APT15GP60BDL(G)_C.pdf

APT15GP60BDL(G)
600V, 15A, VCE(ON) = 2.2V Typical
Resonant Mode Combi IGBT®
The POWER MOS 7® IGBT used in this resonant mode combi is a new generation of high
voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high
frequency, high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
Features
TO
• SSOA Rated
• Induction Heating
• Low Gate Charge
• RoHS Compliant
• Welding
G
C
E
C
• Ultrafast Tail Current shutoff
• Medical
• Low forward Diode Voltage (VF)
• High Power Telecom
• Ultrasoft Recovery Diode
• Resonant Mode Phase Shifted
Bridge
G
E
All Ratings: TC = 25°C unless otherwise specified.
MAXIMUM RATINGS
Parameter
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
I C1
Continuous Collector Current @ TC = 25°C
56
I C2
Continuous Collector Current @ TC = 110°C
27
I CM
Pulsed Collector Current
SSOA
PD
1
Switching Safe Operating Area @ TJ = 150°C
Amps
65A @ 600V
Watts
250
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
TL
Volts
65
@ TC = 25°C
Total Power Dissipation
TJ,TSTG
UNIT
Ratings
VCES
VGEM
47
Typical Applications
• Low Conduction Loss
Symbol
-2
°C
300
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1.0mA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C)
2.2
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C)
2.1
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
275
2
Gate-Emitter Leakage Current (VGE = ±20V)
2750
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
UNIT
Volts
μA
nA
3-2012
MIN
Rev C
Characteristic / Test Conditions
052-6356
Symbol
APT15GP60BDL(G)
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Total Gate Charge
3
MIN
TYP
Capacitance
1685
VGE = 0V, VCE = 25V
210
f = 1 MHz
15
Gate Charge
7.5
VGE = 15V
55
VCE = 300V
12
15
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
I C = 15A
SSOA
Switching Safe Operating Area
TJ = 150°C, R G = 5Ω,VGE =
MAX
UNIT
pF
V
nC
65
A
15V, L = 100μH,VCE = 600V
Inductive Switching (25°C)
8
Current Rise Time
VCC = 400V
12
Turn-off Delay Time
VGE = 15V
29
Current Fall Time
I C = 15A
58
Eon1
Turn-on Switching Energy
RG = 5Ω
130
Eon2
Turn-on Switching Energy (With Diode)
TJ = +25°C
152
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
td(on)
tr
td(off)
tf
tr
td(off)
tf
Turn-on Delay Time
4
6
8
Current Rise Time
VCC = 400V
12
Turn-off Delay Time
VGE = 15V
69
I C = 15A
88
RG = 5Ω
130
TJ = +125°C
267
Current Fall Time
44
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (With Diode)
Turn-off Switching Energy
μJ
121
Inductive Switching (125°C)
Eon1
Eoff
5
ns
55
66
ns
μJ
268
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
RθJC
Junction to Case (DIODE)
1.00
Package Weight
5.90
WT
.50
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and diode leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
052-6356
Rev C
3-2012
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
TC=25°C
10
5
TC=-55°C
TC=125°C
0
40
TJ = 25°C
20
TJ = 125°C
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
3
IC =30A
2.5
IC = 15A
2
IC = 7.5A
1.5
1
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
0.9
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
VCE = 480V
6
4
2
0
10
20
30
40
50
GATE CHARGE (nC)
FIGURE 4, Gate Charge
60
3.5
3
IC =30A
2.5
IC = 15A
2
IC = 7.5A
1.5
1
0.5
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
70
0.95
VCE = 300V
8
1.15
1.0
VCE = 120V
10
80
1.05
J
12
1.2
1.10
I = 15A
C
T = 25°C
14
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
3.5
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
60
TC=-55°C
TC=125°C
