receive successive data frame(s). A
stop bit error is detected AFTER a data frame is received.
Note For stop bit duration equal to 1bit, the frame error is not tracked.

RX parity error – Parity error in received data frame.
RX FIFO level * – An interrupt request is generated whenever the number of data
elements in the RX FIFO is greater than the value of RX FIFO level.
Notes
When RX buffer size is greater than the RX FIFO depth, the RX FIFO not empty interrupt
source is reserved by the component and used for the internal interrupt.
When TX buffer size is greater than the TX FIFO depth, the TX FIFO not full interrupt source is
reserved by the component and used for the internal interrupt.
Page 134 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
FIFO level
The RX and TX FIFO level settings control behavior of the appropriate level interrupt sources as
well as RX and TX DMA triggers outputs.
RX FIFO
The interrupt or DMA trigger output signal remains active until the number of data elements in
the RX FIFO is greater than the value of RX FIFO level.
TX FIFO
The interrupt or DMA trigger output signal remains active until the number of data elements in
the TX FIFO is less than the value of TX FIFO level.
Multiprocessor mode
This parameter enables the multiprocessor mode where the 9th bit (in the place of the parity bit)
indicates an address. The default value is a Disabled. The number of Data bits must be set to 9
bits to get possibility to enable this option.
Address (hex)
Slave device address. Used to match when multiprocessor mode is enabled. The default value is
0x02.
Mask (hex)
Slave device address mask. These bits are used when matching to the slave address. The
default value is 0xFF.

Bit value 0 – excludes bit from address comparison.
Bit value 1 – the bit needs to match with the corresponding bit of the address.
Accept matching address in RX FIFO
This parameter determines whether to accept a matched address in the RX FIFO.
Note Non-matching addresses are never put in the RX FIFO.
RX FIFO drop
Provides hardware data drop options for RX FIFO.

On parity error – Defines behavior when a parity check fails. When parity check is
passed, received data is sent to the RX FIFO. Otherwise, received data is dropped and
lost. Only applicable in Standard and SmartCard modes.
Document Number: 001-96075 Rev. *A
Page 135 of 198
PSoC 4 Serial Communication Block (SCB)

