APT80GP60JDQ3_A.PDF

APT80GP60JDQ3
600V
TYPICAL PERFORMANCE CURVES
APT80GP60JDQ3
®
E
E
POWER MOS 7 IGBT
®
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch
Through Technology this IGBT is ideal for many high frequency, high voltage switching
applications and has been optimized for high frequency switchmode power supplies.
• Low Conduction Loss
• 100 kHz operation @ 400V, 39A
• Low Gate Charge
• 50 kHz operation @ 400V, 59A
• Ultrafast Tail Current shutoff
• SSOA Rated
C
G
ISOTOP ®
S
OT
22
7
"UL Recognized"
file # E145592
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT80GP60JDQ3
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
151
I C2
Continuous Collector Current @ TC = 110°C
68
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
330
@ TC = 150°C
Switching Safe Operating Area @ TJ = 150°C
330A @ 600V
Total Power Dissipation
Watts
462
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1250µA)
600
VGE(TH)
Gate Threshold Voltage
3.0
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6.0
Collector-Emitter On Voltage (VGE = 15V, I C = 80A, Tj = 25°C)
2.2
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 80A, Tj = 125°C)
2.1
(VCE = VGE, I C = 2.5mA, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
1250
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
5500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Units
nA
6-2005
MIN
Rev A
Characteristic / Test Conditions
050-7442
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT80GP60JDQ3
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
tf
f = 1 MHz
40
Gate Charge
7.5
VGE = 15V
280
TJ = 150°C, R G = 5Ω, VGE =
795
1200
Inductive Switching (125°C)
29
VCC = 400V
40
VGE = 15V
150
RG = 5Ω
85
795
I C = 80A
Eon1
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
44
55
µJ
1535
6
Current Fall Time
ns
80
TJ = +25°C
Turn-off Delay Time
nC
115
RG = 5Ω
Current Rise Time
V
A
40
I C = 80A
Turn-on Delay Time
pF
330
29
5
UNIT
85
VCC = 400V
4
MAX
65
Inductive Switching (25°C)
Current Fall Time
Turn-off Switching Energy
td(off)
735
15V, L = 100µH,VCE = 600V
Turn-off Delay Time
Eoff
tr
VGE = 0V, VCE = 25V
VGE = 15V
Turn-on Switching Energy (Diode)
td(on)
9840
I C = 80A
Current Rise Time
Eon2
TYP
Capacitance
VCE = 300V
Turn-on Delay Time
Turn-on Switching Energy
MIN
TJ = +125°C
ns
µJ
2155
6
1690
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.27
RθJC
Junction to Case (DIODE)
.60
WT
VIsolation
Package Weight
29.2
RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.) 2500
UNIT
°C/W
gm
Volts
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
050-7442
Rev A
6-2005
4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
120
120
100
100
IC, COLLECTOR CURRENT (A)
TJ = 25°C
40
TJ = -55°C
20
0
TJ = -55°C
TJ = 25°C
100
TJ = 125°C
0
2 3 4
5 6
7 8
9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
3.5
IC = 160A
3.0
2.5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC = 80A
2.0
IC = 40A
1.5
1.0
0.5
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
6
1.10
1.05
1.00
0.95
0.90
0.85
0.80
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
J
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
50
100
150
200
250
GATE CHARGE (nC)
300
FIGURE 4, Gate Charge
3.0
IC = 160A
2.5
IC = 80A
2.0
IC = 40A
1.5
1.0
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
200
1.20
1.15
I = 80A
C
T = 25°C
14
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VGE, GATE-TO-EMITTER VOLTAGE (V)
300
200
FIGURE 2, Output Characteristics (TJ = 125°C)
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
400
TJ = 125°C
20
0
0.5
1.0
1.5
2.0
2.5
3.0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
TJ = 25°C
40
0
0
0.5
1.0
1.5
2.0
2.5
3.0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
500
TJ = -55°C
60
180
160
140
120
100
80
60
40
20
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
6-2005
TJ = 125°C
60
80
Rev A
80
APT80GP60JDQ3
050-7442
IC, COLLECTOR CURRENT (A)
TYPICAL PERFORMANCE CURVES
35
VGE = 15V
30
25
20
15
10
VCE = 400V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
5
0
40
30
20
TJ = 25 or 125°C,VGE = 15V
VCE = 400V
20 R = 5Ω
G
RG = 5Ω, L = 100µH, VCE = 400V
TJ = 125°C, VGE = 15V
80
60
TJ = 25°C, VGE = 15V
40
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
4000
= 400V
V
CE
= +15V
V
GE
R = 5Ω
G
3000
L = 100 µH
20
TJ = 125°C,VGE =15V
2500
2000
1500
1000
TJ = 25°C,VGE =15V
500
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
40
100
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
0
= 400V
V
CE
= +15V
V
GE
R = 5Ω
G
3000
TJ = 125°C, VGE = 15V
2000
1000
TJ = 25°C, VGE = 15V
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
6000
4000
= 400V
V
CE
= +15V
V
GE
T = 125°C
Eon2,120A
J
5000
Eoff,120A
4000
3000
Eon2,80A
Eoff,80A
2000
Eon2,40A
1000
0
Eoff,40A
5
10
15
20
25
30
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
60
50
3500
VGE =15V,TJ=25°C
80
120
0
6-2005
100
60
4000
VGE =15V,TJ=125°C
120
140
RG = 5Ω, L = 100µH, VCE = 400V
10
Rev A
140
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
tf, FALL TIME (ns)
tr, RISE TIME (ns)
70
160
0
10
30
50
70
90
110
130
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
050-7442
APT80GP60JDQ3
180
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
40
= 400V
V
CE
= +15V
V
GE
R = 5Ω
G
3000
Eon2,120A
Eoff,120A
2000
Eon2,80A
Eoff,80A
1000
Eon2,40A
Eoff,40A
0
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
20,000
IC, COLLECTOR CURRENT (A)
Cies
10,000
P
C, CAPACITANCE ( F)
5000
1000
Coes
50
10
5
APT80GP60JDQ3
300
250
200
150
100
50
Cres
1
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.25
0.9
0.20
0.7
0.15
0.5
Note:
0.10
0.3
0.05
0.1
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.30
t1
t2
SINGLE PULSE
0.05
0
10-5
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.0584
0.185
0.0354
0.463
Case temperature(°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
50
F
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
5
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 5Ω
G
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
1
10 20 30 40 50 60 70 80 90 100 110 120
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
6-2005
Power
(watts)
0.00119
Rev A
0.0260
100
050-7442
RC MODEL
Junction
temp (°C)
FMAX, OPERATING FREQUENCY (kHz)
190
APT80GP60JDQ3
Gate Voltage
10%
APT60DQ60
T J = 125 °C
td(on)
90%
IC
V CC
Collector Current
V CE
tr
5%
A
5%
10%
Switching
Energy
D.U.T.