5
FIGURE 2, Output Characteristics (VGE = 10V)
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
80
TC=25°C
10
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
100
TJ = -55°C
15
0
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
250μs PULSE TEST
<0.5 % DUTY CYCLE
20
60
50
40
30
20
10
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
3-2012
15
25
APT15GP60BDL(G)
VGE = 10V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
Rev C
20
IC, COLLECTOR CURRENT (A)
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
25
IC, COLLECTOR CURRENT (A)
30
052-6356
30
APT15GP60BDL(G)
80
16
14
VGE= 10V
12
VGE= 15V
10
8
6
4
VCE = 400V
TJ = 25°C or 125°C
RG = 5Ω
L = 100 μH
2
0
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
18
tf, FALL TIME (ns)
tr, RISE TIME (ns)
20
15
10
RG =5Ω, L = 100μH, VCE = 400V
VGE =10V,TJ=25°C
VCE = 400V
RG = 5Ω
L = 100 μH
10
TJ = 125°C, VGE = 10V or 15V
60
TJ = 25°C, VGE = 10V or 15V
40
0
5
RG =5Ω, L = 100μH, VCE = 400V
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
5
700
V
= 400V
CE
L = 100 μH
R =5Ω
TJ =125°C, VGE=15V
G
500
TJ =125°C,VGE=10V
400
300
200
TJ = 25°C, VGE=15V
100
TJ = 25°C, VGE=10V
0
EOFF, TURN OFF ENERGY LOSS (μJ)
EON2, TURN ON ENERGY LOSS (μJ)
20
20
TJ = 25 or 125°C,VGE = 15V
700
600
V
= 400V
CE
L = 100 μH
R =5Ω
TJ = 125°C, VGE = 10V or 15V
G
500
400
300
200
100
TJ = 25°C, VGE = 10V or 15V
0
0
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
700
V
= 400V
CE
V
= +15V
GE
TJ = 125°C
800
Eon2 30A
700
Eoff 30A
600
500
400
Eon2 15A
300
Eoff 15A
200
Eon2 7.5A
100
Eoff 7.5A
0
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (μJ)
900
SWITCHING ENERGY LOSSES (μJ)
VGE =15V,TJ=25°C
30
80
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
3-2012
40
100
5
Rev C
50
TJ = 25 or 125°C,VGE = 10V
25
052-6356
VGE =10V,TJ=125°C
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
30
600
60
0
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
0
VGE =15V,TJ=125°C
70
600
V
= 400V
CE
V
= +15V
GE
R =5Ω
G
500
Eon2 30A
400
Eoff 30A
300
200
Eon2 15A
100
0
-50
Eon2 7.5A
Eoff 15A
Eoff 7.5A
-25
0
25
50
75 100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
4,000
IC, COLLECTOR CURRENT (A)
Cies
1,000
P
C, CAPACITANCE ( F)
APT15GP60BDL(G)
70
500
Coes
100
50
60
50
40
30
20
Cres
10
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.50
0.9
0.40
0.7
0.30
0.5
PDM
Note:
0.20
0.3
t1
t2
0.10
Duty Factor D = t1/t2
0.1
0.05
0
10-5
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.284
0.0060
0.161
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
50
10
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R =5W
G
5
10
15
20
25
30
35
40
45
50
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
Fmax = min(f max1 , f max 2 )
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
3-2012
0.216
Dissipated Power
(Watts)
100
Rev C
TC ( C)
052-6356
TJ ( C)
FMAX, OPERATING FREQUENCY (kHz)
292
ZEXT
Z JC, THERMAL IMPEDANCE (°C/W)
q
0.60
APT15GP60BDL(G)
APT30DL60
APT15DF60
Gate Voltage
10%
TJ = 125 C
td(on)
V CE
IC
V CC
Collector Current
tr
90%
A
10%
5%
D.U.T.
5%
Collector Voltage
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
TJ = 125 C
Collector Voltage
td(off)
A
tf
V CE
IC
90%
100uH
V CLAMP
10%
Switching Energy
0
Collector Current
052-6356
Rev C
3-2012
Figure 23, Turn-off Switching Waveforms and Definitions
B
A
DRIVER*
Figure 24, EON1 Test Circuit
D.U.T.
DYNAMIC CHARACTERISTICS
APT15GP60BDL(G)
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
All Ratings: TC = 25°C unless otherwise specified.
