APT15GT60BRDQ1(G)_B.pdf

TYPICAL PERFORMANCE CURVES
APT15GT60BRDQ1(G)
600V
APT15GT60BRDQ1
APT15GT60BRDQ1G*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Thunderbolt IGBT®
TO
-2
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 150KHz
• Low Tail Current
• Ultra Low Leakage Current
G
C
47
E
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT15GT60BRDQ1(G)
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
42
I C2
Continuous Collector Current @ TC = 110°C
20
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
45
Switching Safe Operating Area @ TJ = 150°C
45A @ 600V
Total Power Dissipation
Watts
184
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
(VCE = VGE, I C = 700µA, Tj = 25°C)
3
TYP
4
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C)
1.6
2.0
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C)
2.8
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
2
Gate-Emitter Leakage Current (VGE = ±20V)
MAX
5 Volts
2.5
50
1500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Units
µA
nA
6-2008
MIN
Rev B
Characteristic / Test Conditions
052-6284
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT15GT60BRDQ1(G)
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Total Gate Charge
3
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
MIN
TYP
Capacitance
800
VGE = 0V, VCE = 25V
84
f = 1 MHz
52
Gate Charge
7.5
Test Conditions
Characteristic
VGE = 15V
75
VCE = 300V
6
I C = 15A
34
TJ = 150°C, R G = 10Ω, VGE =
15V, L = 100µH,VCE = 600V
tr
Current Rise Time
VCC = 400V
td(off)
Turn-off Delay Time
VGE = 15V
tf
Eon1
I C = 15A
Current Fall Time
Turn-on Switching Energy
4
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
tr
Current Rise Time
td(off)
tf
Eon1
RG = 10Ω
TJ = +25°C
5
6
VGE = 15V
Turn-off Delay Time
I C = 15A
Current Fall Time
Turn-on Switching Energy
RG = 10Ω
44
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
55
TJ = +125°C
6
V
nC
A
6
8
105
55
150
195
215
Inductive Switching (125°C) VCC = 400V
UNIT
pF
45
Inductive Switching (25°C) Turn-on Delay Time
MAX
ns
µJ
6
8
125
100
150
325
325
TYP
ns
µJ
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
RθJC
Junction to Case (IGBT)
.68
RθJC
Junction to Case (DIODE)
5.9
1.35
WT
Package Weight
MAX
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
052-6284
Rev B
6-2008
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
TJ = 25°C
25
TJ = 125°C
20
15
10
IC, COLLECTOR CURRENT (A)
TJ = -55°C
35
30
25
20
15
TJ = 25°C
10
TJ = 125°C
5
0
0
6V
0
5
10
15
20
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 125°C)
I = 15A
C
T = 25°C
J
14
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
0
10
IC = 30A
3.5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.0
2.5
IC = 15A
2.0
1.5
IC = 7.5A
1.0
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25 0 25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
70
80
3.5
IC = 30A
3.0
2.5
IC = 15A
2.0
IC = 7.5A
1.5
1.0
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
60
IC, DC COLLECTOR CURRENT(A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED)
1.10
20 30 40 50 60
GATE CHARGE (nC)
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
4.0
1.15
7V
20
FIGURE 3, Transfer Characteristics
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
8V
30
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
9V
40
0
40
10V
50
0
FIGURE 1, Output Characteristics(TJ = 25°C)
60
10
45
13V
70
5
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
80
50
40
30
20
10
0
-50 -25 0 25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
6-2008
30
15V
90
Rev B
IC, COLLECTOR CURRENT (A)
= 15V
TJ = -55°C
35
GE
052-6284
V
40
APT15GT60BRDQ1(G)
100
IC, COLLECTOR CURRENT (A)
45
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
8
VGE = 15V
6
4
2 VCE = 400V
TJ = 25°C, or 125°C
0
RG = 10Ω
L = 100µH
tf, FALL TIME (ns)
tr, RISE TIME (ns)
10
V = 400V
20 RCE= 10Ω
G
L = 100µH
0
RG = 10Ω, L = 100µH, VCE = 400V
TJ = 125°C, VGE = 15V
150
100
50
0
5
10
15 20
25 30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
0
5
10
15 20
25
30 35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
600
EOFF, TURN OFF ENERGY LOSS (µJ)
V
= 400V
CE
V
= +15V
GE
R = 10Ω
G
800
TJ = 125°C
600
400
200
TJ = 25°C
TJ = 25°C, VGE = 15V
0
0
EON2, TURN ON ENERGY LOSS (µJ)
40
200
15
500
V
= 400V
CE
V
= +15V
GE
R = 10Ω
G
TJ = 125°C
400
300
200
TJ = 25°C
100
0
0
0
5
10
15 20
25 30 35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
0
5
10
15 20
25 30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
1200
1000
1000
V
= 400V
CE
V
= +15V
GE
T = 125°C
Eon2,30A
J
800
Eoff,30A
600
Eon2,15A
400
Eoff,15A
Eoff,7.5A
200
0
Eon2,7.5A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
VGE =15V,TJ=25°C
60
250
RG = 10Ω, L = 100µH, VCE = 400V
TJ = 25 or 125°C,VGE = 15V
6-2008
Rev B
VGE =15V,TJ=125°C
80
30
1000
052-6284
100
5
10
15 20
25
30 35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
5
120
5
10
15 20
25 30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
20
140
0
0
25
APT15GT60BRDQ1(G)
160
10
V
= 400V
CE
V
= +15V
GE
R = 10Ω
Eon2,30A
G
800
600
400
Eoff,30A
Eoff,15A
200
0
Eon2,15A
Eoff,7.5A
Eon2,7.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
500
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
1,000
Coes
100
50
APT15GT60BRDQ1(G)
50
2,000
Cres
45
40
35
30
25
20
15
10
5
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0 100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.70
0.7
0.50
0.40
0.5
0.30
Note:
0.3
0.20
0.10
10-5
t1
t2
SINGLE PULSE
0.1
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
0
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
D = 0.9
0.60
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.271
0.0013
0.00675
0.0969
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
10
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 10Ω
G
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
0
5
10
15
20
25
30
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
6-2008
0.165
Fmax = min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
50
Rev B
0.243
Dissipated Power
(Watts)
100
052-6284
TC (°C)
ZEXT
TJ (°C)
FMAX, OPERATING FREQUENCY (kHz)
180
APT15GT60BRDQ1(G)
10%
APT15DQ60
Gate Voltage
TJ = 125°C
IC
V CC
td(on)
V CE
tr
Collector Current
90%
A
Switching Energy
D.U.T.