PSoC® Creator™ Component Datasheet
On frame error – Defines behavior when a frame error is detected. When no frame error
is captured, received data is sent to the RX FIFO. Otherwise, received data is dropped
and lost.
RTS
This parameter is only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/
PSoC 4200M devices. It enables the Ready to Send (RTS) output signal. The RTS signal is the
part of flow control functionality used by the receiver. As long as the receiver is ready to accept
more data it will keep the RTS signal active. The RTS FIFO level parameter determines if RTS
remains active. The default value is a Disabled.
RTS Polarity
This parameter defines active polarity of the RTS output signal as Active Low (default) or Active
High.
RTS FIFO level
This parameter is only available for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/
PSoC 4200M devices. It determines whether the RTS signal remains active. While the RX FIFO
has fewer entries than the RTS FIFO level, the RTS signal remains active; otherwise, the RTS
signal becomes inactive. The RTS remains inactive unit data from RX FIFO will be read to match
RTS FIFO level. The default value is 4.
CTS
This parameter is only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/
PSoC 4200M devices. It enables the Clear to Send (CTS) input signal to be routed-out to the pin.
The CTS signal is the part of flow control functionality utilized by the transmitter. The transmitter
checks whether CTS signal is active before sending data from the TX FIFO. The transmission of
data is suspended if CTS signal is inactive and will be resumed when CTS signal becomes
active again. The default value is a Disabled.
CTS Polarity
This parameter defines active polarity of CTS input signal as Active Low (default) or Active High.
UART APIs
APIs allow you to configure the component using software. The following table lists and
describes the interface to each function. The subsequent sections discusses each function in
more detail.
By default, PSoC Creator assigns the instance name “SCB_1” to the first instance of a
component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
Page 136 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
name, variable, and constant symbol. For readability, the instance name used in the following
table is “SCB”.
Function
Description
SCB_Start()
Starts the SCB.
SCB_Init()
Initialize the SCB component according to defined parameters in the
customizer.
SCB_Enable()
Enables SCB component operation.
SCB_Stop()
Disable the SCB component.
SCB_Sleep()
Prepares component to enter Deep Sleep.
SCB_Wakeup()
Prepares component for Active mode operation after Deep Sleep.
SCB_UartInit()
Configures the SCB for UART operation. Only used when using the SCB in
unconfigured mode.
SCB_UartPutChar()
Places a byte of data in the transmit buffer to be sent at the next available bus
time.
SCB_UartPutString()
Places a NULL terminated string in the transmit buffer to be sent at the next
available bus time.
SCB_UartPutCRLF()
Places byte of data followed by a carriage return (0x0D) and line feed (0x0A)
to the transmit buffer
SCB_UartGetChar()
Retrieves next data element from receive buffer.
SCB_UartGetByte()
Retrieves next data element from the receive buffer.
SCB_UartSetRxAddress()
Sets the hardware detectable receiver address for the UART in Multiprocessor
mode.
SCB_UartSetRxAddressMask()
Sets the hardware address mask for the UART in Multiprocessor mode.
SCB_UartSetRtsPolarity()
Sets active polarity of RTS input signal.
SCB_UartSetRtsFifoLevel()
Sets level in the RX FIFO to activate RTS signal.
SCB_UartEnableCts()
Enables usage of CTS input signal by the UART transmitter.
SCB_UartDisableCts()
Disables usage of CTS input signal by the UART transmitter
SCB_UartSetCtsPolarity()
Sets active polarity of CTS input signal.
SCB_SpiUartWriteTxData()
Places a data entry into the transmit buffer to be sent at the next available bus
time.
SCB_SpiUartPutArray()
Places an array of data into the transmit buffer to be sent.
SCB_SpiUartGetTxBufferSize()
Returns the number of elements currently in the transmit buffer.
SCB_SpiUartClearTxBuffer()
Clears the transmit buffer and TX FIFO.
SCB_SpiUartReadRxData()
Retrieves the next data element from the receive buffer.
SCB_SpiUartGetRxBufferSize()
Returns the number of received data elements in the receive buffer.
Document Number: 001-96075 Rev. *A
Page 137 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Function
Description
SCB_SpiUartClearRxBuffer()
Clears the receive buffer and RX FIFO.
void SCB_Start(void)
Description:
Invokes SCB_Init() and SCB_Enable(). After this function call the component is enabled
and ready for operation. This is the preferred method to begin component operation.
When configuration is set to “Unconfigured SCB”, the component must first be initialized
to operate in one of the following configurations: I2C, SPI, UART or EZ I2C. Otherwise
this function does not enable component.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_Init(void)
Description:
Initializes the SCB component to operate in one of the selected configurations: I2C, SPI,
UART or EZ I2C.
When configuration is set to “Unconfigured SCB”, this function does not do any
initialization. Use mode-specific initialization functions instead: SCB_I2CInit,
SCB_SpiInit, SCB_UartInit or SCB_EzI2CInit.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_Enable(void)
Description:
Enables SCB component operation: activates the hardware and internal interrupt.
For I2C and EZ I2C modes the interrupt is internal and mandatory for operation. For SPI
and UART modes the interrupt can be configured as none, internal or external. The
SCB configuration should be not changed when the component is enabled. Any
configuration changes should be made after disabling the component.
When configuration is set to “Unconfigured SCB”, the component must first be initialized
to operate in one of the following configurations: I2C, SPI, UART or EZ I2C using the
mode-specific functions: SCB_I2CInit, SCB_SpiInit, SCB_UartInit or SCB_EzI2CInit.
Otherwise this function does not enable component.
Parameters:
None
Return Value:
None
Side Effects:
None
Page 138 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_Stop(void)
Description:
Disables the SCB component: disable the hardware and internal interrupt. It also
disables all TX interrupt sources so as not to cause an unexpected interrupt trigger
because after the component is enabled, the TX FIFO is empty.
Refer to the function SCB_Enable() for the interrupt configuration details.
This function disables the SCB component without checking to see if communication is
in progress. Before calling this function it may be necessary to check the status of
communication to make sure communication is complete. If this is not done then
communication could be stopped mid byte and corrupted data could result.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_Sleep(void)
Description:
Prepares component to enter Deep Sleep.
The “Enable wakeup from Deep Sleep Mode” selection has an influence on this function
implementation:
 Checked: configures the component to be wakeup source from Deep Sleep.
 Unchecked: stores the current component state (enabled or disabled) and disables
the component. See SCB_Stop() function for details about component disabling.
Call the SCB_Sleep() function before calling the CyPmSysDeepSleep() function.
Refer to the PSoC Creator System Reference Guide for more information about powermanagement functions.
This function should not be called before entering Sleep.
Parameters:
None
Return Value:
None
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 139 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
void SCB_Wakeup(void)
Description:
Prepares component for Active mode operation after Deep Sleep.
The “Enable wakeup from Deep Sleep Mode” selection has influence to on this function
implementation:
 Checked: restores the component Active mode configuration.
 Unchecked: enables the component if it was enabled before enter Deep Sleep.
This function should not be called after exiting Sleep.
Parameters:
None
Return Value:
None
Side Effects:
Calling the SCB_Wakeup() function without first calling the SCB_Sleep() function may
produce unexpected behavior.
Page 140 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_UartInit(SCB_UART_INIT_STRUCT *config)
Description:
Configures the SCB for UART operation.
This function is intended specifically to be used when the SCB configuration is set to
“Unconfigured SCB” in the customizer. After initializing the SCB in UART mode, the
component can be enabled using the SCB_Start() or SCB_Enable() function.
This function uses a pointer to a structure that provides the configuration settings. This
structure contains the same information that would otherwise be provided by the
customizer settings.
Parameters:
config: pointer to a structure that contains the following ordered list of fields. These
fields match the selections available in the customizer. Refer to the customizer for
further description of the settings.
Field
uint32 mode
Description
Mode of operation for the UART. The following defines are available
choices:
SCB_UART_MODE_STD
SCB_UART_MODE_SMARTCARD
SCB_UART_MODE_IRDA
uint32 direction
Direction of operation for the UART. The following defines are
available choices:
SCB_UART_TX_RX
SCB_UART_RX
SCB_UART_TX
uint32 dataBits
Number of data bits
uint32 parity
Determines the parity. The following defines are available choices:
SCB_UART_PARITY_EVEN
SCB_UART_PARITY_ODD
SCB_UART_PARITY_NONE
uint32 stopBits
Determines the number of stop bits. The following defines are
available choices:
SCB_UART_STOP_BITS_1
SCB_UART_STOP_BITS_1_5
SCB_UART_STOP_BITS_2
uint32 oversample
Oversampling factor for the UART.
Note The oversampling factor values are changed when
enableIrdaLowPower is enabled:
SCB_UART_IRDA_LP_OVS16
SCB_UART_IRDA_LP_OVS32
SCB_UART_IRDA_LP_OVS48
SCB_UART_IRDA_LP_OVS96
SCB_UART_IRDA_LP_OVS192
SCB_UART_IRDA_LP_OVS768
SCB_UART_IRDA_LP_OVS1536
uint32 enableIrdaLowPower
IrDA low power RX mode is enabled.
0 – disable
1 – enable
The TX functionality does not work when enabled.
Document Number: 001-96075 Rev. *A
Page 141 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 enableMedianFilter
0 – disable
1 – enable
uint32 enableRetryNack
0 – disable
1 – enable
Ignored for modes other than SmartCard.
uint32 enableInvertedRx
0 – disable
1 – enable
Ignored for modes other than IrDA.
uint32 dropOnParityErr
Drop data from RX FIFO if parity error is detected.
0 – disable
1 – enable
uint32 dropOnFrameErr
Drop data from RX FIFO if a frame error is detected.
0 – disable
1 – enable
uint32 enableWake
0 – disable
1 – enable
Ignored for modes other than standard UART. The RX functionality
has to be enabled.
uint32 rxBufferSize
Size of the RX buffer in words:
 The value equal to the RX FIFO depth implies the usage of
buffering in hardware.
 A value greater than the RX FIFO depth results in a software
buffer.
The SCB_INTR _RX_NOT_EMPTY interrupt has to be enabled to
transfer data into the software buffer.
For PSoC 4100/PSoC 4200 devices, the RX FIFO and TX FIFO depth
is equal to 8 bytes/words.
For PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M
devices, the RX FIFO and TX FIFO depth is equal to 8 bytes/words or
16 bytes (Byte mode is enabled).
uint8* rxBuffer
Buffer space provided for a RX software buffer:
 A NULL pointer must be provided to use hardware buffering.
 A pointer to an allocated buffer must be provided to use software
buffering. The buffer size must equal (rxBufferSize + 1) in bytes if
dataBits is less or equal to 8, otherwise (2 * (rxBufferSize + 1)) in
bytes.
The software RX buffer always keeps one element empty. For correct
operation allocated RX buffer has to be one element greater than
maximum packet size expected to be received.
uint32 txBufferSize
Size of the TX buffer in words:
 The value equal to the RX FIFO depth implies the usage of
buffering in hardware.
 A value greater than the RX FIFO depth results in a software
buffer.
For 4100/PSoC 4200 devices, the RX and TX FIFO depth is equal to 8
bytes/words. For PSoC 4100 BLE/PSoC 4200 BLE/PSoC
4100M/PSoC 4200M devices, the RX and TX FIFO depth is equal to 8
bytes/words or 16 bytes (Byte mode is enabled).
Page 142 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
uint8* txBuffer
PSoC 4 Serial Communication Block (SCB)
Buffer space provided for a TX software buffer:
 A NULL pointer must be provided to use hardware buffering.
 A pointer to an allocated buffer must be provided to use software
buffering. The buffer size must equal txBufferSize if dataBits is less
or equal to 8, otherwise (2* rxBufferSize).
uint32 enableMultiproc
Enables multiprocessor mode.
0 – disable
1 – enable
uint32 multiprocAcceptAddr
Enables matched address to be accepted.
0 – disable
1 – enable
uint32 multiprocAddr
8 bit address to match in Multiprocessor mode. Ignored for other
modes.
uint32 multiprocAddrMask
8 bit mask of address bits that are compared for a Multiprocessor
address match. Ignored for other modes.
uint32 enableInterrupt
0 – disable
1 – enable
The interrupt has to be enabled if software buffer will be used.
uint32 rxInterruptMask
Mask of interrupt sources to enable in the RX direction. This mask is
written regardless of the setting of the enableInterrupt field. Multiple
sources are enabled by providing a value that is the OR of all of the
following sources to enable:
SCB_INTR_RX_FIFO_LEVEL
SCB_INTR_RX_NOT_EMPTY
SCB_INTR_RX_FULL
SCB_INTR_RX_OVERFLOW
SCB_INTR_RX_UNDERFLOW
SCB_INTR_RX_FRAME_ERROR
SCB_INTR_RX_PARITY_ERROR
uint32 rxTriggerLevel
FIFO level for an RX FIFO level interrupt. This value is written
regardless of whether the RX FIFO level interrupt source is enabled.
uint32 txInterruptMask
Mask of interrupt sources to enable in the TX direction. This mask is
written regardless of the setting of the enableInterrupt field. Multiple
sources are enabled by providing a value that is the OR of all of the
following sources to enable:
SCB_INTR_TX_FIFO_LEVEL
SCB_INTR_TX_NOT_FULL
SCB_INTR_TX_EMPTY
SCB_INTR_TX_OVERFLOW
SCB_INTR_TX_UNDERFLOW
SCB_INTR_TX_UART_DONE
SCB_INTR_TX_UART_NACK
SCB_INTR_TX_UART_ARB_LOST
uint32 txTriggerLevel
Document Number: 001-96075 Rev. *A
FIFO level for a TX FIFO level interrupt. This value is written
regardless of whether the TX FIFO level interrupt source is enabled.
Page 143 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint8 enableByteMode
Ignored for devices other than PSoC 4100 BLE/PSoC 4200
BLE/PSoC 4100M/PSoC 4200M.
0 – disable
1 – enable
When enabled the TX and RX FIFO depth is 16 bytes. This implies
that number of Data bits must be less than or equal to 8.
uint8 enableCts
Ignored for all devices other than PSoC 4100 BLE/PSoC 4200
BLE/PSoC 4100M/PSoC 4200M. Enables usage of CTS input signal
by the UART transmitter.
0 – disable
1 – enable
uint8 ctsPolarity
Ignored for all devices other than PSoC 4100 BLE/PSoC 4200
BLE/PSoC 4100M/PSoC 4200M. Sets active polarity of CTS input
signal.
SCB_UART_CTS_ACTIVE_LOW
SCB_UART_CTS_ACTIVE_HIGH
uint8 rtsRxFifoLevel
Ignored for all devices other than PSoC 4100 BLE/PSoC 4200
BLE/PSoC 4100M/PSoC 4200M. RX FIFO level for RTS signal
activation. While the RX FIFO has fewer entries than the RTS FIFO
level value the RTS signal remains active, otherwise the RTS signal
becomes inactive. By setting this field to 0, RTS signal activation is
disabled.
uint8 rtsPolarity
Ignored for all devices other than PSoC 4100 BLE/PSoC 4200
BLE/PSoC 4100M/PSoC 4200M. Sets active polarity of RTS output
signal.
SCB_UART_RTS_ ACTIVE_LOW
SCB_UART_RTS_ACTIVE_HIGH
Return Value:
None
Side Effects:
None
void SCB_UartPutChar(uint32 txDataByte)
Description:
Places a byte of data in the transmit buffer to be sent at the next available bus time.
This function is blocking and waits until there is a space available to put requested data
in the transmit buffer.
For UART Multi Processor mode this function can send 9-bits data as well. Use
SCB_UART_MP_MARK to add a mark to create an address byte.
Note This function is implemented as macro which calls SCB_SpiUartWriteTxData().
Parameters:
uint32 txDataByte: the data to be transmitted.
Return Value:
None
Side Effects:
None
Page 144 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_UartPutString(const char8 string[])
Description:
Places a NULL terminated string in the transmit buffer to be sent at the next available
bus time.
This function is blocking and waits until there is a space available to put requested data
in transmit buffer.
Parameters:
const char8 string[]: pointer to the null terminated string array to be placed in the
transmit buffer.
Return Value:
None
Side Effects:
None
void SCB_UartPutCRLF(uint32 txDataByte)
Description:
Places byte of data followed by a carriage return (0x0D) and line feed (0x0A) in the
transmit buffer
This function is blocking and waits until there is a space available to put all requested
data in transmit buffer.
Parameters:
uint32 txDataByte : the data to be transmitted
Return Value:
None
Side Effects:
None
uint32 SCB_UartGetChar(void)
Description:
Retrieves next data element from receive buffer. This function is designed for ASCII
characters and returns a char where 1 to 255 are valid characters and 0 indicates an
error occurred or no data is present.
RX software buffer is disabled: Returns data element retrieved from RX FIFO.
RX software buffer is enabled: Returns data element from the software receive buffer.
Parameters:
None
Return Value:
uint32: Next data element from the receive buffer. ASCII character values from 1 to 255
are valid. A returned zero signifies an error condition or no data available.
Side Effects:
The errors bits may not correspond with reading characters due to RX FIFO and
software buffer usage.
RX software buffer is enabled: The internal software buffer overflow is not treated as an
error condition. Check SCB_rxBufferOverflow to capture that error condition.
Document Number: 001-96075 Rev. *A
Page 145 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_UartGetByte(void)
Description:
Retrieves next data element from the receive buffer, returns received byte and error
condition.
RX software buffer disabled: Returns data element retrieved from RX FIFO. Undefined
data will be returned if the RX FIFO is empty
RX software buffer enabled: Returns data element from the software receive buffer
Parameters:
None
Return Value:
uint32: Bits 7-0 contain the next data element from the receive buffer and other bits
contain the error condition. The error condition constants are provided below:
RX error conditions
Side Effects:
Description
SCB_UART_RX_OVERFLOW
Attempt to write to a full receiver FIFO.
SCB_UART_RX_UNDERFLOW
Attempt to read from an empty receiver FIFO.
SCB_UART_RX_FRAME_ERROR
UART framing error detected.
SCB_UART_RX_PARITY_ERROR
UART parity error detected.
The errors bits may not correspond with reading characters due to RX FIFO and
software buffer usage.
RX software buffer is disabled: Internal software buffer overflow is not returned as
status by this function. Check SCB_rxBufferOverflow to capture that error condition.
void SCB_UartSetRxAddress(uint32 address)
Description:
Sets the hardware detectable receiver address for the UART in Multiprocessor mode.
Parameters:
uint32 address: Address for hardware address detection.
Return Value:
None
Side Effects:
None
void SCB_UartSetRxAddressMask(uint32 addressMask)
Description:
Sets the hardware address mask for the UART in Multiprocessor mode.
Parameters:
uint32 addressMask: Address mask.
Bit value 0 – excludes bit from address comparison.
Bit value 1 – the bit needs to match with the corresponding bit of the address.
Return Value:
None
Side Effects:
None
Page 146 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_UartSetRtsPolarity(uint32 polarity)
Description:
Sets active polarity of RTS input signal.
Only available for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M
devices.
Parameters:
uint32 polarity: Active polarity of RTS input signal.
Active RTS polarity constants
Description
SCB_UART_RTS_ACTIVE_LOW
RTS signal is active low
SCB_UART_RTS_ACTIVE_HIGH
RTS signal is active high
Return Value:
None
Side Effects:
None
void SCB_UartSetRtsFifoLevel (uint32 level)
Description:
Sets level in the RX FIFO for RTS signal activation. While the RX FIFO has fewer
entries than the RTS FIFO level the RTS signal remains active, otherwise the RTS
signal becomes inactive.
Only available for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M
devices.
Parameters:
uint32 level: Level in the RX FIFO for RTS signal activation.
The range of valid level values is between 0 and RX FIFO depth - 1. Setting level value
to 0 disables RTS signal activation.
Return Value:
None
Side Effects:
None
void SCB_UartEnableCts(void)
Description:
Enables usage of CTS input signal by the UART transmitter.
Only available for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M
devices.
Parameters:
None
Return Value:
None
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 147 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_UartDisableCts(void)
Description:
Disables usage of CTS input signal by the UART transmitter.
Only available for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M
devices.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_UartSetCtsPolarity(uint32 polarity)
Description:
Sets active polarity of CTS input signal.
Only available for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M
devices.
Parameters:
uint32 polarity: Active polarity of CTS input signal.
Active CTS polarity constants
SCB_UART_CTS_ACTIVE_LOW
Description
CTS signal is active low
SCB_UART_CTS_ACTIVE_HIGH CTS signal is active high.
Return Value:
None
Side Effects:
None
void SCB_SpiUartWriteTxData(uint32 txData)
Description:
Places a data entry into the transmit buffer to be sent at the next available bus time.
The data transmit direction is LSB.
This function is blocking and waits until there is space available to put the requested
data in the transmit buffer.
For UART Multi Processor mode this function can send 9-bits data. Use
SCB_UART_MP_MARK to add a mark to create an address byte.
Parameters:
uint32 txData: the data to be transmitted.
The amount of data bits to be transmitted depends on Data bits selection (the data bit
counting starts from LSB of txDataByte).
Return Value:
None
Side Effects:
None
Page 148 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_SpiUartPutArray(const uint16/uint8 wrBuf[], uint32 count)
Description:
Places an array of data into the transmit buffer to be sent.
This function is blocking and waits until there is a space available to put all the
requested data in the transmit buffer.
The array size can be greater than transmit buffer size.
Parameters:
const uint16/uint8 wrBuf[]: pointer to an array with data to be placed in transmit buffer.
The amount of data bits to be transmitted as one array entry depends on Data bits
selection (the data bit counting starts from LSB for each array entry).
uint32 count: number of data elements to be placed in the transmit buffer.
Return Value:
None
Side Effects:
None
uint32 SCB_SpiUartGetTxBufferSize(void)
Description:
Returns the number of elements currently in the transmit buffer.
TX software buffer is disabled: Returns the number of used entries in TX FIFO.
TX software buffer is enabled: Returns the number of elements currently used in the
transmit buffer. This number does not include used entries in the TX FIFO; therefore,
the transmit buffer size is zero until the TX FIFO is not full.
Parameters:
None
Return Value:
uint32: Number of data elements ready to transmit.
Side Effects:
None
void SCB_SpiUartClearTxBuffer(void)
Description:
Clears the transmit buffer and TX FIFO.
Parameters:
None
Return Value:
None
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 149 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_SpiUartReadRxData(void)
Description:
Retrieves the next data element from the receive buffer.
RX software buffer is disabled: Returns data element retrieved from RX FIFO.
Undefined data will be returned if the RX FIFO is empty.
RX software buffer is enabled: Returns data element from the software receive buffer.
Zero value will be returned if receive software buffer is empty.
Parameters:
None
Return Value:
uint32: Next data element from the receive buffer.
The amount of data bits to be received depends on Data bits selection (the data bit
counting starts from LSB of return value).
Side Effects:
None
uint32 SCB_SpiUartGetRxBufferSize(void)
Description:
Returns the number of received data elements in the receive buffer.
RX software buffer is disabled: Returns the number of used entries in RX FIFO.
RX software buffer is enabled: Returns the number of elements that were placed in the
receive buffer. This does not include the hardware RX FIFO.
Parameters:
None
Return Value:
uint32: Number of received data elements
Side Effects:
None
void SCB_SpiUartClearRxBuffer(void)
Description:
Clears the receive buffer and RX FIFO.
Parameters:
None
Return Value:
None
Side Effects:
None
Global Variables
Knowledge of these variables is not required for normal operations.
Variable
SCB_initVar
Description
SCB_initVar indicates whether the SCB component has been initialized. The variable
is initialized to 0 and set to 1 the first time SCB_Start() is called. This allows the
component to restart without reinitialization after the first call to the SCB_Start()
routine.
If re-initialization of the component is required, then the SCB_Init() function can be
called before the SCB_Start() or SCB_Enable() function.
Page 150 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
Variable
SCB_rxBufferOverflow
PSoC 4 Serial Communication Block (SCB)
Description
SCB_rxBufferOverflow sets when internal software receive buffer overflow was
occurred.
Bootloader Support
The SCB component in UART mode can be used as a communication component for the
Bootloader. The following configuration should be used to support UART communication
protocol from an external system to the Bootloader:

