APT65GP60L2DQ2(G)_A.PDF

APT65GP60L2DQ2
600V
TYPICAL PERFORMANCE CURVES
APT65GP60L2DQ2
APT65GP60L2DQ2G*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
POWER MOS 7 IGBT
®
TO-264
Max
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch
Through Technology this IGBT is ideal for many high frequency, high voltage switching
applications and has been optimized for high frequency switchmode power supplies.
• Low Conduction Loss
• 100 kHz operation @ 400V, 54A
• Low Gate Charge
• 50 kHz operation @ 400V, 76A
• Ultrafast Tail Current shutoff
• SSOA Rated
G
C
E
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT65GP60L2DQ2
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current
I C2
Continuous Collector Current @ TC = 110°C
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
7
@ TC = 25°C
UNIT
Volts
198
96
Amps
250
@ TC = 150°C
250A @ 600V
Switching Safe Operating Area @ TJ = 150°C
Watts
833
Total Power Dissipation
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1000µA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 65A, Tj = 25°C)
2.2
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 65A, Tj = 125°C)
2.1
(VCE = VGE, I C = 2.5mA, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
3
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
1250
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
5500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Units
nA
6-2005
MIN
Rev A
Characteristic / Test Conditions
050-7454
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT65GP60L2DQ2
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
tf
f = 1 MHz
35
Gate Charge
7.5
VGE = 15V
210
TJ = 150°C, R G = 5Ω, VGE =
605
895
Inductive Switching (125°C)
30
VCC = 400V
55
VGE = 15V
130
RG = 5Ω
90
605
I C = 65A
Eon1
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
44
55
µJ
1410
6
Current Fall Time
ns
65
TJ = +25°C
Turn-off Delay Time
nC
90
RG = 5Ω
Current Rise Time
V
A
55
I C = 65A
Turn-on Delay Time
pF
250
30
5
UNIT
65
VCC = 400V
4
MAX
50
Inductive Switching (25°C)
Current Fall Time
Turn-off Switching Energy
td(off)
580
15V, L = 100µH,VCE = 600V
Turn-off Delay Time
Eoff
tr
VGE = 0V, VCE = 25V
VGE = 15V
Turn-on Switching Energy (Diode)
td(on)
7400
I C = 65A
Current Rise Time
Eon2
TYP
Capacitance
VCE = 300V
Turn-on Delay Time
Turn-on Switching Energy
MIN
TJ = +125°C
ns
µJ
1925
6
1470
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.15
RθJC
Junction to Case (DIODE)
.67
WT
Package Weight
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
050-7454
Rev A
6-2005
4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 Continuous current limited by package lead temperature.
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
90
IC, COLLECTOR CURRENT (A)
TJ = -55°C
40
TJ = 25°C
30
TJ = 125°C
20
0
0
0.5
1.0
1.5
2.0
2.5
3.0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
TJ = -55°C
100
TJ = 25°C
50
TJ = 125°C
2 3
4 5 6
7 8
9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4.0
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.5
3.0
IC = 130A
2.5
IC = 65A
2.0
IC = 32.5A
1.5
1.0
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.00
0.95
0.90
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
J
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
50
100
150
200
GATE CHARGE (nC)
250
FIGURE 4, Gate Charge
3.0
IC = 130A
2.5
IC = 65A
2.0
1.5
IC = 32.5A
1.0
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
300
1.10
1.05
I = 65A
C
T = 25°C
14
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VGE, GATE-TO-EMITTER VOLTAGE (V)
150
0
FIGURE 2, Output Characteristics (TJ = 125°C)
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
200
TJ = 125°C
20
10
250µs PULSE
TEST<0.5 % DUTY
CYCLE
TJ = 25°C
30
0
250
TJ = -55°C
40
10
0
0.5
1.0
1.5
2.0
2.5
3.0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
60
50
250
200
150
100
50
0
-50
Lead Temperature
Limited
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
6-2005
60
50
70
Rev A
80
70
80
050-7454
IC, COLLECTOR CURRENT (A)
90
0
APT65GP60L2DQ2
100
100
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
30
VGE = 15V
25
20
15
10
VCE = 400V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
5
0
APT65GP60L2DQ2
160
35
140
120
80
VGE =15V,TJ=25°C
60
40
V = 400V
20 RCE= 5Ω
G
0
5
VGE =15V,TJ=125°C
100
L = 100 µH
25
45
65
85
105 125 145
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
25
45
65
85
105 125 145
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
140
140
RG = 5Ω, L = 100µH, VCE = 400V
120
120
100
100
5
RG = 5Ω, L = 100µH, VCE = 400V
tf, FALL TIME (ns)
tr, RISE TIME (ns)
TJ = 125°C, VGE = 15V
80
60
40
TJ = 25 or 125°C,VGE = 15V
20
5
25
45
65
85
105 125 145
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
G
TJ = 125°C,VGE =15V
4000
3000
2000
1000
TJ = 25°C,VGE =15V
0
TJ = 125°C, VGE = 15V
3000
2000
1000
TJ = 25°C, VGE = 15V
5
25
45
65
85 105 145 165
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
6000
Eoff,130A
Eon2,65A
2000
Eon2,32.5A
Eoff,65A
Eoff 32.5A
,
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
6-2005
Rev A
050-7454
Eon2,130A
8000
0
G
4000
6000
= 400V
V
CE
= +15V
V
GE
T = 125°C
J
0
= 400V
V
CE
= +15V
V
GE
R = 5Ω
0
10
25
45
65
85
105 125 145
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
4000
TJ = 25°C, VGE = 15V
5000
= 400V
V
CE
= +15V
V
GE
R = 5Ω
10000
40
0
5
25
45
65
85 105 125 145
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
5000
60
20
0
6000
80
Eon2,130A
5000
V
= 400V
CE
V
= +15V
GE
R = 5Ω
4000
Eoff,130A
G
3000
2000
Eon2,65A
Eoff,65A
1000
0
Eon2,32.5A
Eoff 32.5A
,
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
5000
1,000
C0es
500
100
50
APT65GP60L2DQ2
300
10,000
250
200
150
100
Cres
50
0
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.9
0.14
0.12
0.7
0.10
0.08
0.5
Note:
0.06
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.16
0.3
0.04
0
t2
SINGLE PULSE
0.1
0.02
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
10-5
t1
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.0822
0.256
Case temperature(°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 5Ω
G
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
10
30
50
70
90
110
130
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
6-2005
0.0217
F
50
Rev A
0.0683
Power
(watts)
100
050-7454
RC MODEL
Junction
temp (°C)
FMAX, OPERATING FREQUENCY (kHz)
187
APT65GP60L2DQ2
APT40DQ60
10%
TJ = 125 °C
Gate Voltage
IC
V CC
td(on)
V CE
Collector Current
tr
90%
5%
A
10%
5%
Collector Voltage
D.U.T.