Collector Voltage
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
td(off)
TJ = 125 °C
A
Collector Voltage
90%
V CE
100uH
V CLAMP
tf
10%
Switching
Energy
Collector Current
0
Rev A
6-2005
Figure 23, Turn-off Switching Waveforms and Definitions
050-7442
IC
B
A
DRIVER*
Figure 24, EON1 Test Circuit
D.U.T.
TYPICAL PERFORMANCE CURVES
APT80GP60JDQ3
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
All Ratings: TC = 25°C unless otherwise specified.
APT80GP60JDQ3
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 99°C, Duty Cycle = 0.5)
60
RMS Forward Current (Square wave, 50% duty)
85
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
UNIT
Amps
600
STATIC ELECTRICAL CHARACTERISTICS
Symbol
VF
Characteristic / Test Conditions
Forward Voltage
MIN
TYP
IF = 80A
1.82
IF = 160A
2.21
IF = 80A, TJ = 125°C
1.56
MAX
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX-
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
160
trr
Reverse Recovery Time
-
70
Qrr
Reverse Recovery Charge
-
100
-
4
-
140
ns
-
690
nC
-
9
-
80
ns
-
1540
nC
-
31
Amps
IRRM
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 60A, diF/dt = -200A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
VR = 400V, TC = 25°C
Maximum Reverse Recovery Current
trr
IRRM
IF = 60A, diF/dt = -200A/µs
IF = 60A, diF/dt = -1000A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
ns
nC
-
-
Amps
Amps
0.60
0.9
0.50
0.7
0.40
0.5
0.30
0.20
0.3
0.10
0.1
0.05
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 25a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
RC MODEL
Junction
temp (°C)
Power
(watts)
6-2005
10-5
SINGLE PULSE
0.159
0.00560
0.255
0.0849
Rev A
0
0.186
0.489
050-7442
ZθJC, THERMAL IMPEDANCE (°C/W)
0.70
Case temperature (°C)
FIGURE 25b, TRANSIENT THERMAL IMPEDANCE MODEL
200
140
120
TJ = 175°C
100
80
TJ = 125°C
60
40
TJ = -55°C
20
0
Qrr, REVERSE RECOVERY CHARGE
(nC)
2500
T = 125°C
J
V = 400V
R
2000
120A
60A
1500
1000
30A
500
0
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Charge vs. Current Rate of Change
60
40
60
T = 125°C
J
V = 400V
R
50
120A
40
30
60A
20
30A
10
0
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 29. Reverse Recovery Current vs. Current Rate of Change
100
Duty cycle = 0.5
T = 175°C
J
80
0.8
IRRM
trr
0.6
60
40
0.4
Qrr
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 30. Dynamic Parameters vs. Junction Temperature
0
600
CJ, JUNCTION CAPACITANCE
(pF)
30A
80
trr
1.0
0.0
6-2005
60A
100
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 27. Reverse Recovery Time vs. Current Rate of Change
Qrr
0.2
Rev A
120
R
0
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
T = 125°C
J
V = 400V
120A
140
20
TJ = 25°C
0.5
1.0
1.5
2.0
2.5
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 26. Forward Current vs. Forward Voltage
050-7442
trr, REVERSE RECOVERY TIME
(ns)
160
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT
(A)
180
0
APT80GP60JDQ3
160
500
400
300
200
100
0
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 32. Junction Capacitance vs. Reverse Voltage
20
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 31. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT80GP60JDQ3
Vr
diF /dt Adjust
+18V
APT60M75L2LL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 33. Diode Test Circui
t
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 34, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
3.3 (.129)
3.6 (.143)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
Collector/Cathode
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
Gate
Dimensions in Millimeters and (Inches)
ISOTOP® is a Registered Trademark of SGS Thomson. APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
6-2005
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
Rev A
r = 4.0 (.157)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
050-7442
7.8 (.307)
8.2 (.322)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)