Mode: Standard
Direction: TX+RX
Data bits: 8 bits
Baud rate: Must match Host (boot device)
Parity: Must match Host (boot device).
Stop Bits: Must match Host (boot device).
RX buffer size: Must match or be greater than the maximum size of the packet received
from Host. The recommended RX buffer size value to select for bootloading when using
the Bootloader Host Tool (shipped with PSoC Creator) is 64.
TX buffer size: Must match or be greater than the maximum size of the packet transmitted
to Host. The recommended TX buffer size to select for bootloading when using the
Bootloader Host Tool (shipped with PSoC Creator) is 64.
For more information about the Bootloader, refer to the Bootloader component datasheet.
The following API functions are provided for Bootloader use.
Function
Description
SCB_CyBtldrCommStart()
Starts the UART component and enables its interrupt.
SCB_CyBtldrCommStop()
Disables the UART component and its interrupt.
SCB_CyBtldrCommReset()
Resets UART receive and transmit buffers.
SCB_CyBtldrCommRead()
Allows the caller to read data from the bootloader host (the host writes the data).
SCB_CyBtldrCommWrite()
Allows the caller to write data to the bootloader host (the host reads the data).
Document Number: 001-96075 Rev. *A
Page 151 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
void SCB_CyBtldrCommStart(void)
Description:
Starts the UART component and enables its interrupt (if TX or RX buffer size is greater
than FIFO depth).
Every incoming UART transfer is treated as a command for the bootloader.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_CyBtldrCommStop(void)
Description:
Disables the UART component and its interrupt.
Parameters:
None
Return Value:
None
Side Effects:
None
void SCB_CyBtldrCommReset(void)
Description:
Resets UART receive and transmit buffers.
Parameters:
None
Return Value:
None
Side Effects:
None
cystatus SCB_CyBtldrCommRead(uint8 pData[], uint16 size, uint16 * count, uint8 timeOut)
Description:
Allows the caller to read data from the bootloader host (the host writes the data). The
function handles polling to allow a block of data to be completely received from the host
device.
Parameters:
uint8 pData[]: Pointer to the block of data to be read from bootloader host.
uint16 size: Number of bytes to be read from bootloader host.
uint16 *count: Pointer to variable to write the number of bytes actually read by
bootloader host.
uint8 timeOut: Number of units in 10 ms to wait before returning because of a timeout.
Return Value:
cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the
value that best describes the problem. For more information, refer to the “Return
Codes” section of the System Reference Guide.
Side Effects:
None
Page 152 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
cystatus SCB_CyBtldrCommWrite(const uint8 pData[], uint16 size, uint16 * count, uint8
timeOut)
Description:
Allows the caller to write data to the bootloader host (the host reads the data). The
function does not use timeout and returns after data has been copied into the transmit
buffer. The data transmission starts immediately after the first data element is written
into the buffer and lasts until all data elements from the buffer are sent.
Parameters:
const uint8 pData[]: Pointer to the block of data to send to the bootloader host.
uint16 size: Number of bytes to send to bootloader host.
uint16 *count: Pointer to variable to write the number of bytes actually written to
bootloader host.
uint8 timeOut: The timeout is not used by this function. The function returns as soon as
data is copied into the transmit buffer.
Return Value:
cystatus: Returns CYRET_SUCCESS if no problem was encountered or returns the
value that best describes the problem. For more information refer to the “Return Codes”
section of the System Reference Guide.
Side Effects:
None
SCB_CyBtldrCommRead details
The UART interface does not provide start and stop conditions to define the start and end of a
transfer like I2C. Therefore, the following approach is used to define when a command packet
from the host is received:
1) To determine when the start of a packet has occurred, the RX buffer is checked at a one
millisecond interval until the buffer size is non-zero or timeout is expired. As soon as at
least one data element has been received the communication component knows a packet
transfer has started and immediately begins looking for the end of the packet.
2) The transfer is completed if no new data elements are received within byte-to-byte
interval. This time interval is defined as the time consumed to transfer two data elements
with selected data rate. It is calculated by the component based on current data rate
selection. If needed, the byte-to-byte interval can be changed using global defines. Open
project Build Settings -> Compiler -> Command line and provide the global define of the
interval in microseconds. For example, to change interval to 40 microseconds:
-D DUT_UART_BYTE_TO_BYTE=40
Document Number: 001-96075 Rev. *A
Page 153 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
UART Functional Description
The Universal Asynchronous Receiver/Transmitter (UART) protocol is an asynchronous serial
interface. The UART transmit and receive interfaces consists of 2 signals:

TX – Transmitter
RX – Receiver
Figure 26. UART typical connection
UART1
RX
RX
TX
TX
UART2
Standard mode operation
Standard UART is defined with “peer to peer” topology.
A typical UART transfer consists of a “Start Bit” followed by multiple “Data Bits”, optionally
followed by a “Parity Bit” and finally completed by one or more “Stop Bits”. The “Start Bit” value is
always ‘0’, the “Data Bits” values are dependent on the data transferred, the “Parity Bit” value is
set to a value guaranteeing an even or odd parity over the “Data Bits” and the “Stop Bits” value is
‘1’. The “Parity Bit” is generated by the transmitter and can be used by the receiver to detect
single bit transmission errors. When not transmitting data, the TX line is ‘1’; i.e. the same value
as the “Stop Bits”.
The transition of a “Stop Bit” to a “Start Bit” is represented by a change from ‘1’ to ‘0’ on the TX
line. This transition can be used by the receiver to synchronize with the transmitter clock.
Synchronization at the start of each data transfer allows error-free transmission even in the
presence of frequency drift between transmitter and receiver clocks. The required clock accuracy
is dependent on the data transfer size.
The stop period or the amount of “Stop Bits” between successive data transfers is typically
agreed upon between transmitter and receiver, and is typically in the range of 1 to 3 bit transfer
periods.
Figure 27. UART Protocol
Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)
TX / RX
IDLE
START
Page 154 of 198
DATA
DATA
DATA
DATA
DATA
DATA
DATA
PAR
STOP
START
DATA
DATA
DATA
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Flow control
Flow control is a method used to provide reliable communication between the receiver and
transmitter without data loss. This method implies that a receiver tells a transmitter to stop
(suspend) or start (resume) transmitting. Hardware flow control is supported by the UART in
Standard mode by PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M devices. The
two extra lines for hardware flow control are needed in addition to data lines. They are called
RTS and CTS. These lines are cross-coupled between the two devices, so the RTS line on one
device is connected to the CTS line on the other device and vice versa. The Configure dialog
provides independent control of RTS and CTS signals.
Figure 28. UART hardware flow control typical connection
UART1
RX
RX
TX
TX
CTS
CTS
RTS
RTS
UART2
As long as the receiver is ready to accept more data it will keep the RTS signal active. The RTS
FIFO level parameter determines how the RTS remains active as follows: while the RX FIFO has
fewer entries than the RX FIFO level the RTS signal remains active, otherwise the RTS signal
becomes inactive. The RTS remains inactive unit data from RX FIFO is read to match RTS
activation condition.
Figure 29. UART RTS signal activation
Recevier
Recevier
Recevier
RX
RX FIFO
RX
Used
RX
RX FIFO
RX FIFO
Used
RTS Level
RTS Level
<
RTS Level
<
ACTIVE
Initial state: RTS is active
<
ACTIVE
RTS
Used
RTS
Data reception: RTS is active
INACTIVE
RTS
Data reception: RTS is inactive
The transmitter checks whether the CTS signal is active before sending data from the TX FIFO
on the bus. The transmission of data is suspended if the CTS signal is inactive and will be
resumed when CTS signal becomes active again.
Typically, the RTS and CTS signals are active low. However, there is a possibility to change the
active polarity of these signals.
Document Number: 001-96075 Rev. *A
Page 155 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Multiprocessor mode operation
This mode is defined with “single-master-multi-slave” topology. The multiprocessor mode is also
known as UART 9-bits protocol, while standard UART protocol uses a 5-bit to 8-bit data field.
The main properties of multiprocessor mode are:

Single master with multiple slave concept (multi-drop network)
Each slave is identified by a unique address
Using 9 bits data field, with the 9th bit (MSB) as address/data flag. When set ‘1’, it
indicates an address byte; when set ‘0’ it indicates a data byte.
Parity bit is disabled
Figure 30. Multiprocessor Bus Connections
UART MP
Master
RX
TX
Master TX
Master RX
RX
TX
TX
UART MP
Slave 1
RX
TX
UART MP
Slave 2
RX
UART MP
Slave 3
To enable Multiprocessor mode, configure the UART with the following options: Mode: Standard,
Data bits: 9 bits, Parity: None.
Figure 31. UART data frame in Multiprocessor mode
DATA Field
IDLE
START
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
MP
STOP
Because the data link layer of a multi-drop network is a user-defined protocol, it offers a flexible
way of composing the data field.
Page 156 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
All the bits in an address frame can be used to represent a device address. Alternatively, some
bit can be used to represent the address, while the remaining bits can represent a command to
the slave device, and some bits can represent the length of data in following data frames.
The SCB can be used as a master or slave device in multiprocessor mode.
When UART works as slave device, the received address is matched with Address and Mask.
The matched address is written in the RX FIFO when Accept matching address in RX FIFO is
checked. In the case of a match, subsequent received data are sent to the RX FIFO. In the case
of no match, subsequent received data is dropped, until next address received for compare.
UART 9th data bit usage
The 9th bit is sent in the parity bit position and most typically used to define whether the data sent
was an address or standard data. A mark (1) in the parity bit indicates an address was sent and
a space (0) in the parity bit indicates data was sent. The data flow is "Start Bit, Data Bits, Parity,
Stop Bits," similar to the other parity modes but this bit has to be controlled by user firmware
before the transfer rather than being calculated based on the data bit values.
tx_data = 0x31;
tx_data |= UART_UART_MP_MARK; /* Set 9th bit to indicate address */
UART_SpiUartWriteTxData(tx_data);
SmartCard (ISO7816) mode operation
ISO7816 is an asynchronous serial interface, defined with “single-master-single-slave” topology.
Only the master (reader) function is supported in the component.
SCB provides the basic physical layer support with asynchronous character transmission, and
only “I/O” pin interface of standard ISO7816 [8] pin list is provided. SCB UART TX line will be
connected to SmartCard I/O line, by internally multiplexing between TX and RX control modules.
The higher level protocol implementation is left for firmware to handle from the user level.
SmartCard data transfer
The SmartCard transfer is similar to a UART transfer, with the addition of a negative
acknowledgement (NACK) that may be sent from the receiver to the transmitter. A NACK is
always ‘0’. Both transmitter and receiver may drive the same I/O line, although never at the same
time. Figure 32 illustrates the SmartCard protocol.
Typically, implementations use a tri-state driver with a pull-up resistor, such that when the line is
not driven, its value is ‘1’ (the same value as when not transmitting data or the value of the “Stop
Bit”).
8
Refer to the ISO/IEC 7816-3:2006 – Identification cards – Integrated circuit cards – Part 3: Cards with contacts –
Electrical interface and transmission protocols (1997) on the ISO web site at www.iso.org
Document Number: 001-96075 Rev. *A
Page 157 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Figure 32. SmartCard Data Transfer Example
Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) without NACK
TX / RX
IDLE
START
DATA
DATA
DATA
DATA
DATA
DATA
DATA
PAR
STOP
START
DATA
DATA
DATA
DATA
DATA
Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) with NACK
TX / RX
IDLE
START
DATA
DATA
DATA
DATA
DATA
DATA
DATA
PAR
STOP
NACK
STOP
START
A SmartCard transfer has the transmitter drive the “Start Bit” and “Data Bits” and a “Parity Bit”.
After these bits, it enters its stop period by releasing the bus. Releasing results in the line being
‘1’ (the value of a “Stop Bit”). After half bit transfer period into the stop period, the receiver may
drive a NACK on the line (a value of ‘0’) for one to two bit transfer period. This NACK is observed
by the transmitter, which reacts by extending its stop period by one bit transfer period. For this
protocol to work, the stop period should be larger than one bit transfer period.
Note Data transfer with a NACK takes one bit transfer period longer than a data transfer without
a NACK.
Example implementation of SmartCard reader
You have to consider how to implement a complete SmartCard system with other available
system resources for “RST” signal, “CLK” signal, card detect signal, card power supply control
signals.
Figure 33 is example of implementing SmartCard reader function with TCPWM and pins
components.
Page 158 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Figure 33. SmartCard reader implementation example
The UART component is connected to I/O card contact, a pull-up resistor must be connected to
this line. SC_RST, SC_CLK are standard card contacts. SC_DET is for card insertion detection.
SC_PWR is for control of card power on or off. Refer to the ISO7816 specification for more
details.
IrDA mode operation
IrDA is defined with “peer to peer” topology. SCB only provides support [9] for IrDA from the basic
physical layer with rates from 1200 bps to 115200 bps. The physical layer is responsible for the
definition of hardware transceivers for the data transmission. The higher level protocol
implementation is left for firmware to handle from the user level.
The minimum demand for transmission rates for IrDA is only 9600 bps. All transmissions must
be started at this rate to enable compatibility. Higher rates are a matter of negotiation of the ports
after establishing the links.
The IrDA protocol adds a modulation scheme to the UART signaling. At the transmitter, bits are
modulated. At the receiver, bits are demodulated. The modulation scheme uses a Return-toZero-Inverted (RZI) format. A bit value of ‘0’ is signaled by a short ‘1’ pulse on the line and a bit
value of ‘1’ is signaled by holding the line to ‘0’. IrDA is using 3/16 RZI modulation.
9
Refer to the IrPHY (IrDA Physical Layer Link Specification) (Rev. 1.4 from May 2001) on the IrDA web site at
www.irda.org
Document Number: 001-96075 Rev. *A
Page 159 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
The Figure 34 shows UART frame and IR frame, comprised a Start Bit, 8 Data Bits, no Parity Bit
and ending with a Stop Bit.
Figure 34. UART Frame and IR Frame example
Oversampling Selection
IrDA is using 3/16 RZI modulation, so the sampling clock frequency should be set 16x of
selected Baud rate, by configuring Oversampling. Oversampling should always be 16 for
IrDA.
Normal versus Low power transmitting
There are two modes of IrDA operation:

Normal transmission – pulse width is roughly 3/16 of the bit period (for all baud rates)
Low power transmission – pulse width is potentially smaller (down to 1.62 μs typical and
1.41μs minimal) than 3/16 of the bit period (for rates less 115200 bps). Supported only for
RX only direction.
Page 160 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Inverting RX
This option is used to support two possible demodulation schemes described below.
According to the IrPHY specification, the IR frame modulation (encoding) scheme is shown in
Figure 35.
Figure 35. IR frame modulation scheme
CLK
The IR frame demodulation (decoding) scheme is shown in Figure 36. RXIR line voltage level is
default low, active high.
Figure 36. IR frame demodulation scheme 1 (active high)
CLK
Note There is a delay from receiving RXIR and decoding RX.
Document Number: 001-96075 Rev. *A
Page 161 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
In an application, the RXIR frame output from IrDA transceiver is often pull-up, default high,
active low. Figure 37 shows another demodulation scheme.
Figure 37. IR frame demodulation scheme 2 (active low)
CLK
FIFO depth
The hardware provides two FIFOs. One is used for receive direction, RX FIFO, and the other for
transmit direction, TX FIFO. The FIFO depth is 8 data elements. The width of each data element
is 16 bits. The data frame width is configurable from 4-16 bits. One FIFO element is consumed
regardless of the data frame width.
PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100M/PSoC 4200M devices provide the ability to
double the FIFO depth to 16 data elements when the data frame width is 4-8 bits.
Software Buffer
Selecting RX or TX Buffer Size values greater than the FIFO depth enables usage of the RX or
TX FIFO and a circular software buffer. The array of requested size is allocated internally by the
component for the TX software buffer. The allocated array for the RX software buffer has one
extra element that remains empty while in operation. Keeping this element empty simplifies
circular buffer operation. The interrupt option is automatically updated to Internal, and the RX or
TX interrupt source are reserved to provide software buffer operation. The internal interrupt
handler is hooked up to the interrupt. Its main purpose is to provide interaction between software
buffers and the hardware RX or TX FIFO.
The software buffer overflow can happen only for the RX direction when the UART flow control
signal RTS is disabled. The data elements read from the RX FIFO that do not fit into the software
buffer are discarded. This event is reported via global variable SCB_rxBufferOverflow.
The software buffer overflow is not expected when the RTS signal is enabled. When the RX
software buffer becomes full, the RX Not empty interrupt source is disabled and data elements
stop reading from the RX FIFO. However, the transfer continues until the number of data
elements in the RX FIFO is not equal to the RTS trigger level. Then, the RTS signal is activated
to notify the transmitter to pause the transfer. As soon as the data element has been read from
the RX software buffer, the RX Not empty interrupt source is enabled and transfer continues.
Page 162 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
For the TX direction, the provided APIs do not allow software buffer overflow.
Interrupts
When RX buffer size or TX buffer size is greater than the FIFO depth, the RX FIFO not empty
or TX FIFO not full interrupt sources are reserved by the component for internal software buffer
operations. Do not clear or disable them because it can cause incorrect software buffer
operation. However, it is the user’s responsibility to clear interrupts from other enabled interrupt
because they are not cleared automatically. Create a custom function that clears these interrupt
sources and register it using SCB_SetCustomInterruptHandler(). Each time internal interrupt
handler executes the custom function is called before handling software buffer operation. In case
RX buffer size or TX buffer size is equal to the FIFO depth only the hardware TX or RX FIFO is
used. In the Internal interrupt mode the interrupts are not cleared automatically. It is the user’s
responsibility to do this. The External interrupt mode is preferred in this case.
Low power modes
The component in UART mode is able to be a wakeup source from Sleep and Deep Sleep low
power modes.
Sleep mode is identical to Active from a peripheral point of view. No configuration changes are
required in the component or code before entering/exiting this mode. Any UART activity in TX or
RX direction that involves an interrupt to occur leads to wakeup.
Deep Sleep mode requires that the UART be properly configured to be a wakeup source. The
“Enable wakeup from Deep Sleep Mode” must be checked in the UART configuration dialog and
RX direction enabled. The SCB_Sleep() and SCB_Wakeup() functions must be called
before/after entering/exiting Deep Sleep.
The device wakes up by the RX GPIO falling edge event that is generated by the incoming start
bit. There are two constraints for wakeup:

The 1st data bit of wakeup transfer has to be ‘1’. The UART skips the start bit and
synchronizes on the 1st data bit.
The wakeup time of the device must be less than one bit duration; otherwise, the received
data will be incorrect.
Note RX GPIO interrupt restricts usage of all GPIO interrupts from the port where the UART rx
pin is placed.
The UART transmitter must complete the ongoing transfer before entering Deep Sleep because
the SCB_Sleep() function disables the component and transfer is stopped at that moment if
Enable wakeup from Deep Sleep Mode option is disabled. Otherwise, when Enable wakeup from
Deep Sleep Mode is enabled, the transfer is stopped at the moment when the device enters
Deep Sleep mode because the UART is not capable of operating in this mode. The transfer is
completed when all data elements have been transferred from the software buffer (if utilized), TX
FIFO, and shifter register. The following code is suggested:
/* Wait until UART transmitter completes transfer data */
Document Number: 001-96075 Rev. *A
Page 163 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
while (0u != (SCB_SpiUartGetTxBufferSize() + SCB_GET_TX_FIFO_SR_VALID))
{
}
/* UART transmitter is ready to enter Deep Sleep mode */
SCB_Sleep();
CySysPmDeepSleep();
Printf() function Usage Model
The printf() function formats a series of strings and numeric values and builds a string to write to
an output stream. This function can be used in conjunction with a UART to simplify the formatting
and transmission of data. This section describes the code required to allow the use of the printf()
function with a UART component.
The printf() function has different implementations in different compilers. Each compiler provides
a function that is responsible to send data. These functions are listed below for the supported
compilers:
Compiler
Function Name
GCC
_write()
MDK
fputc()
RVDS
fputc()
IAR
__write()
The application should revise these functions to call the communication component API to send
data via the selected interface (in this case, the UART interface).
Note The following code example uses an instance name of "SCB" for the SCB UART
component:
#include <project.h>
#include <stdio.h>
#if defined (__GNUC__)
/* Add an explicit reference to the floating point printf library to allow
the usage of floating point conversion specifier. */
asm (".global _printf_float");
/* For GCC compiler revise _write() function for printf functionality */
int _write(int file, char *ptr, int len)
{
int i;
for (i = 0; i < len; i++)
{
SCB_UartPutChar(*ptr++);
}
return(len);
}
Page 164 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
#elif defined(__ARMCC_VERSION)
/* For MDK/RVDS compiler revise fputc() function for printf functionality */
struct __FILE
{
int handle;
};
enum
{
STDIN_HANDLE,
STDOUT_HANDLE,
STDERR_HANDLE
};
FILE __stdin = {STDIN_HANDLE};
FILE __stdout = {STDOUT_HANDLE};
FILE __stderr = {STDERR_HANDLE};
int fputc(int ch, FILE *file)
{
int ret = EOF;
switch(file->handle)
{
case STDOUT_HANDLE:
SCB_UartPutChar(ch);
ret = ch;
break;
case STDERR_HANDLE:
ret = ch;
break;
default:
file = file;
break;
}
return(ret);
}
#elif defined (__ICCARM__)
/* For IAR compiler revise __write() function for printf functionality */
size_t __write(int handle, const unsigned char * buffer, size_t size)
{
size_t nChars = 0;
for (/* Empty */; size != 0; --size)
{
SCB_UartPutChar(*buffer++);
++nChars;
}
return (nChars);
}
Document Number: 001-96075 Rev. *A
Page 165 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
#endif /* (__GNUC__) */
int main()
{
uint32 i = 444444444;
float f = 55.555f;
CyGlobalIntEnable;
/* Enable interrupts */
SCB_Start();
/* Start communication component */
/* Use printf() function which will send formatted data through
* UART (SCB mode) */
printf("Test printf function. long: %ld, float: %f \n",i,f);
for(;;)
{
/* Place your application code here. */
}
}
The log from terminal software:
Test printf function. long: 444444444, float: 55.555000
Note The printf() function prepares the text stream in the buffer and transmits it when new-line
character ‘\n’ is reached.
DMA Support
DMA is only available in PSoC 4100M/PSoC 4200M devices.
The UART mode may interface with the DMA controller. Signals for transmit and receive
direction can be used to trigger a DMA transfer. To enable this signal, the “RX output” or “TX
output” option must be enabled in the component Advanced parameter tab. The RX and TX
trigger output signals are hard-wired to the DMA controller; their connection to another source
will result in a build error. These signals are level sensitive therefore require the RX or TX FIFO
level to be set. The FIFO level signal behavior is as follows:

RX trigger output – the signal remains active until the number of data elements in the RX
FIFO is greater than the value of RX FIFO level.

