APT75GP120JDQ3_A.PDF

APT75GP120JDQ3
1200V
TYPICAL PERFORMANCE CURVES
APT75GP120JDQ3
®
E
E
POWER MOS 7 IGBT
®
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch
Through Technology this IGBT is ideal for many high frequency, high voltage switching
applications and has been optimized for high frequency switchmode power supplies.
• Low Conduction Loss
• 50 kHz operation @ 800V, 20A
• Low Gate Charge
• 20 kHz operation @ 800V, 44A
• Ultrafast Tail Current shutoff
• RBSOA Rated
C
G
ISOTOP ®
S
OT
22
7
"UL Recognized"
file # E145592
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT75GP120JDQ3
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±20
I C1
Continuous Collector Current @ TC = 25°C
128
I C2
Continuous Collector Current @ TC = 110°C
57
I CM
RBSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
300
@ TC = 150°C
Reverse Bias Safe Operating Area @ TJ = 150°C
300A @ 960V
Total Power Dissipation
Watts
543
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1250µA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
3
Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 75A, Tj = 125°C)
4.5
6
3.3
3.9
Units
Volts
3.0
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
MAX
1200
(VCE = VGE, I C = 2.5mA, Tj = 25°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
TYP
1250
2
Gate-Emitter Leakage Current (VGE = ±20V)
5500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
µA
nA
10-2005
V(BR)CES
MIN
Rev A
Characteristic / Test Conditions
050-7458
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT75GP120JDQ3
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
RBSOA
td(on)
tr
td(off)
tf
Eon1
80
Gate Charge
7.5
VGE = 15V
320
1620
2500
Inductive Switching (125°C)
20
VCC = 600V
40
VGE = 15V
245
RG = 5Ω
115
1620
I C = 75A
Eon1
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
44
55
µJ
4100
6
Current Fall Time
ns
55
TJ = +25°C
Turn-off Delay Time
nC
165
RG = 5Ω
Current Rise Time
V
A
40
I C = 75A
Turn-on Delay Time
pF
300
20
5
UNIT
140
VCC = 600V
4
MAX
50
Inductive Switching (25°C)
Current Fall Time
Turn-off Switching Energy
tf
f = 1 MHz
TJ = 150°C, R G = 5Ω, VGE =
Turn-off Delay Time
Eoff
td(off)
460
VGE = 15V
Turn-on Switching Energy (Diode)
tr
VGE = 0V, VCE = 25V
15V, L = 100µH,VCE = 960V
Current Rise Time
Eon2
td(on)
7035
I C = 75A
Turn-on Delay Time
TYP
Capacitance
VCE = 600V
Reverse Bias Safe Operating Area
Turn-on Switching Energy
MIN
TJ = +125°C
ns
µJ
5850
6
4820
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.23
RθJC
Junction to Case (DIODE)
.56
WT
VIsolation
Package Weight
29.2
RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.) 2500
UNIT
°C/W
gm
Volts
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
050-7458
Rev A
10-2005
4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
80
TJ = 25°C
TJ = 125°C
40
20
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
TJ = 25°C
TJ = 125°C
50
0
5
2 3 4
5 6
7 8
9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
IC = 150A
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
4
IC = 75A
3
IC = 37.5A
2
1
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
6
1.00
0.95
0.90
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
J
VCE = 240V
12
VCE = 600V
10
8
VCE = 960V
6
4
2
0
50
100 150 200 250
GATE CHARGE (nC)
300
350
FIGURE 4, Gate Charge
5.0
IC = 150A
4.0
IC = 75A
3.0
IC = 37.5A
2.0
1.0
0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75
100
125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
180
1.10
1.05
I = 75A
C
T = 25°C
14
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = -55°C
100
20
FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V)
150
40
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
200
TJ = 125°C
60
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
TJ = 25°C
80
0
0
250
100
160
140
120
100
80
60
40
20
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
10-2005
100
120
Rev A
120
60
V
= 10V
GE
250µs PULSE TEST
<0.5 % DUTY CYCLE
140
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
140
APT75GP120JDQ3
160
V
= 15V
GE
250µs PULSE TEST
<0.5 % DUTY CYCLE
050-7458
160
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
VGE = 15V
20
10
0
APT75GP120JDQ3
350
30
VCE = 600V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
300
250
150
VGE =15V,TJ=25°C
100
50 VCE = 600V
RG = 5Ω
0
0
VGE =15V,TJ=125°C
200
L = 100 µH
20 40 60 80 100 120 140 160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
20 40 60 80 100 120 140 160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
100
160
RG = 5Ω, L = 100µH, VCE = 600V
0
RG = 5Ω, L = 100µH, VCE = 600V
140
60
40
TJ = 25 or 125°C,VGE = 15V
12000
V
= 600V
CE
V
= +15V
GE
R = 5Ω
G
TJ = 125°C,VGE =15V
10000
5000
TJ = 25°C,VGE =15V
0
20 40 60 80 100 120 140 160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
J
15000
Eoff,150A
Eon2,75A
Eon2,37.5A
Eoff,75A
Eoff,37.5A
0
TJ = 125°C, VGE = 15V
8000
6000
4000
2000
TJ = 25°C, VGE = 15V
15000
Eon2,150A
10000
5000
G
10000
0
20 40 60 80 100 120 140 160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
V
= 600V
CE
V
= +15V
GE
T = 125°C
V
= 600V
CE
V
= +15V
GE
R = 5Ω
0
0
20000
TJ = 25°C, VGE = 15V
0
20 40 60 80 100 120 140 160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
15000
10-2005
60
0
0
20 40 60 80 100 120 140 160
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
Rev A
80
20
0
050-7458
100
40
20
0
TJ = 125°C, VGE = 15V
120
tf, FALL TIME (ns)
tr, RISE TIME (ns)
80
V
= 600V
CE
V
= +15V
GE
R = 5Ω
Eon2,150A
G
12500
10000
Eoff,150A
7500
Eon2,75A
5000
0
Eon2,37.5A
Eoff,75A
2500
Eoff,37.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
20,000
IC, COLLECTOR CURRENT (A)
1,000
Cies
P
C, CAPACITANCE ( F)
500
100
50
Coes
10
APT75GP120JDQ3
350
Cres
300
250
200
150
100
50
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
0
200
400
600
800
1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.9
0.20
0.7
0.15
0.5
Note:
0.10
0.3
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
t2
0.05
0.1
10-5
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.05
0
t1
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.0498
0.158
0.0416
0.543
Case temperature (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
10
F
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
5
1
T = 125°C
J
T = 75°C
C
D = 50 %
V
= XXXV
CE
R = 5Ω
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
20
35
50
60
80
95
110
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
10-2005
Power
(watts)
0.0014
Rev A
0.0221
050-7458
RC MODEL
Junction
temp (°C)
FMAX, OPERATING FREQUENCY (kHz)
50
APT75GP120JDQ3
10%
APT60DQ120
Gate Voltage
TJ = 125°C
td(on)
V CE
IC
V CC
tr
90%
5%
A
D.U.T.
