APT15GT60BR(G)_D.pdf

APT15GT60BR(G)
600V
TYPICAL PERFORMANCE CURVES
APT15GT60BR
APT15GT60BRG*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Thunderbolt IGBT®
TO
-2
47
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 150KHz
• Low Tail Current
• Ultra Low Leakage Current
G
C
E
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT15GT60BR(G)
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
42
I C2
Continuous Collector Current @ TC = 110°C
20
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
45
Switching Safe Operating Area @ TJ = 150°C
45A @ 600V
Total Power Dissipation
Watts
184
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
(VCE = VGE, I C = 700µA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
TYP
MAX
3
4
5
1.6
2.0
2.5
Gate-Emitter Leakage Current (VGE = ±20V)
µA
1500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Volts
2.8
25
2
Units
nA
12-2005
MIN
Rev D
Characteristic / Test Conditions
052-6209
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT15GT60BR(G)
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
tf
Eon1
f = 1 MHz
50
Gate Charge
7.5
VGE = 15V
75
15V, L = 100µH,VCE = 600V
150
TJ = +25°C
215
6
VCC = 400V
8
VGE = 15V
Turn-off Delay Time
100
TJ = +125°C
150
325
RG = 10Ω
44
55
ns
125
I C = 15A
Current Fall Time
Turn-off Switching Energy
µJ
195
Inductive Switching (125°C)
Current Rise Time
Eoff
ns
55
6
Turn-on Switching Energy (Diode)
nC
105
RG = 10Ω
Turn-on Delay Time
Turn-on Switching Energy
V
A
8
I C = 15A
Eon2
pF
45
6
5
UNIT
34
VCC = 400V
4
MAX
6
Inductive Switching (25°C)
Current Fall Time
Turn-off Switching Energy
td(off)
120
TJ = 150°C, R G = 10Ω, VGE =
Turn-off Delay Time
Eoff
tr
VGE = 0V, VCE = 25V
VGE = 15V
Turn-on Switching Energy (Diode)
td(on)
830
I C = 15A
Current Rise Time
Eon2
TYP
Capacitance
VCE = 300V
Turn-on Delay Time
Turn-on Switching Energy
MIN
6
µJ
325
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.68
RθJC
Junction to Case (DIODE)
N/A
WT
Package Weight
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
052-6209
Rev D
12-2005
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
TJ = -55°C
35
30
TJ = 25°C
25
TJ = 125°C
20
15
10
60
30
25
20
15
TJ = 25°C
10
TJ = 125°C
5
0
0
7V
20
6V
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
35
8V
30
0
5
10
15
20
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
TJ = -55°C
9V
40
0
250µs PULSE
TEST<0.5 % DUTY
CYCLE
10V
50
0
40
13V
70
10
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
80
5
45
15V
90
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
= 15V
J
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 15A
C
T = 25°C
14
0
10
IC = 30A
3.5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.0
2.5
IC = 15A
2.0
1.5
IC = 7.5A
1.0
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.15
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
80
3.5
IC = 30A
3.0
2.5
IC = 15A
2.0
IC = 7.5A
1.5
1.0
0.5
0
25
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
60
IC, DC COLLECTOR CURRENT(A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
1.10
70
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4.0
20 30 40 50 60
GATE CHARGE (nC)
50
40
30
20
10
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
12-2005
GE
Rev D
V
40
APT15GT60BR(G)
100
052-6209
45
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
8
VGE = 15V
6
4
2 VCE = 400V
TJ = 25°C, or 125°C
0
RG = 10Ω
L = 100µH
30
tf, FALL TIME (ns)
tr, RISE TIME (ns)
20
TJ = 25 or 125°C,VGE = 15V
15
10
VGE =15V,TJ=25°C
60
40
V = 400V
20 RCE= 10Ω
G
L = 100µH
0
RG = 10Ω, L = 100µH, VCE = 400V
TJ = 125°C, VGE = 15V
150
100
50
1000
TJ = 25°C, VGE = 15V
0
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
600
V
= 400V
CE
V
= +15V
GE
R = 10Ω
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
VGE =15V,TJ=125°C
80
200
0
G
800
TJ = 125°C
600
400
200
TJ = 25°C
V
= 400V
CE
V
= +15V
GE
R = 10Ω
G
500
TJ = 125°C
400
300
200
TJ = 25°C
100
0
0
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
1200
1000
V
= 400V
CE
V
= +15V
GE
T = 125°C
Eon2,30A
J
1000
800
Eoff,30A
600
Eon2,15A
400
Eoff,15A
Eoff,7.5A
200
0
Eon2,7.5A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
100
250
RG = 10Ω, L = 100µH, VCE = 400V
5
12-2005
120
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
25
Rev D
140
0
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
052-6209
APT15GT60BR(G)
160
10
V
= 400V
CE
V
= +15V
GE
R = 10Ω
Eon2,30A
G
800
600
Eoff,30A
400
Eoff,15A
200
0
Eon2,15A
Eoff,7.5A
Eon2,7.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
500
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
1,000
Coes
100
50
APT15GT60BR(G)
50
2,000
Cres
45
40
35
30
25
20
15
10
5
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
D = 0.9
0.60
0.7
0.50
0.40
0.5
0.30
Note:
0.3
0.20
0.10
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.70
t2
SINGLE PULSE
0.1
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
0
10-5
t1
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.271
0.0013
0.00675
0.0969
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 10Ω
G
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
0
5
10
15
20
25
30
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
12-2005
0.165
F
50
Rev D
0.243
Dissipated Power
(Watts)
100
052-6209
TC (°C)
ZEXT
TJ (°C)
FMAX, OPERATING FREQUENCY (kHz)
180
APT15GT60BR(G)
10%
APT15DQ60
Gate Voltage
TJ = 125°C
IC
V CC
td(on)
V CE
tr
Collector Current
90%
5%
10%
A
Switching Energy
D.U.T.
Collector Voltage
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
TJ = 125°C
td(off)
tf
90%
Collector Voltage
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
15.49 (.610)
16.26 (.640)
1.49 (.059)
2.49 (.098)
6.15 (.242) BSC
Collector
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
Rev D
12-2005
0.40 (.016)
0.79 (.031) 19.81 (.780)
20.32 (.800)
052-6209
5.38 (.212)
6.20 (.244)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Gate
Collector
Emitter
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.