APT200GT60JR_D.pdf

APT200GT60JR
600V, 200A, VCE(ON) = 2.1V Typical
Thunderbolt IGBT®
E
E
The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using
Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed.
C
G
Features
S
• Low Forward Voltage Drop
• RBSOA and SCSOA Rated
• Low Tail Current
• High Frequency Switching to 50KHz
• Integrated Gate Resistor
• Ultra Low Leakage Current
OT
22
7
"UL Recognized"
IS OT OP ®
file # E145592
Low EMI, High Reliability
• RoHS Compliant
All Ratings: TC = 25°C unless otherwise specified.
Maximum Ratings
Symbol Parameter
Ratings
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
IC1
Continuous Collector Current @ TC = 25°C
195
IC2
Continuous Collector Current @ TC = 100°C
100
ICM
Pulsed Collector Current 1
600
SSOA
PD
TJ, TSTG
Unit
Volts
Switching Safe Operating Area @ TJ = 150°C
Amps
600A @ 600V
Total Power Dissipation
Operating and Storage Junction Temperature Range
500
Watts
-55 to 150
°C
Static Electrical Characteristics
Min
Typ
Max
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 5mA)
600
-
-
VGE(TH)
Gate Threshold Voltage (VCE = VGE, IC = 4.0mA, Tj = 25°C)
3
4
5
Collector Emitter On Voltage (VGE = 15V, IC = 200A, Tj = 25°C)
1.6
2.0
2.5
Collector Emitter On Voltage (VGE = 15V, IC = 200A, Tj = 125°C)
-
2.5
-
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2
-
-
25
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2
-
-
1000
Gate-Emitter Leakage Current (VGE = ±30V)
-
-
300
VCE(ON)
ICES
IGES
Volts
μA
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
Unit
nA
052-6298 Rev D 3 - 2012
Symbol Characteristic / Test Conditions
Dynamic Characteristic
Symbol
APT200GT60JR
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Min
Typ
Max
-
8650
-
-
546
-
-
1180
-
-
7.5
-
VGE = 15V
-
946
-
VGE = 0V, VCE = 25V
f = 1MHz
Gate Charge
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
VCE= 300V
-
58
-
Gate-Collector Charge
IC = 200A
-
430
-
TJ = 150°C, RG = 2.2Ω , VGE = 15V,
600
Qgc
SSOA
td(on)
tr
td(off)
tf
3
Switching Safe Operating Area
L = 100μH, VCE= 600V
Current Rise Time
Turn-Off Delay Time
72
-
Inductive Switching (25°C)
-
160
-
VCC = 400V
-
952
-
-
212
-
RG = 2.2Ω
-
-
-
TJ = +25°C
-
9193
-
VGE = 15V
Current Fall Time
IC = 200A
Eon1
Turn-On Switching Energy
4
Eon2
Turn-On Switching Energy
5
Eoff
Turn-Off Switching Energy 6
-
19290
-
td(on)
Turn-On Delay Time
-
71
-
Inductive Switching (125°C)
-
157
-
Turn-Off Delay Time
VCC = 400V
-
1030
-
Current Fall Time
VGE = 15V
-
202
-
Turn-On Switching Energy
4
IC = 200A
-
-
Eon2
Turn-On Switching Energy
RG = 2.2Ω
-
5
-
10460
-
Eoff
Turn-Off Switching Energy 6
-
20210
-
tr
td(off)
tf
Eon1
Current Rise Time
TJ = +125°C
pF
V
nC
A
-
Turn-On Delay Time
Unit
ns
μJ
ns
μJ
Thermal and Mechanical Characteristics
Symbol Characteristic / Test Conditions
Min
Typ
Max
Unit
RθJC
Junction to Case (IGBT)
-
-
0.21
RθJC
Junction to Case (DIODE)
-
-
N/A
WT
Package Weight
-
29.2
-
g
-
-
10
in·lbf
-
-
1.1
N·m
2500
-
-
Volts
°C/W
Torque
Terminals and Mounting Screws
VIsolation
RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)
052-6298 Rev D 3 - 2012
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages.