Collector Current
5%
10%
Collector Voltage
Switching Energy
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
td(off)
tf
A
TJ = 125°C
V CE
Collector Voltage
90%
100uH
IC
V CLAMP
10%
Switching Energy
A
0
Collector Current
Rev A
10-2005
Figure 23, Turn-off Switching Waveforms and Definitions
050-7458
B
DRIVER*
Figure 24, EON1 Test Circuit
D.U.T.
TYPICAL PERFORMANCE CURVES
APT75GP120JDQ3
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
All Ratings: TC = 25°C unless otherwise specified.
APT75GP120JDQ3
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 105°C, Duty Cycle = 0.5)
60
RMS Forward Current (Square wave, 50% duty)
88
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
UNIT
Amps
540
STATIC ELECTRICAL CHARACTERISTICS
Symbol
VF
Characteristic / Test Conditions
Forward Voltage
MIN
TYP
IF = 75A
2.8
IF = 150A
3.48
IF = 75A, TJ = 125°C
2.17
MAX
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX-
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
60
trr
Reverse Recovery Time
-
265
Qrr
Reverse Recovery Charge
-
560
-
5
-
350
ns
-
2890
nC
-
13
-
150
-
4720
-
40
IRRM
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 60A, diF/dt = -200A/µs
VR = 800V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
VR = 800V, TC = 25°C
Maximum Reverse Recovery Current
trr
IRRM
IF = 60A, diF/dt = -200A/µs
IF = 60A, diF/dt = -1000A/µs
VR = 800V, TC = 125°C
Maximum Reverse Recovery Current
ns
nC
-
-
Amps
Amps
ns
-
nC
Amps
0.9
0.50
0.40
0.7
0.30
0.5
0.20
0.3
Note:
PDM
t1
t2
0.10
0.05
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 25a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
Junction
temp. (°C)
Power
(watts)
RC MODEL
10-2005
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.148
0.006
0.238
0.0910
Rev A
0
t
0.1
0.174
0.524
050-7458
ZθJC, THERMAL IMPEDANCE (°C/W)
0.60
Case temperature. (°C)
FIGURE 25b, TRANSIENT THERMAL IMPEDANCE MODEL
200
140
TJ = 175°C
120
100
TJ = 125°C
80
60
TJ = 25°C
40
TJ = -55°C
20
0
1
2
3
4
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 26. Forward Current vs. Forward Voltage
Qrr, REVERSE RECOVERY CHARGE
(nC)
7000
T = 125°C
J
V = 800V
R
6000
120A
5000
4000
60A
3000
30A
2000
1000
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Charge vs. Current Rate of Change
350
300
R
60A
250
30A
200
150
100
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 27. Reverse Recovery Time vs. Current Rate of Change
50
T = 125°C
J
V = 800V
45
120A
R
40
35
30
25
60A
20
15
30A
10
5
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 29. Reverse Recovery Current vs. Current Rate of Change
100
Qrr
trr
1.0
T = 125°C
J
V = 800V
120A
50
Duty cycle = 0.5
T = 175°C
90
J
80
trr
0.8
70
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
trr, REVERSE RECOVERY TIME
(ns)
160
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT
(A)
180
0
APT75GP120JDQ3
400
IRRM
0.6
60
50
40
0.4
Qrr
0.2
30
20
10
0.0
0
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 30. Dynamic Parameters vs. Junction Temperature
050-7458
Rev A
CJ, JUNCTION CAPACITANCE
(pF)
10-2005
350
300
250
200
150
100
50
0
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 32. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 31. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT75GP120JDQ3
Vr
diF /dt Adjust
+18V
APT10035LLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 33. Diode Test Circui
t
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 34, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
3.3 (.129)
3.6 (.143)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
Collector/Cathode
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
Gate
Dimensions in Millimeters and (Inches)
ISOTOP® is a Registered Trademark of SGS Thomson.
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
10-2005
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
Rev A
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
050-7458
7.8 (.307)
8.2 (.322)