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
APT15GP60BDL(G)
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 126°C, Duty Cycle = 0.5)
30
RMS Forward Current (Square wave, 50% duty)
51
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
UNIT
Amps
320
STATIC ELECTRICAL CHARACTERISTICS
Symbol
VF
Characteristic / Test Conditions
MIN
Forward Voltage
TYP
MAX
IF = 30A
1.25
1.6
IF = 60A
2.0
IF = 30A, TJ = 125°C
UNIT
Volts
1.25
DYNAMIC CHARACTERISTICS
Characteristic
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/μs, V = 30V, T = 25°C
F
F
R
J
-
64
trr
Reverse Recovery Time
-
317
Qrr
Reverse Recovery Charge
-
962
-
7
-
561
ns
-
2244
nC
-
9
-
264
ns
-
3191
nC
-
26
Amps
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 30A, diF/dt = -1000A/μs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
ZθJC, THERMAL IMPEDANCE (°C/W)
-
-
Amps
Amps
Note:
P DM
t1
t2
t
Duty Factor D = 1 /t2
Peak T J = P DM x Z θJC + T C
RECTANGULAR PULSE DURATION (seconds)
FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
T J (°C)
T C (°C)
.112
.437
.450
.0005
.0016
0.263
Dissipated Powe r
(Watts )
Z EXT are the external therma l
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling onl y
the case to junction.
FIGURE 1b, TRANSIENT THERMAL IMPEDANCE MODEL
3-2012
IRRM
IF =30A, diF/dt = -200A/μs
nC
Rev C
IRRM
VR = 400V, TC = 25°C
Z EXT
IRRM
IF = 30A, diF/dt = -200A/μs
ns
052-6356
Symbol
TYPICAL PERFORMANCE CURVES
800
100
TJ= 125°C
TJ= 150°C
TJ= 55°C
70
60
TJ= 25°C
50
40
30
20
10
0
0
0.5
1.0
1.5
2.0
2.5 3.0
VF, ANODE-TO-CATHODE VOLTAGE (V)
FIGURE 2, Forward Current vs. Forward Voltage
4500
T = 125°C
60A
J
V = 400V
R
4000
3500
30A
3000
15A
2500
2000
1500
1000
500
0
tRR
0.6
QRR
300
200
100
0
0
200
400
600
800
1000
-diF/dt, CURRENT RATE OF CHANGE (A/μs)
FIGURE 3, Reverse Recovery Time vs. Current Rate of Change
32
28
T = 125°C
J
V = 400V
60A
R
30A
24
15A
20
16
12
8
4
0
0
200
400
600
800
1000
-diF/dt, CURRENT RATE OF CHANGE (A/μs)
FIGURE 5, Reverse Recovery Current vs. Current Rate of Change
0.4
Duty cycle = 0.5
TJ = 126°C
0
25
50
75
100
125
150
300
CJ, JUNCTION CAPACITANCE (pF)
15A
IRRM
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 6, Dynamic Parameters vs Junction Temperature
3-2012
400
0.8
0
Rev C
30A
500
1
0.2
052-6356
600
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/μs)
0
200
400
600
800
1000
-diF/dt, CURRENT RATE OF CHANGE (A/μs)
FIGURE 4, Reverse Recovery Charge vs. Current Rate of Change
1.2
R
60A
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT (A)
80
T = 125°C
J
V = 400V
700
trr, COLLECTOR CURRENT (A)
90
Qrr, REVERSE RECOVERY CHARGE
(nC)
APT15GP60BDL(G)
250
200
150
100
50
0
1
10
100
400
VR, REVERSE VOLTAGE (V)
FIGURE 8, Junction Capacitance vs. Reverse Voltage
Case Temperature (°C)
FIGURE 7, Maximum Average Forward Current vs. Case Temperature
Vr
diF /dt Adjus t
+18V
0V
D.U.T.
trr/Q rr
Wavefor m
CURRENT
TRANSFORMER
Figure 9. Diode Test Circui
1
I F - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
I RRM - Maximum Reverse Recovery Current
4
e diode
trr - Revers e R ecovery Time, measured from zero crossing wher
current goes from positive to negative, to the point at which the straight
line through I RRM and 0.25 I RRM passes through zero .
t
1
4
6
Zer o
.
5
5
Q rr - Area Under the Curve Defined by I
6
diM/dt - Maximum Rate of Current Increase During the Trailing Portion of t
RRM
3
2
0.25 I RRM
Slope = di
M/dt
and trr.
rr.
Figure 10, Diode Reverse Recovery Waveform and Definitions
TO-247 (B) Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector
(Cathode)
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
Gate
Collector (Cathode)
Dimensions in Millimeters and (Inches )
Rev C
5.45 (.215) BSC
2-Plcs.
052-6356
2.21 (.087)
2.59 (.102)
3-2012
Emitter (Anode)
Similar pages