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to
z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance not including gate driver impedance.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
GE
= 15V
TJ= 25°C
TJ= 125°C
TJ= 150°C
TJ= 55°C
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
V
APT200GT60JR
400
13/15V
12V
350
11V
300
200
100
8V
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
5V
0
4
8
12 16
20 24
28 32
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
TJ= -55°C
TJ= 125°C
VGE, GATE-TO-EMITTER VOLTAGE (V)
20
250μs PULSE
TEST<0.5 % DUTY
CYCLE
IC, COLLECTOR CURRENT (A)
9V
150
0
TJ= 25°C
10V
250
I = 200A
C
T = 25°C
J
VCE = 120V
15
VCE = 300V
10
VCE = 480V
5
0
0
250
500
750
GATE CHARGE (nC)
FIGURE 4, Gate charge
6
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
5
4
IC = 400A
3
IC = 200A
IC = 100A
2
1
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
1000
5
4
IC = 400A
3
IC = 200A
IC = 100A
2
1
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
0
25
50
75
100 125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
1.00
0.95
0.90
0.85
0.80
0.75
-.50 -.25
0
25
50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6298 Rev D 3 - 2012
1.05
IC, DC COLLECTOR CURRENT (A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
1.10
Typical Performance Curves
APT200GT60JR
1400
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
100
VGE = 15V
80
60
40
VCE = 400V
TJ = 25°C, or 125°C
RG = 2.2Ω
L = 100μH
20
1200
1000
VGE =15V,TJ=25°C
600
400
VCE = 400V
RG = 2.2Ω
L = 100μH
200
0
0
0 50 100 150 200 250 300 350 400
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
400
VGE =15V,TJ=125°C
800
0 50 100 150 200 250 300 350 400
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
450
RG = 2.2Ω, L = 100μH, VCE = 400V
RG = 2.2Ω, L = 100μH, VCE = 400V
400
350
tr, FALL TIME (ns)
tr, RISE TIME (ns)
300
200
100
TJ = 25°C, VGE = 15V
300
250
200
TJ = 125°C, VGE = 15V
150
100
TJ = 25 or 125°C,VGE = 15V
50
0
0
0
50 100 150 200 250 300 350 400
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
V
= 400V
CE
V
= +15V
GE
R = 2.2Ω
35000
G
30000
25000
TJ = 125°C
20000
15000
10000
TJ = 25°C
5000
50000
EOFF, TURN OFF ENERGY LOSS (μJ)
Eon2, TURN ON ENERGY LOSS (μJ)
0
50 100 150 200 250 300 350 400
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
40000
0
J
80000
Eon2,400A
60000
Eoff,200A
40000
Eon2,200A
20000
30000
20000
TJ = 25°C
10000
60000
Eoff,400A
Eoff,100A
TJ = 125°C
50 100 150 200 250 300 350 400
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (μJ)
SWITCHING ENERGY LOSSES (μJ)
052-6298 Rev D 3 - 2012
V
= 400V
CE
V
= +15V
GE
T = 125°C
G
40000
0
0 50 100 150 200 250 300 350 400
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
100000
V
= 400V
CE
V
= +15V
GE
R = 2.2Ω
50000
V
= 400V
CE
V
= +15V
GE
R = 2.2Ω
G
40000
Eoff,400A
30000
20000
Eoff,200A
10000
Eon2,200A
Eon2,100A
0
0
5
10
15
20
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
Eon2,400A
Eon2,100A
Eoff,100A
0
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT200GT60JR
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
100,000
Cies
10,000
1,000
Coes
Cres
100
0
100
200
300
400
500
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
D = 0.9
0.20
0.7
0.15
0.5
Note:
P DM
0.10
0.3
t1
t2
0.05
t
0.1
0.05
Duty Factor D = 1 /t2
Peak T J = P DM x Z θJC + T C
SINGLE PULSE
0
10-5
10-4
10-3
10-2
10 -1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
75°C
100°C
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 1.0Ω
F max = min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
G
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
052-6298 Rev D 3 - 2012
FMAX, OPERATING FREQUENCY (kHz)
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
APT200GT60JR
10%
Gate Voltage
td(on)
APT100DQ60
TJ = 125°C
tr
Collector Current
90%
IC
V CC
V CE
10%
5%
5%
A
CollectorVoltage
D.U.T.
Figure 21, Inductive Switching Test Circui
Switching Energy
t
Figure 22, Turn-on Switching Waveforms and Definitions
90%
TJ = 125°C
Gate Voltage
90%
td(off )
tf
10%
0
Collector Current
CollectorVoltage
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
7.8 (.307)
8.2 (.322)
r = 4.0 (.157)
(2 places)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
14.9 (.587)
15.1 (.594)
052-6298 Rev D 3 - 2012
8.9 (.350)
9.6 (.378)
Hex Nut M 4
(4 places )
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
0.75 (.030)
0.85 (.033)
12.6 (.496)
12.8 (.504)
25.2 (0.992)
25.4 (1.000)
1.95 (.077)
2.14 (.084)
*Emitter
Collector
*Emitter terminals are shorted
internally. Current handling capability is equal for either Emitter
terminal.
30.1 (1.185)
30.3 (1.193)
38.0 (1.496)
38.2 (1.504)
Gate
*Emitter
Dimensions in Millimeters and (Inches
)