Switching Energy
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
65GP60B2 @ 125C Eoff
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
TJ = 125 °C
A
Collector Voltage
td(off)
V CE
tf
90%
100uH
IC
V CLAMP
0
10%
Switching Energy
Collector Current
050-7454
Rev A
6-2005
Figure 23, Turn-off Switching Waveforms and Definitions
B
A
DRIVER*
Figure 24, EON1 Test Circuit
D.U.T.
TYPICAL PERFORMANCE CURVES
APT65GP60L2DQ2
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
All Ratings: TC = 25°C unless otherwise specified.
APT65GP60L2DQ2
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 111°C, Duty Cycle = 0.5)
40
RMS Forward Current (Square wave, 50% duty)
63
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
IFSM
UNIT
Amps
320
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Characteristic / Test Conditions
MIN
Forward Voltage
VF
TYP
IF = 65A
2.3
IF = 130A
2.9
IF = 65A, TJ = 125°C
1.4
MAX
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
22
trr
Reverse Recovery Time
-
25
Qrr
Reverse Recovery Charge
-
35
-
3
-
160
ns
-
480
nC
-
6
-
85
ns
-
920
nC
-
20
Amps
IRRM
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 40A, diF/dt = -200A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
VR = 400V, TC = 25°C
Maximum Reverse Recovery Current
trr
IRRM
IF = 40A, diF/dt = -200A/µs
IF = 40A, diF/dt = -1000A/µs
Maximum Reverse Recovery Current
VR = 400V, TC = 125°C
ns
nC
-
-
Amps
Amps
0.9
0.60
0.50
0.7
0.40
0.5
Note:
0.30
0.3
0.20
0.10
t2
t
0.1
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.05
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 25a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
0.289 °C/W
0.00448 J/°C
0.381 °C/W
0.120 J/°C
Power
(watts)
Case temperature (°C)
FIGURE 25b, TRANSIENT THERMAL IMPEDANCE MODEL
6-2005
RC MODEL
Junction
temp (°C)
Rev A
10-5
t1
050-7454
0
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.70
100
80
60
TJ = 125°C
40
TJ = 175°C
20
TJ = 25°C
0.5
1
1.5
2
2.5
3
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 26. Forward Current vs. Forward Voltage
Qrr, REVERSE RECOVERY CHARGE
(nC)
1400
T = 125°C
J
V = 400V
R
1200
80A
1000
800
40A
600
400
20A
200
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Charge vs. Current Rate of Change
0.6
trr
0.4
CJ, JUNCTION CAPACITANCE
(pF)
40
25
T = 125°C
J
V = 400V
R
80A
20
15
40A
10
20A
5
Duty cycle = 0.5
T = 175°C
J
60
50
40
30
Qrr
20
10
0
200
6-2005
60
70
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
IRRM
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 30. Dynamic Parameters vs. Junction Temperature
Rev A
80
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 29. Reverse Recovery Current vs. Current Rate of Change
trr
0.2
050-7454
20A
100
0
Qrr
0.8
180
160
140
120
100
80
60
40
20
0
40A
120
80
1.0
0.0
140
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 27. Reverse Recovery Time vs. Current Rate of Change
1.4
1.2
R
80A
0
IRRM, REVERSE RECOVERY CURRENT
(A)
0
T = 125°C
J
V = 400V
160
20
TJ = -55°C
0
APT65GP60L2DQ2
180
trr, REVERSE RECOVERY TIME
(ns)
IF, FORWARD CURRENT
(A)
120
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 32. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 31. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT65GP60L2DQ2
Vr
diF /dt Adjust
+18V
APT40GT60BR
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 33. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 34, Diode Reverse Recovery Waveform and Definitions
TO-264MAX™ (L2) Package Outline
e1 SAC: Tin, Silver, Copper
4.60 (.181)
5.21 (.205)
1.80 (.071)
2.01 (.079)
19.51 (.768)
20.50 (.807)
Collector
(Cathode)
5.79 (.228)
6.20 (.244)
25.48 (1.003)
26.49 (1.043)
0.48 (.019)
0.84 (.033)
2.59 (.102)
3.00 (.118)
0.76 (.030)
1.30 (.051)
2.79 (.110)
3.18 (.125)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
6-2005
Gate
Collector
(Cathode)
Emitter
(Anode)
Rev A
19.81 (.780)
21.39 (.842)
2.29 (.090)
2.69 (.106)
050-7454
2.29 (.090)
2.69 (.106)