TX trigger output – the signal remains active until the number of data elements in the TX
FIFO is less than the value of TX FIFO level.
The following table specifies what DMA component configuration should be used when it is
connected to the SCB (UART mode) component.
Page 166 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
DMA Source / Destination
name
SCB_RX_FIFO_RD_PTR
Direction
Source
PSoC 4 Serial Communication Block (SCB)
Source /
Destination transfer
width
Word /
DMA
request
signal
Destination
Data bits /
Byte or Halfword
Description
rx_tr_out
Level
sensitive
Receive FIFO
tx_tr_out
Level
sensitive
Transmit FIFO
Byte or Halfword
SCB_TX_FIFO_WR_PTR
DMA
trigger type
Note If the number of data bits are less than or equal to 8 bits the transfer data element width is
byte, if the number of data bits are between 9 and 16 bits the width is halfword.
Note The SCB (UART mode) clears request signal within 4 SYSCLK cycles therefore level
sensitive configuration of DMA has to be “wait 4 SYSCLK”.
Document Number: 001-96075 Rev. *A
Page 167 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Common SCB Component Information
Interrupt APIs
These functions are common for most SCB modes.
By default, PSoC Creator assigns the instance name “SCB_1” to the first instance of a
component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
“SCB.”
Function
Description
SCB_EnableInt()
Enables the interrupt in the NVIC (when an internal interrupt is used).
SCB_DisableInt()
Disables the interrupt in the NVIC (when an internal interrupt is used).
SCB_GetInterruptCause()
Returns a mask of bits showing the source of the current triggered
interrupt.
SCB_SetCustomInterruptHandler()
Registers a function to be called by the internal interrupt handler.
SCB_GetTxInterruptSource()
Returns TX interrupt request register. This register contains current
status of TX interrupt sources.
SCB_SetTxInterruptMode()
Writes TX interrupt mask register. This register configures which bits
from TX interrupt request register will trigger an interrupt event.
SCB_GetTxInterruptMode()
Returns TX interrupt mask register.
SCB_GetTxInterruptSourceMasked()
Returns TX interrupt masked request register. This register contains
logical AND of corresponding bits from TX interrupt request and mask
registers.
SCB_ClearTxInterruptSource()
Clears TX interrupt sources in the interrupt request register.
SCB_SetTxInterrupt()
Sets TX interrupt sources in the interrupt request register.
SCB_SetTxFifoLevel()
Sets level in the TX FIFO to generate TX level interrupt.
SCB_GetRxInterruptSource()
Returns RX interrupt request register. This register contains current
status of RX interrupt sources.
SCB_SetRxInterruptMode()
Writes RX interrupt mask register. This register configures which bits
from RX interrupt request register will trigger an interrupt event.
SCB_GetRxInterruptMode()
Returns RX interrupt mask register.
SCB_GetRxInterruptSourceMasked()
Returns RX interrupt masked request register. This register contains
logical AND of corresponding bits from RX interrupt request and mask
registers.
SCB_ClearRxInterruptSource()
Clears RX interrupt sources in the interrupt request register.
SCB_SetRxInterrupt()
Sets RX interrupt sources in the interrupt request register.
Page 168 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
Function
PSoC 4 Serial Communication Block (SCB)
Description
SCB_SetRxFifoLevel()
Sets level in the RX FIFO to generate RX level interrupt.
SCB_GetMasterInterruptSource()
Returns Master interrupt request register. This register contains
current status of Master interrupt sources.
SCB_SetMasterInterruptMode()
Writes Master interrupt mask register. This register configures which
bits from Master interrupt request register will trigger an interrupt
event.
SCB_GetMasterInterruptMode()
Returns Master interrupt mask register.
SCB_GetMasterInterruptSourceMasked()
Returns Master interrupt masked request register. This register
contains logical AND of corresponding bits from Master interrupt
request and mask registers.
SCB_ClearMasterInterruptSource()
Clears Master interrupt sources in the interrupt request register.
SCB_SetMasterInterrupt()
Sets Master interrupt sources in the interrupt request register.
SCB_ClearSlaveInterruptSource()
Returns Slave interrupt request register. This register contains current
status of Slave interrupt sources.
SCB_SetSlaveInterruptMode()
Writes Slave interrupt mask register. This register configures which
bits from Slave interrupt request register will trigger an interrupt event.
SCB_GetSlaveInterruptMode()
Returns Slave interrupt mask register.
SCB_GetSlaveInterruptSourceMasked()
Returns Slave interrupt masked request register. This register contains
logical AND of corresponding bits from Slave interrupt request and
mask registers.
SCB_ClearSlaveInterruptSource()
Clears Slave interrupt sources in the interrupt request register.
SCB_SetSlaveInterrupt()
Sets Slave interrupt sources in the interrupt request register.
void SCB_EnableInt(void)
Description:
When using an Internal interrupt, this enables the interrupt in the NVIC. When using an
external interrupt the API for the interrupt component must be used to enable the
interrupt.
Parameters:
None
Return Value:
None
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 169 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_DisableInt(void)
Description:
When using an Internal interrupt, this disables the interrupt in the NVIC. When using an
external interrupt the API for the interrupt component must be used to disable the
interrupt.
Parameters:
None
Return Value:
None
Side Effects:
None
uint32 SCB_GetInterruptCause(void)
Description:
Returns a mask of bits showing the source of the current triggered interrupt. This is
useful for modes of operation where an interrupt can be generated by conditions in
multiple interrupt source registers.
Parameters:
None
Return Value:
uint32: Mask with the OR of the following conditions that have been triggered:
Interrupt causes constants
Side Effects:
Description
SCB_INTR_CAUSE_MASTER
Interrupt from Master
SCB_INTR_CAUSE_SLAVE
Interrupt from Slave
SCB_INTR_CAUSE_TX
Interrupt from TX
SCB_INTR_CAUSE_RX
Interrupt from RX
None
void SCB_SetCustomInterruptHandler(void (*func) (void))
Description:
Registers a function to be called by the internal interrupt handler. First the function that
is registered is called, and then the internal interrupt handler performs any operations
such as software buffer management functions. It is user’s responsibility to not break
the software buffer operations. Only one custom handler is supported; which is the
function provided by the most recent call. At initialization time no custom handler is
registered.
Parameters:
func: Pointer to the function to register. The value NULL indicates to remove the
current custom interrupt handler.
Return Value:
None
Side Effects:
None
Page 170 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_SetI2cAddressCustomInterruptHandler(uint32 (*func) (void))
Description:
Registers a function to be called by the I2C slave interrupt handler during the I2C
interrupt address processing. This function should be used when multiple I2C addresses
need to be decoded or general call address supported. The registered function must
return decision whether to ACK or NACK accepted address. Only one I2C address
handler is supported, which is the function provided by the most recent call. At
initialization time no I2C address handler is registered.
Parameters:
func: Pointer to the function to register. The value NULL indicates to remove the current
custom interrupt handler.
The registered function must return decision whether to ACK or NACK accepted
address: 0 – ACK, other values – NACK. The registered callback function does not
perform the ACK/NACK, this operation is performed in the I2C ISR.
Return Value:
None
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 171 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_GetTxInterruptSource(void)
Description:
Returns TX interrupt request register. This register contains current status of TX
interrupt sources.
Parameters:
None
Return Value:
uint32: Current status of TX interrupt sources.
Each constant is a bit field value. The value returned may have multiple bits set to
indicate the current status.
TX interrupt sources
Description
SCB_INTR_TX_FIFO_LEVEL
The number of data elements in the TX FIFO is
less than the value of TX FIFO level.
SCB_INTR_TX_NOT_FULL
Transmitter FIFO is not full.
SCB_INTR_TX_EMPTY
Transmitter FIFO is empty.
SCB_INTR_TX_OVERFLOW
Attempt to write to a full transmitter FIFO.
SCB_INTR_TX_UNDERFLOW
Attempt to read from an empty transmitter
FIFO.
SCB_INTR_TX_UART_NACK
UART received a NACK in SmartCard mode.
SCB_INTR_TX_UART_DONE
UART transfer is complete. All data elements
from the TX FIFO are sent.
SCB_INTR_TX_UART_ARB_LOST
Side Effects:
Value on the TX line of the UART does not
match the value on the RX line.
None
void SCB_SetTxInterruptMode(uint32 interruptMask)
Description:
Writes TX interrupt mask register. This register configures which bits from TX interrupt
request register will trigger an interrupt event.
Parameters:
uint32 interruptMask: TX interrupt sources to be enabled (refer to
SCB_GetTxInterruptSource() function for bit field values).
Return Value:
None
Side Effects:
None
uint32 SCB_GetTxInterruptMode(void)
Description:
Returns TX interrupt mask register This register specifies which bits from TX interrupt
request register will trigger an interrupt event.
Parameters:
None
Return Value:
uint32: Enabled TX interrupt sources (refer to SCB_GetTxInterruptSource() function for
return values).
Side Effects:
None
Page 172 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_GetTxInterruptSourceMasked(void)
Description:
Returns TX interrupt masked request register. This register contains logical AND of
corresponding bits from TX interrupt request and mask registers.
This function is intended to be used in the interrupt service routine to identify which of
enabled TX interrupt sources cause interrupt event.
Parameters:
None
Return Value:
uint32: Current status of enabled TX interrupt sources (refer to
SCB_GetTxInterruptSource() function for return values).
Side Effects:
None
void SCB_ClearTxInterruptSource(uint32 interruptMask)
Description:
Clears TX interrupt sources in the interrupt request register.
Parameters:
uint32 interruptMask: TX interrupt sources to be cleared (refer to
SCB_GetTxInterruptSource() function for return values).
Return Value:
None
Side Effects:
The side effects are listed in the table below for each affected interrupt source. Refer to
section TX FIFO interrupt sources for detailed description.
TX interrupt sources
Description
SCB_INTR_TX_FIFO_LEVEL
Interrupt source is not cleared when transmitter
FIFO has less entries than level.
SCB_INTR_TX_NOT_FULL
Interrupt source is not cleared when transmitter
FIFO has empty entries.
SCB_INTR_TX_EMPTY
Interrupt source is not cleared when transmitter
FIFO is empty.
SCB_INTR_TX_UNDERFLOW
Interrupt source is not cleared when transmitter
FIFO is empty and I2C mode with clock
stretching is selected. Put data into the
transmitter FIFO before clearing it.
This behavior only applicable for
PSoC 4100/PSoC 4200 devices.
void SCB_SetTxInterrupt(uint32 interruptMask)
Description:
Sets TX interrupt sources in the interrupt request register.
Parameters:
uint32 interruptMask: TX interrupt sources to set in the TX interrupt request register
(refer to SCB_GetTxInterruptSource() function for return values).
Return Value:
None
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 173 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
void SCB_ SetTxFifoLevel(uint32 level)
Description:
Sets level in the TX FIFO to generate a TX level interrupt.
When the TX FIFO has more entries than the TX FIFO level an TX level interrupt
request is generated.
Parameters:
uint32 level: Level in the TX FIFO to generate TX level interrupt
The range of valid level values is between 0 and TX FIFO depth - 1.
Return Value:
None
Side Effects:
None
uint32 SCB_GetRxInterruptSource(void)
Description:
Returns RX interrupt request register. This register contains current status of RX
interrupt sources.
Parameters:
None
Return Value:
uint32: Current status of RX interrupt sources.
Each constant is a bit field value. The value returned may have multiple bits set to
indicate the current status.
RX interrupt sources
Side Effects:
Description
SCB_INTR_RX_FIFO_LEVEL
The number of data elements in the RX FIFO is
greater than the value of RX FIFO level.
SCB_INTR_RX_NOT_EMPTY
Receiver FIFO is not empty.
SCB_INTR_RX_FULL
Receiver FIFO is full.
SCB_INTR_RX_OVERFLOW
Attempt to write to a full receiver FIFO.
SCB_INTR_RX_UNDERFLOW
Attempt to read from an empty receiver FIFO.
SCB_INTR_RX_FRAME_ERROR
UART framing error detected.
SCB_INTR_RX_PARITY_ERROR
UART parity error detected.
None
void SCB_SetRxInterruptMode(uint32 interruptMask)
Description:
Writes RX interrupt mask register. This register configures which bits from RX interrupt
request register will trigger an interrupt event.
Parameters:
uint32 interruptMask: RX interrupt sources to be enabled (refer to
SCB_GetRxInterruptSource() function for bit fields values).
Return Value:
None
Side Effects:
None
Page 174 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_GetRxInterruptMode(void)
Description:
Returns RX interrupt mask register This register specifies which bits from RX interrupt
request register will trigger an interrupt event.
Parameters:
None
Return Value:
uint32: Enabled RX interrupt sources (refer to SCB_GetRxInterruptSource() function for
return values).
Side Effects:
None
uint32 SCB_GetRxInterruptSourceMasked(void)
Description:
Returns RX interrupt masked request register. This register contains logical AND of
corresponding bits from RX interrupt request and mask registers.
This function is intended to be used in the interrupt service routine to identify which of
enabled RX interrupt sources cause interrupt event.
Parameters:
None
Return Value:
uint32: Current status of enabled RX interrupt sources (refer to
SCB_GetRxInterruptSource() function for return values).
Side Effects:
None
void SCB_ClearRxInterruptSource(uint32 interruptMask)
Description:
Clears RX interrupt sources in the interrupt request register.
Parameters:
uint32 interruptMask: RX interrupt sources to be cleared (refer to
SCB_GetRxInterruptSource() function for return values).
Return Value:
None
Side Effects:
The side effects are listed in the table below for each affected interrupt source. Refer to
section RX FIFO interrupt sources for detailed description.
RX interrupt sources
Description
SCB_INTR_RX_FIFO_LEVEL
Interrupt source is not cleared when the receiver
FIFO has more entries than level.
SCB_INTR_RX_NOT_EMPTY
Interrupt source is not cleared when receiver FIFO is
not empty.
SCB_INTR_RX_FULL
Interrupt source is not cleared when receiver FIFO is
full.
Document Number: 001-96075 Rev. *A
Page 175 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
void SCB_SetRxInterrupt(uint32 interruptMask)
Description:
Sets RX interrupt sources in the interrupt request register.
Parameters:
uint32 interruptMask: RX interrupt sources to set in the RX interrupt request register
(refer to SCB_GetRxInterruptSource() function for return values).
Return Value:
None
Side Effects:
None
void SCB_SetRxFifoLevel (uint32 level)
Description:
Sets level in the RX FIFO to generate a RX level interrupt.
When the RX FIFO has more entries than the RX FIFO level an RX level interrupt
request is generated.
Parameters:
uint32 level: Level in the RX FIFO to generate RX level interrupt.
The range of valid level values is between 0 and RX FIFO depth - 1.
Return Value:
None
Side Effects:
None
Page 176 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_GetMasterInterruptSource(void)
Description:
Returns Master interrupt request register. This register contains current status of Master
interrupt sources.
Parameters:
None
Return Value:
uint32: Current status of Master interrupt sources.
Each constant is a bit field value. The value returned may have multiple bits set to
indicate the current status.
Master interrupt sources
SCB_INTR_MASTER_SPI_DONE
Description
SPI master transfer is complete.
Refer to Interrupt sources section for
detailed description.
Side Effects:
SCB_INTR_MASTER_I2C_ARB_LOST
I2C master lost arbitration.
SCB_INTR_MASTER_I2C_NACK
I2C master received negative
acknowledgement (NAK).
SCB_INTR_MASTER_I2C_ACK
I2C master received acknowledgement.
SCB_INTR_MASTER_I2C_STOP
I2C master generated STOP.
SCB_INTR_MASTER_I2C_BUS_ERROR
I2C master bus error (detection of
unexpected START or STOP condition).
None
void SCB_SetMasterInterruptMode(uint32 interruptMask)
Description:
Writes Master interrupt mask register. This register configures which bits from Master
interrupt request register will trigger an interrupt event.
Parameters:
uint32 interruptMask: Master interrupt sources to be enabled (refer to
SCB_GetMasterInterruptSource() function for bit field values).
Return Value:
None
Side Effects:
None
uint32 SCB_GetMasterInterruptMode(void)
Description:
Returns Master interrupt mask register This register specifies which bits from Master
interrupt request register will trigger an interrupt event.
Parameters:
None
Return Value:
uint32: Enabled Master interrupt sources (refer to SCB_GetMasterInterruptSource()
function for return values).
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 177 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
uint32 SCB_GetMasterInterruptSourceMasked(void)
Description:
Returns Master interrupt masked request register. This register contains logical AND of
corresponding bits from Master interrupt request and mask registers.
This function is intended to be used in the interrupt service routine to identify which of
enabled Master interrupt sources cause interrupt event.
Parameters:
None
Return Value:
uint32: Current status of enabled Master interrupt sources (refer to
SCB_GetMasterInterruptSource() function for return values).
Side Effects:
None
void SCB_ClearMasterInterruptSource(uint32 interruptMask)
Description:
Clears Master interrupt sources in the interrupt request register.
Parameters:
uint32 interruptMask: Master interrupt sources to be cleared (refer to
SCB_GetMasterInterruptSource() function for return values).
Return Value:
None
Side Effects:
None
void SCB_SetMasterInterrupt(uint32 interruptMask)
Description:
Sets Master interrupt sources in the interrupt request register.
Parameters:
uint32 interruptMask: Master interrupt sources to set in the Master interrupt request
register (refer to SCB_GetMasterInterruptSource() function for return values).
Return Value:
None
Side Effects:
None
Page 178 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
uint32 SCB_GetSlaveInterruptSource(void)
Description:
Returns Slave interrupt request register. This register contains current status of Slave
interrupt sources.
Parameters:
None
Return Value:
uint32: Current status of Slave interrupt sources.
Each constant is a bit field value. The value returned may have multiple bits set to
indicate the current status.
Slave interrupt sources
Description
SCB_INTR_SLAVE_I2C_ARB_LOST
I2C slave lost arbitration: the value driven on
the SDA line is not the same as the value
observed on the SDA line.
SCB_INTR_SLAVE_I2C_NACK
I2C slave received negative acknowledgement
(NAK).
SCB_INTR_SLAVE_I2C_ACK
I2C slave received acknowledgement (ACK).
SCB_INTR_SLAVE_I2C_WRITE_STOP
Stop or Repeated Start event for write transfer
intended for this slave (address matching is
performed).
SCB_INTR_SLAVE_I2C_STOP
Stop or Repeated Start event for (read or write)
transfer intended for this slave (address
matching is performed).
SCB_INTR_SLAVE_I2C_START
I2C slave received Start condition.
SCB_INTR_SLAVE_I2C_ADDR_MATCH I2C slave received matching address.
Side Effects:
SCB_INTR_SLAVE_I2C_GENERAL
I2C Slave received general call address.
SCB_INTR_SLAVE_I2C_BUS_ERROR
I2C slave bus error (detection of unexpected
START or STOP condition).
SCB_INTR_SLAVE_SPI_BUS_ERROR
SPI slave deselected at an expected time in the
SPI transfer.
None
void SCB_SetSlaveInterruptMode(uint32 interruptMask)
Description:
Writes Slave interrupt mask register. This register configures which bits from Slave
interrupt request register will trigger an interrupt event.
Parameters:
uint32 interruptMask: Slave interrupt sources to be enabled (refer to
SCB_GetSlaveInterruptSource() function for bit field values).
Return Value:
None
Side Effects:
None
Document Number: 001-96075 Rev. *A
Page 179 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
uint32 SCB_GetSlaveInterruptMode(void)
Description:
Returns Slave interrupt mask register This register specifies which bits from Slave
interrupt request register will trigger an interrupt event.
Parameters:
None
Return Value:
uint32: Enabled Slave interrupt sources (refer to SCB_GetSlaveInterruptSource()
function for return values).
Side Effects:
None
uint32 SCB_GetSlaveInterruptSourceMasked(void)
Description:
Returns Slave interrupt masked request register. This register contains logical AND of
corresponding bits from Slave interrupt request and mask registers.
This function is intended to be used in the interrupt service routine to identify which of
enabled Slave interrupt sources cause interrupt event.
Parameters:
None
Return Value:
uint32: Current status of enabled Slave interrupt sources (refer to
SCB_GetSlaveInterruptSource() function for return values).
Side Effects:
None
void SCB_ClearSlaveInterruptSource(uint32 interruptMask)
Description:
Clears Slave interrupt sources in the interrupt request register.
Parameters:
uint32 interruptMask: Slave interrupt sources to be cleared (refer to
SCB_GetSlaveInterruptSource() function for return values).
Return Value:
None
Side Effects:
None
void SCB_SetSlaveInterrupt(uint32 interruptMask)
Description:
Sets Slave interrupt sources in the interrupt request register.
Parameters:
uint32 interruptMask: Slave interrupt sources to set in the Slave interrupt request
register (refer to SCB_GetSlaveInterruptSource() function for return values).
Return Value:
None
Side Effects:
None
Page 180 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Interrupt Function Appliance
Function
I2C
EZI2C
SPI
UART
SCB_EnableInt()
+
+
+
+
SCB_DisableInt()
+
+
+
+
SCB_GetInterruptCause()
+
+
+
+
SCB_SetCustomInterruptHandler() [10]
+
+
+/-
+/-
SCB_SetI2cAddressCustomInterruptHandler()
+
-
-
-
SCB_GetTxInterruptSource()
+
+
+
+
SCB_SetTxInterruptMode()
+
+
+
+
SCB_GetTxInterruptMode()
+
+
+
+
SCB_GetTxInterruptSourceMasked()
+
+
+
+
SCB_ClearTxInterruptSource()
+
+
+
+
SCB_SetTxInterrupt()
+
+
+
+
SCB_SetTxFifoLevel()
+
+
+
+
SCB_GetRxInterruptSource()
+
+
+
+
SCB_SetRxInterruptMode()
+
+
+
+
SCB_GetRxInterruptMode()
+
+
+
+
SCB_GetRxInterruptSourceMasked()
+
+
+
+
SCB_ClearRxInterruptSource()
+
+
+
+
SCB_SetRxInterrupt()
+
+
+
+
SCB_SetRxFifoLevel()
+
+
+
+
SCB_GetMasterInterruptSource()
+
–
+
–
SCB_SetMasterInterruptMode()
+
–
+
–
SCB_GetMasterInterruptMode()
+
–
+
–
SCB_GetMasterInterruptSourceMasked()
+
–
+
–
SCB_ClearMasterInterruptSource()
+
–
+
–
SCB_SetMasterInterrupt()
+
–
+
–
SCB_GetSlaveInterruptSource()
+
+
+
–
SCB_SetSlaveInterruptMode()
+
+
+
–
SCB_GetSlaveInterruptMode()
+
+
+
–
10
- Only available when SPI and UART provide internal interrupt handler.
Document Number: 001-96075 Rev. *A
Page 181 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Function
I2C
EZI2C
SPI
UART
SCB_GetSlaveInterruptSourceMasked()
+
+
+
–
SCB_ClearSlaveInterruptSource()
+
+
+
–
SCB_SetSlaveInterrupt()
+
+
+
–
Clock Selection
The SCB is clocked by a single dedicated clock connection. Depending on the mode of
operation the frequency of this clock may be calculated by the component based on the
customizer configuration or may be provided externally.
Since the Unconfigured mode customizer is not aware of the end mode of operation the clock
must be provided externally in this case.
MISRA Compliance
This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:

project deviations – deviations that are applicable for all PSoC Creator components
specific deviations – deviations that are applicable only for this component
This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.
The SCB component has the following specific deviations:
MISRA-C:
2004 Rule
1.1
Rule Class
[11]
R
Rule Description
This rule states that
code shall conform to
C ISO/IEC
9899:1990 standard.
Description of Deviation(s)
Nesting of control structures (statements) exceeds 15 program does not conform strictly to ISO:C90.
In practice, most compilers will support a much more liberal
nesting limit and therefore this limit may only be relevant
when strict conformance is required. By comparison,
ISO:C99 specifies a limit of 127 "nesting levels of blocks.
The supported compilers (GCC 4.1.1, RVDS and MDK)
support larger number nesting of control structures.
11
Required / Advisory
Page 182 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
MISRA-C:
2004 Rule
PSoC 4 Serial Communication Block (SCB)
Rule Class
[11]
Rule Description
Description of Deviation(s)
17.4
R
Array indexing shall
be the only allowed
form of pointer
arithmetic.
Component uses array indexing operation to access buffers.
The buffer size is checked before access. It is safe operation
unless user provides incorrect buffer size.
19.7
A
A function should be Deviated since function-like macros are used to allow more
used in preference to efficient code.
a function-like macro.
This component has the following embedded components: Pins and Interrupt. Refer to the
corresponding component datasheets for information on their MISRA compliance and specific
deviations.
Sample Firmware Source Code
PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.
Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.
Interrupt Service Routine
The SCB supports interrupts on the various events, depending on the mode of operation. All of
the interrupt events are ORed together before being sent to the interrupt controller, so the SCB
can only generate a single interrupt request to the controller at any given time. This signal goes
high when any of the enabled interrupt sources are true.
Some of the modes expose this signal as terminal when it is not needed for internal operation as
described in the Input/Output Connections section. If it is needed for internal operation the
terminal is not present.
Software can service multiple interrupt events in a single interrupt service routine by using
various interrupt APIs.
PSoC Creator generates the necessary interrupt service routines for handling internal operation.
However it is possible to register a custom function using SCB_SetCustomInterruptHandler()
function. This user function will be called first, before the internal interrupt handler performs any
operations such as software buffer management functions. Only one custom handler is
supported.
Note Interrupt sources managed by user are not cleared automatically. It is user responsibility to
do that. Interrupt sources are cleared by writing a ‘1’ in corresponding bit position. The preferred
way to clear interrupt sources is usage APIs (for example: SCB_ClearRxInterruptSource()).
void CustomInterruptHandler(void);
Document Number: 001-96075 Rev. *A
Page 183 of 198
PSoC 4 Serial Communication Block (SCB)
PSoC® Creator™ Component Datasheet
void main()
{
/* Register custom function */
SCB_SetCustomInterruptHandler(&CustomInterruptHandler);
/* Initialize SCB component in UART mode.
* The SCB_INTR_RX_PARITY_ERROR is already enabled in GUI:
* UART Advanced Tab.
*/
SCB_Start();
CyGlobalIntEnable; /* Enable global interrupts. */
for (;;)
{
/* Place your application code here. */
}
}
/* User interrupt handler to insert into SCB interrupt handler.
* Note: SCB interrupt set to Internal in GUI.
*/
void CustomInterruptHandler(void)
{
if (0u != (SCB_GetRxInterruptSourceMasked() & SCB_INTR_RX_PARITY_ERROR))
{
/* Interrupt sources does not clear automatically if it is managed by
* user. The interrupt sources clearing becomes user responsibility.
*/
SCB_ClearRxInterruptSource(SCB_INTR_RX_PARITY_ERROR);
/*
* Add user interrupt code to manage SCB_INTR_RX_PARITY_ERROR.
*/
}
}
TX FIFO interrupt sources
The following TX interrupt sources have level-sensitive behavior:

TX FIFO empty
TX FIFO not full
TX FIFO level
These interrupt sources trigger the current status of the TX FIFO, and keep it until a clear
operation. Clearing these interrupt sources does not make any sense if the current status of the
TX FIFO still triggers them, because they are restored back.
The restore operation takes one clock cycle; therefore, the interrupt source is cleared during this
time. The restore time causes false clearing of interrupt sources, which might have an undesired
impact on the design.
Page 184 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
The suggested flow to start TX FIFO interrupt sources processing is as follows:
1. Fill the TX FIFO with data. While filling the TX FIFO, it is better to monitor the number of
entries in it rather than try to clear the TX FIFO interrupt source after each byte put in the
TX FIFO.
2. Clear the “old” triggered interrupt source. To clear interrupt source, write ‘1’ to the
corresponding bit position.
3. Enable the interrupt source.
Note The TX FIFO level interrupt source behavior depends on the level value.
Note The described behavior applies only to PSoC 4100/PSoC 4200 devices. After the SCB
component is disabled, the TX FIFO becomes empty. It is not possible to clear them due to the
restore nature. Therefore, the component interrupt or TX interrupt sources must be disabled to
not cause locking in the interrupt handler after the component was disabled. For other devices,
this behavior is fixed; after the SCB component is disabled all interrupts are cleared.
RX FIFO interrupt sources
The following RX interrupt sources have level-sensitive behavior:

RX FIFO not empty
RX FIFO full
RX FIFO level
These interrupt sources trigger the current status of the RX FIFO, and keep it until a clear
operation. Clearing these interrupt sources does not make any sense if the current status of the
RX FIFO still triggers them, because they are restored back. The restore operation takes one
clock cycle; therefore, the interrupt source is cleared during this time.
The restore time causes false clearing of RX interrupt sources, which might have an undesired
impact on the design.
The suggested flow to start RX FIFO interrupt sources processing is as follows:
1. Clear the “old” triggered interrupt source. To clear interrupt source, write ‘1’ to the
corresponding bit position.
2. Then enable the interrupt source.
In most cases the clear operation is not required. While getting data from the RX FIFO, it is
better to monitor the number of entries in it rather than try to clear the RX FIFO interrupt source
after each byte read from the RX FIFO.
Note The RX FIFO level interrupt source behavior depends on level value.
Document Number: 001-96075 Rev. *A
Page 185 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Note The described behavior applies only to PSoC 4100/PSoC 4200 devices. After the SCB
component is disabled, the triggered RX FIFO interrupt sources are not cleared automatically.
The explicit clear operation must be executed.
Placement
The SCB is placed as Fixed Function block and all placement information is provided to the API
through the cyfitter.h file.
The SCB pins placement information is available in the Pins tab of the PSoC Creator DesignWide Resources (DWR) file. See the Device datasheet section Pinout for pins functions and
placement information. The pins which provide SCB interfaces functionality might be combined
with debug functionality. To utilize these pins for SCB functionality debug capability needs to be
disabled in the System tab of the PSoC Creator Design-Wide Resources (DWR) file.
Registers
See the chip Technical Reference Manual (TRM) for more information about registers.
Component Debug Window
PSoC Creator allows you to view debug information about components in your design. Each
component window lists the memory and registers for the instance. For detailed hardware
registers descriptions, refer to the appropriate device technical reference manual.
To open the Component Debug window:
1. Make sure the debugger is running or in break mode.
2. Choose Windows > Components… from the Debug menu.
3. In the Component Window Selector dialog, select the component instances to view and
click OK.
The selected Component Debug window(s) will open within the debugger framework. Refer to
the "Component Debug Window" topic in the PSoC Creator Help for more information.
Resources
The SCB is implemented as a fixed-function block.
Resource Type
Configuration
Interrupts
Clocks
SCB
(Fixed blocks)
Unconfigured SCB
1
1
1
I2C
Slave / Master / Multi-Master / Multi-Master-Slave
1
1
1
EZ I2C
Clock stretching: enabled / disabled
1
1
1
Page 186 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Resource Type
Configuration
SPI
Master / Slave
UART
Standard /Smart Card /IrDA
Interrupts
Clocks
SCB
(Fixed blocks)
Hardware buffers [12]
–
1
1
Software buffers [13]
1
1
1
Hardware buffers [12]
–
1
1
Software buffers [13]
1
1
1
API Memory Usage
The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.
The measurements have been done with the associated compiler configured in Release mode
with optimization set for Size. For a specific design the map file generated by the compiler can
be analyzed to determine the memory usage.
Configuration
PSoC 4 (GCC)
PSoC 4000
PSoC 4100 /
PSoC 4200
PSoC 4100 BLE /
PSoC 4200 BLE /
PSoC 4100M /
PSoC 4200M
Flash
RAM
Flash
RAM
Flash
RAM
Unconfigured SCB
7460
158
11134
175
12074
175
I2 C
Slave
1616
43
1668
43
1564
43
Master
2560
46
2792
46
2564
46
Multi-Master
2560
46
2792
46
2564
46
Multi-Master-Slave
3872
79
4092
79
3816
79
Slave, Bootloader communication
1692
174
1744
174
1640
174
Clock stretching
enabled
One address
1316
26
1352
26
1264
26
Two addresses
1688
50
1760
50
1632
50
Clock stretching
disabled [14]
One address
1256
23
1032
24
1208
23
EZI2C
12
Hardware buffers – The TX and RX buffer size is equal to FIFO depth which is implemented in the hardware; no
memory is allocated for the TX or RX buffer. The RX and TX FIFO depth is equal to 8 bytes/words or 16 bytes;
refer to Byte mode for more information.
13
Software buffers – The TX and RX buffer size is greater than FIFO depth; the TX and RX FIFOs are still used but
the memory is allocated for TX and RX buffer. Internal interrupt handler is automatically enabled to transfer data
between the hardware FIFOs and RX and TX memory buffers.
Document Number: 001-96075 Rev. *A
Page 187 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Configuration
PSoC 4 (GCC)
PSoC 4000
SPI
Slave
Master
UART
Standard [16]
PSoC 4100 /
PSoC 4200
PSoC 4100 BLE /
PSoC 4200 BLE /
PSoC 4100M /
PSoC 4200M
Flash
RAM
Flash
RAM
Flash
RAM
Hardware buffers [12]
N/A
N/A
586
2
626
2
Software buffers [13]
N/A
N/A
1014
23 + BUFRAM
1054
23 + BUFRAM
Bootloader communication [15]
N/A
N/A
1194
23 + BUFRAM
1194
23 + BUFRAM
Hardware buffers [12]
N/A
N/A
766
2
814
2
Software buffers [13]
N/A
N/A
1190
23 + BUFRAM
1238
23 + BUFRAM
Hardware buffers [12]
N/A
N/A
732
2
948
2
Software buffers [13]
N/A
N/A
1220
23 + BUFRAM
1468
23 + BUFRAM
Bootloader communication [15]
N/A
N/A
1130
23 + BUFRAM
1138
23 + BUFRAM
BUFRAM = ((RX buffer size + 1) * BytesNumberRX) + ((TX buffer size) * BytesNumberTX)
where:

RX buffer size and TX buffer size is equal to appropriate settings on the Advanced Tab for
SPI or UART mode.
BytesNumberRX is number of bytes to store the RX data element. The BytesNumberRX = 1
when RX data bits <= 8 bits and BytesNumberRX = 2 when RX data bits > 8 bits.
BytesNumberTX is number of bytes to store the TX data element. The BytesNumberTX = 1
when TX data bits <= 8 bits and BytesNumberTX = 2 when RX data bits > 8 bits.
Note For UART mode the TX and RX data bits options are combined into the single
option Data bits which value must be used for BUFRAM calculations instead of
BytesNumberRX and BytesNumberTX.
14
The “Enable wakeup from Deep Sleep Mode” is enabled for all devices other than PSoC 4100/PSoC 4200.
15
The software buffers are used for bootloader communication operation.
16
The hardware flow control feature is enabled for devices other than PSoC 4100/PSoC 4200.
Page 188 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
DC and AC Electrical Characteristics
Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.
PSoC 4000
I2C DC Specifications
Parameter
Description
Min
Typ
Max
Units
II2C1
Block current consumption at 100 KHz
–
–
10.5
μA
II2C2
Block current consumption at 400 KHz
–
–
135
μA
II2C4
I2C enabled in Deep Sleep mode
–
–
2.5
μA
Min
Typ
Max
Units
–
–
400
Kbps
Description
Min
Typ
Max
Units
II2C1
Block current consumption at 100 KHz
–
–
10.5
μA
II2C2
Block current consumption at 400 KHz
–
–
135
μA
II2C3
Block current consumption at 1 Mbps
–
–
310
μA
II2C4
I2C enabled in Deep Sleep mode
–
–
1.4
μA
Min
Typ
Max
Units
–
–
1
Mbps
Conditions
I2C AC Specifications
Parameter
FI2C1
Description
Bit rate
Conditions
PSoC 4100/PSoC 4200
I2C DC Specifications
Parameter
Conditions
I2C AC Specifications
Parameter
FI2C1
Description
Bit rate
Document Number: 001-96075 Rev. *A
Conditions
Page 189 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
UART DC Specifications
Parameter
Description
Min
Typ
Max
Units
IUART1
Block current consumption at 100 Kbits/sec
–
–
9
μA
IUART2
Block current consumption at 1000 Kbits/sec
–
–
312
μA
Min
Typ
Max
Units
–
–
1
Mbps
Min
Typ
Max
Units
Conditions
UART AC Specifications
Parameter
FUART
Description
Bit rate
Conditions
SPI DC Specifications
Parameter
Description
Conditions
ISPI1
Block current consumption at 1 Mbits/sec
–
–
360
μA
ISPI2
Block current consumption at 4 Mbits/sec
–
–
560
μA
ISPI3
Block current consumption at 8 Mbits/sec
–
–
600
μA
Min
Typ
Max
Units
–
–
8
MHz
Min
Typ
Max
Units
SPI AC Specifications
Parameter
FSPI
Description
SPI operating frequency (master; 6X
oversampling)
Conditions
SPI Master AC Specifications
Parameter
Description
TDMO
MOSI valid after Sclock driving edge
–
–
15
ns
TDSI
MISO valid before Sclock capturing edge. Full
clock, late MISO Sampling used
20
–
–
ns
THMO
Previous MOSI data hold time with respect to
capturing edge at Slave
0
–
–
ns
Conditions
SPI Slave AC Specifications
Parameter
TDMI
Page 190 of 198
Description
MOSI valid before Sclock capturing edge
Min
Typ
Max
Units
40
–
–
ns
Conditions
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
Parameter
PSoC 4 Serial Communication Block (SCB)
Description
Min
Typ
Max
Units
TDSO
MISO valid after Sclock driving edge
–
–
42 + 3 × Tscb
ns
THSO
Previous MISO data hold time
0
–
–
ns
TSSELSCK
SSEL Valid to first SCK Valid edge
100
–
–
ns
Conditions
PSoC 4100 BLE/PSoC 4200 BLE
I2C DC Specifications
Parameter
Description
Min
Typ
Max
Units
II2C1
Block current consumption at 100 KHz
–
–
50
μA
II2C2
Block current consumption at 400 KHz
–
–
155
μA
II2C3
Block current consumption at 1 Mbps
–
–
390
μA
II2C4
I2C enabled in Deep Sleep mode
–
–
1.4
μA
Min
Typ
Max
Units
–
–
1
Mbps
Conditions
I2C AC Specifications
Parameter
FI2C1
Description
Bit rate
Conditions
UART DC Specifications
Parameter
Description
Min
Typ
Max
Units
IUART1
Block current consumption at 100 Kbits/sec
–
–
55
μA
IUART2
Block current consumption at 1000 Kbits/sec
–
–
312
μA
Min
Typ
Max
Units
–
–
1
Mbps
Min
Typ
Max
Units
–
–
360
μA
Conditions
UART AC Specifications
Parameter
FUART
Description
Bit rate
Conditions
SPI DC Specifications
Parameter
ISPI1
Description
Block current consumption at 1 Mbits/sec
Document Number: 001-96075 Rev. *A
Conditions
Page 191 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Parameter
Description
Min
Typ
Max
Units
Conditions
ISPI2
Block current consumption at 4 Mbits/sec
–
–
560
μA
ISPI3
Block current consumption at 8 Mbits/sec
–
–
600
μA
Min
Typ
Max
Units
–
–
8
MHz
Min
Typ
Max
Units
SPI AC Specifications
Parameter
FSPI
Description
SPI operating frequency (master; 6X
oversampling)
Conditions
SPI Master AC Specifications
Parameter
Description
TDMO
MOSI valid after Sclock driving edge
–
–
18
ns
TDSI
MISO valid before Sclock capturing edge. Full
clock, late MISO Sampling used
20
–
–
ns
THMO
Previous MOSI data hold time with respect to
capturing edge at Slave
0
–
–
ns
Conditions
SPI Slave AC Specifications
Parameter
Description
Min
Typ
Max
Units
TDMI
MOSI valid before Sclock capturing edge
40
–
–
ns
TDSO
MISO valid after Sclock driving edge
–
–
42 + 3 × Tscb
ns
THSO
Previous MISO data hold time
0
–
–
ns
TSSELSCK
SSEL Valid to first SCK Valid edge
100
–
–
ns
Conditions
PSoC 4100M/PSoC 4200M
I2C DC Specifications
Parameter
Description
Min
Typ
Max
Units
II2C1
Block current consumption at 100 KHz
–
–
50
μA
II2C2
Block current consumption at 400 KHz
–
–
135
μA
II2C3
Block current consumption at 1 Mbps
–
–
310
μA
Page 192 of 198
Conditions
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
Parameter
II2C4
Description
PSoC 4 Serial Communication Block (SCB)
Min
Typ
Max
Units
–
–
1.4
μA
Min
Typ
Max
Units
–
–
1
Mbps
I2C enabled in Deep Sleep mode
Conditions
I2C AC Specifications
Parameter
FI2C1
Description
Bit rate
Conditions
UART DC Specifications
Parameter
Description
Min
Typ
Max
Units
IUART1
Block current consumption at 100 Kbits/sec
–
–
55
μA
IUART2
Block current consumption at 1000 Kbits/sec
–
–
312
μA
Min
Typ
Max
Units
–
–
1
Mbps
Min
Typ
Max
Units
Conditions
UART AC Specifications
Parameter
FUART
Description
Bit rate
Conditions
SPI DC Specifications
Parameter
Description
ISPI1
Block current consumption at 1 Mbits/sec
–
–
360
μA
ISPI2
Block current consumption at 4 Mbits/sec
–
–
560
μA
ISPI3
Block current consumption at 8 Mbits/sec
–
–
600
μA
Min
Typ
Max
Units
–
–
8
MHz
Conditions
SPI AC Specifications
Parameter
FSPI
Description
SPI operating frequency (master; 6X
oversampling)
Document Number: 001-96075 Rev. *A
Conditions
Page 193 of 198
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
SPI Master AC Specifications
Parameter
Description
Min
Typ
Max
Units
TDMO
MOSI valid after Sclock driving edge
–
–
15
ns
TDSI
MISO valid before Sclock capturing edge. Full
clock, late MISO Sampling used
20
–
–
ns
THMO
Previous MOSI data hold time with respect to
capturing edge at Slave
0
–
–
ns
Conditions
SPI Slave AC Specifications
Parameter
Description
Min
Typ
Max
Units
TDMI
MOSI valid before Sclock capturing edge
40
–
–
ns
TDSO
MISO valid after Sclock driving edge
–
–
42 + 3 × Tscb
ns
TDSO_ext
MISO valid after Sclock driving edge in Ext.
-
-
48
ns
0
–
–
ns
100
–
–
ns
Conditions
Clock mode
THSO
Previous MISO data hold time
TSSELSCK
SSEL Valid to first SCK Valid edge
Component Errata
This section lists known problems with the component.
Cypress
ID
215863
Component
Version
2.0, 3.0
Problem
Workaround
When operating in UART mode, the Configure dialog
does not disable the “RX FIFO not empty” interrupt
source when the RX buffer size is equal to 16 data
elements and the “Byte mode” parameter is enabled.
Disable the “RX FIFO not
empty” interrupt source on
the UART Configure
dialog’s Advanced tab.
In this particular configuration, leaving the “RX FIFO not
empty” interrupt source enabled causes code lock up in
the UART interrupt handler when a byte is received in
the RX FIFO.
Page 194 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
PSoC 4 Serial Communication Block (SCB)
Component Changes
This section lists the major changes in the component from the previous version.
Version
Description of Changes
3.0.a
Edited datasheet to add Component Errata
section.
3.0
Added support for PSoC 4100M / PSoC 4200M
devices.
Reason for Changes / Impact
Document an issue with “RX FIFO not empty”
interrupt source when operating in UART mode.
Added support of General call address, as well as
improved access to addresses received into the
RX FIFO for I2C mode.
Added support of SPI pins remove.
Added support of bootloader communication for
SPI and UART modes.
Made pin names consistent among all devices in
SCB Unconfigured mode.
Version 3.0 is not completely backward
compatible with the previous component version
2.0 but only for SCB Unconfigured mode. Due to
pin names change the compilation error will occur
if you use buried pin APIs. Update APIs with new
names to fix the compilation error.
Fixed SCB_RX_BUFFER_SIZE define to be equal
to RX software buffer size. This define is equal to
the RX software buffer size plus one in the
previous component versions.
This change is not backward compatible with the
previous component versions.
Noted that the SCB_Stop() also disables all TX
interrupt sources so as not to cause an unexpected
interrupt trigger because after the component is
enabled, the TX FIFO is empty.
This change is not backward compatible with the
previous component versions.
Fixed SPI master and UART output pins behavior
when the component is disabled. The SPI master
SCLK and/or SS0-SS3 and UART TX and/or RTS
pins keep inactive state.
The SPI master and UART output pins becomes
High-Z when the component is disabled. This can
cause false SPI slave or UART receiver
activation.
Removed timeout from I2C bootloader write
function SCB_CyBtldrCommWrite(). The function
does not use timeout and returns after data has
been copied into the slave read buffer.
The slave read buffer available to be read by the
bootloader host until following host data write.
Fixed RX software buffer processing which allows
buffer to be overflown when UART flow control is
enabled.
The RTS signal has to protect UART receiver
from overflow event to occur.
The component restores TX interrupt sources
which it utilizes but not the user configured TX
interrupt sources. They have to be restored by the
user.
Minor improvements to the interrupt handler for
EZI2C without clock stretching.
Document Number: 001-96075 Rev. *A
Page 195 of 198
PSoC 4 Serial Communication Block (SCB)
Version
Description of Changes
Datasheet updates.
PSoC® Creator™ Component Datasheet
Reason for Changes / Impact
Updated sample code in I2C Low power modes
and EZI2C Low power modes sections to use
CyEnterCriticalSection() / CyExitCriticalSection()
instead of CyGlobalIntEnable /
CyGlobalIntDisable.
Updated I2C External Electrical Connections and
added Internal Pull-Ups sections.
Updated SPI Low power modes and UART Low
power modes sections.
Updated DC and AC Electrical Characteristics
section with PSoC 4100M/ PSoC 4200M data.
2.0.a
Datasheet updates.
Fixed a few summary tables to add/remove
tables, plus a few minor edits.
Updated descriptions for a few APIs.
Updated the characterization data.
2.0
Added support for Bluetooth Low Energy devices.
Improved internal clock selection logic for all
modes.
Restricted the I2C master and slave clock
frequency requirements to meet I2C specification
parameters.
Version 2.0 is not completely backward
compatible with the previous component version
1.20. Internal clock selection has changed for I2C,
EZI2C, SPI and UART modes.
To make version 2.0 backward compatible the
“Clock from terminal” option with previous clock
settings should be used. To do this you need to
discover the clock frequency for the SCB that was
used in version 1.20. This can be found by looking
at the Clock tab of the .cydwr file. Find a clock that
ends in _SCBCLK. In version 2.0 enable the
“Clock from terminal” option in the component.
Next, connect a clock component to the clock
terminal on the SCB component. Set this clock
frequency to the same frequency as the clock
used in version 1.20.
The I2C Slave restricts the input clock frequency
to be no less than 1.58 MHz. The clock frequency
must be increased to reach minimum requirement
to build the project.
Removed Median filter option from the I2C and EZ The analog filters applied to I2C lines for most
I2C modes. The median filter option is set depends data rate modes. There is no reason to apply both
on the selected data rate.
filters: analog and median (digital). For I2C master
modes with data rate greater than 400 kbps (Fast
Plus) only median (digital) filter is applied.
If Unconfigured SCB was utilized with previous
version of the component and configured to I2C
mode the dataRate field of configuration structure
has to be initialized for correct filter selection.
Page 196 of 198
Document Number: 001-96075 Rev. *A
PSoC® Creator™ Component Datasheet
Version
Description of Changes
The SCB_Sleep() and SCB_Wakeup() functions
were modified for I2C and EZI2C slave (clock
stretching enabled) modes for PSoC 4000. For
more information refer to Low power modes
section of the appropriate mode.
PSoC 4 Serial Communication Block (SCB)
Reason for Changes / Impact
This change intended to address the SCL lock up
after wakeup from Deep Sleep on address match
event.
Fixed the I2C master operation in the Multi-Master- The master was not able to able to start
Slave mode when Enable wakeup from Deep
communication.
Sleep Mode option is enabled for PSoC 4000.
Added APIs to set level in the RX and TX FIFO to
generate appropriate level interrupt:
void SCB_SetRxFifoLevel(uint32 level)
void SCB_SetTxFifoLevel(uint32 level)
Removed SPI Master slave select routing
constrains.
SPI Master slave select output pin can be placed
to the any allowed slave select location, ss0-ss3.
The Number of SS lines is allowed to be 0 for SPI
Master.
This allows removal of all hardware slave select
lines in Master mode. It is useful when slave
select control required to be implemented in
firmware.
Changed SPI Master minimum Oversampling
value to 6 and removed dependencies from other
parameters.
Fixed incorrect oversampling limitations.
Added API function to access SPI bus state:
SCB_SpiIsBusBusy()
This function facilitates detection that SPI transfer
is completed.
Add protection from the component interruption to
the following APIs:
I2C and EZI2C operations executed by the listed
functions are atomic.
SCB_I2CSlaveInitReadBuf()
SCB_I2CSlaveInitWriteBuf()
SCB_I2CSlaveClearReadStatus()
SCB_I2CSlaveClearWriteStatus()
SCB_I2CMasterClearStatus()
SCB_I2CMasterStatus()
SCB_I2CMasterClearWriteBuf()
SCB_I2CMasterClearReadBuf()
SCB_EzI2CSetBuffer1()
SCB_EzI2CSetBuffer2()
1.20
Fixed EZ I2C with clock stretching operation when
SCB Unconfigured mode is selected.
Document Number: 001-96075 Rev. *A
The complier gives warning while compilation.
Page 197 of 198
PSoC 4 Serial Communication Block (SCB)
Version
Description of Changes
PSoC® Creator™ Component Datasheet
Reason for Changes / Impact
Fixed EZ I2C mode with clock stretching buffer
update when master writes number of bytes
multiplied of 8 and starts from base address
multiplied of 8.
The EZ I2C slave completes transfer too early and
last 8 bytes remains in the RX FIFO. The buffer is
not updated properly.
Fixed EZ I2C current address behavior for buffer
size equal to 256 bytes.
When buffer read or write overflow is occurred the
current address wraps around to first element
instead point to outside the buffer.
Improved interrupt handling timings for EZ I2C
mode without clock stretching.
Added support of PSoC 4000 devices.
1.10
EZ I2C mode added.
SPI/UART internal interrupt source to transfer data
from the internal software buffer into the TX FIFO
is changed from TX_EMPTY to TX_NOT_FULL.
1.0.a
Edits to the component datasheet to match the
GUI.
1.0
The first release of the SCB component
This change will result in the TX FIFO being kept
full when data is available in the software buffer.
This will reduce the likelihood that the FIFO will
become empty during a transmission due to a
long interrupt response time.
© Cypress Semiconductor Corporation, 2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control, or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in lifesupport systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in lifesupport systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Page 198 of 198
Document Number: 001-96075 Rev. *A

				

 Open as PDF

 	Similar pages
	

										Component - PSoC 4 SCB V3.10 Datasheet.pdf

	

										Component - EZI2C Slave V2.0 Datasheet.pdf

	

										IMAQ SCB-68 Connector Block and IMAQ SH68

	

										Download

	

										Incandescent lamp control

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