90%
TJ = 125°C
td(off)
tf
90%
Collector Voltage
10%
Switching Energy
0
Collector Current
Rev B
6-2008
Figure 23, Turn-off Switching Waveforms and Definitions
052-6284
Collector Voltage
Figure 22, Turn-on Switching Waveforms and Definitions
Figure21,InductiveSwitchingTestCircuit
Gate Voltage
5%
10%
TYPICAL PERFORMANCE CURVES
APT15GT60BRDQ1(G)
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS Symbol
All Ratings: TC = 25°C unless otherwise specified.
APT15GT60BRDQ1(G) UNIT
Characteristic / Test Conditions
IF(AV)
IF(RMS)
Maximum Average Forward Current (TC = 129°C, Duty Cycle = 0.5)
15
RMS Forward Current (Square wave, 50% duty)
30
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
IFSM
Amps
110
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Characteristic / Test Conditions
VF
MIN
TYP
IF = 15A
2.0
Forward Voltage
IF = 30A
2.5
IF = 15A, TJ = 125°C
1.5
MIN
TYP
MAX UNIT
Volts
DYNAMIC CHARACTERISTICS
Characteristic
Symbol
Test Conditions
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F
F
R
J
-
15
trr
Reverse Recovery Time
-
19
Qrr
Reverse Recovery Charge
-
21
-
2
-
105
ns
-
250
nC
-
5
-
55
ns
-
420
nC
-
15
Amps
IRRM
IF = 15A, diF/dt = -200A/µs
VR = 400V, TC = 25°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
IF = 15A, diF/dt = -200A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
IF = 15A, diF/dt = -1000A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
ns
nC
-
-
Amps
Amps
D = 0.9
1.20
1.00
0.7
0.80
0.5
Note:
0.3
0.40
t
0.1
SINGLE PULSE
0.05
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
TC (°C)
0.583
0.767
Dissipated Power
(Watts)
0.0022
6-2008
TJ (°C)
0.060
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
Rev B
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
052-6284
t1
t2
0.20
0
PDM
0.60
ZEXT
ZθJC, THERMAL IMPEDANCE (°C/W)
1.40
50
TJ = 175°C
40
TJ = 125°C
30
20
10
TJ = 25°C
TJ = -55°C
0
0
1
2
3
4
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
IRRM, REVERSE RECOVERY CURRENT
(A)
30A
500
15A
300
7.5A
200
100
0
0 200 400 600 800 1000120014001600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
trr
0.6
trr
0.4
T =125°C
J
V =400V
R
20
30A
15
10
15A
7.5A
5
Duty cycle = 0.5
T =175°C
J
20
15
10
Qrr
5
25
50
75
100 125 150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
0
0
75
100 125 150 175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
90
80
70
60
50
40
30
20
10
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
1
CJ, JUNCTION CAPACITANCE
(pF)
25
30
IRRM
0
20
25
0.2
6-2008
Rev B
052-6284
40
35
0.8
0.0
7.5A
60
0 200 400 600 800 1000120014001600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
Qrr
1.0
15A
80
0
IF(AV) (A) Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
30A
100
0 200 400 600 800 1000120014001600
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
R
400
R
0
T =125°C
J
V =400V
600
T =125°C
J
V =400V
120
Qrr, REVERSE RECOVERY CHARGE
(nC)
700
APT15GT60BRDQ1(G)
140
trr, REVERSE RECOVERY TIME (ns)
IF, FORWARD CURRENT
(A)
60
25
50
TYPICAL PERFORMANCE CURVES
APT15GT60BRDQ1(G)
Vr
diF /dt Adjust
+18V
APT6017LLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure32.DiodeTestCircuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure33,DiodeReverseRecoveryWaveformandDefinitions
TO-247PackageOutline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
20.80 (.819)
21.46 (.845)
Collector
(Cathode)
3.55 (.138)
3.81 (.150)
4.50 (.177) Max.
2.21 (.087)
2.59 (.102)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Gate
Collector
(Cathode)
Emitter
(Anode)
6-2008
19.81 (.780)
20.32 (.800)
Rev B
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)
052-6284
5
1