View

TYPICAL PERFORMANCE CURVES
APT20GT60BR(G)
600V
APT20GT60BR
APT20GT60BRG*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Thunderbolt IGBT®
TO
-2
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 150KHz
• Low Tail Current
• Ultra Low Leakage Current
G
C
47
E
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT20GT60BR(G)
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
43
I C2
Continuous Collector Current @ TC = 110°C
20
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
80
@ TC = 150°C
Switching Safe Operating Area @ TJ = 150°C
80A @ 600V
Total Power Dissipation
Watts
174
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 0.5mA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
(VCE = VGE, I C = 500µA, Tj = 25°C)
3
TYP
4
Collector-Emitter On Voltage (VGE = 15V, I C = 20A, Tj = 25°C)
1.6
2.0
Collector-Emitter On Voltage (VGE = 15V, I C = 20A, Tj = 125°C)
2.8
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
2
Gate-Emitter Leakage Current (VGE = ±20V)
MAX
5 Volts
2.5
25
1000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Units
µA
nA
6-2008
MIN
Rev E
Characteristic / Test Conditions
052-6210
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT20GT60BR(G)
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Total Gate Charge
3
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
Turn-on Delay Time
tr
Current Rise Time
td(off)
Turn-off Delay Time
tf
Eon1
Capacitance
1100
VGE = 0V, VCE = 25V
107
f = 1 MHz
63
Gate Charge
7.5
VGE = 15V
100
VCE = 300V
7
I C = 20A
43
I C = 20A
Current Fall Time
Turn-on Switching Energy
Turn-off Switching Energy
td(on)
Turn-on Delay Time
tr
Current Rise Time
RG = 5Ω
4
Eoff
TJ = +25°C
5
6
VGE = 15V
Turn-off Delay Time
I C = 20A
Current Fall Time
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
RG = 5Ω
44
55
TJ = +125°C
6
UNIT
pF
V
nC
A
8
9
80
39
215
210
245
Inductive Switching (125°C) VCC = 400V
Eon1
MAX
TJ = 150°C, R G = 5Ω, VGE =
80
15V, L = 100µH,VCE = 600V VGE = 15V
Turn-on Switching Energy (Diode)
tf
TYP
Inductive Switching (25°C) VCC = 400V
Eon2
td(off)
MIN
Test Conditions
Characteristic
ns
µJ
8
9
100
60
215
375
395
TYP
ns
µJ
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
RθJC
Junction to Case (IGBT)
.72
RθJC
Junction to Case (DIODE)
5.9
N/A
WT
Package Weight
MAX
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
052-6210
Rev E
6-2008
4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
60
50
TJ = 25°C
40
TJ = 125°C
30
20
10
FIGURE 1, Output Characteristics(TJ = 25°C)
9V
40
8V
7V
20
30
TJ = 25°C
20
TJ = 125°C
10
0
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
J
0
20
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.5
IC = 40A
3.0
2.5
IC = 20A
2.0
1.5
IC = 10A
1.0
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25 0 25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
4.0
3.5
IC = 40A
3.0
2.5
IC = 20A
2.0
IC = 10A
1.5
1.0
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
60
IC, DC COLLECTOR CURRENT(A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED)
1.15
1.10
120
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4.0
40
60
80
100
GATE CHARGE (nC)
50
40
30
20
10
0
-50 -25 0 25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
6-2008
40
I = 20A
C
T = 25°C
14
Rev E
TJ = -55°C
50
0
5
10
15
20
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
60
10V
60
16
250µs PULSE
TEST<0.5 % DUTY
CYCLE
70
0
11V
80
052-6210
80
13V
100
0
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
15V
6V
0
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
70
TJ = -55°C
APT20GT60BR(G)
120
80
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
VGE = 15V
8
6
4
2 VCE = 400V
TJ = 25°C, or 125°C
0
APT20GT60BR(G)
120
10
RG = 5Ω
L = 100µH
10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
VGE =15V,TJ=125°C
80
VGE =15V,TJ=25°C
60
40
20 VCE = 400V
RG = 5Ω
0
5
35
100
L = 100µH
5
10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
90
RG = 5Ω, L = 100µH, VCE = 400V
RG = 5Ω, L = 100µH, VCE = 400V
80
30
70
tf, FALL TIME (ns)
tr, RISE TIME (ns)
25
20
15
10
TJ = 125°C, VGE = 15V
60
50
40
30
TJ = 25°C, VGE = 15V
20
5
EON2, TURN ON ENERGY LOSS (µJ)
1200
1000
G
800
600
400
200
TJ = 25°C
G
TJ = 125°C
600
500
400
300
TJ = 25°C
200
100
5 10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
5 10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
1800
1200
1600
V
= 400V
CE
V
= +15V
GE
T = 125°C
Eon2,40A
J
1400
1200
1000
Eoff,40A
800
Eoff,20A
600
400
Eon2,20A
200
0
Eoff,10A
Eon2,10A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
700
V
= 400V
CE
V
= +15V
GE
R = 5Ω
0
0
6-2008
Rev E
5 10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
800
V
= 400V
CE
V
= +15V
GE
R = 5Ω
TJ = 125°C
052-6210
0
5 10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
10
TJ = 25 or 125°C,VGE = 15V
0
1000
V
= 400V
CE
V
= +15V
GE
R = 5Ω
Eon2,40A
G
800
600
Eoff,40A
400
Eon2,20A
Eoff,20A
200
0
Eoff,10A
Eon2,10A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
500
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
1,000
Coes
100
Cres
50
APT20GT60BR(G)
100
2,000
90
80
70
60
50
40
30
20
10
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0 100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.30
D = 0.9
0.25
0.7
0.20
0.5
0.15
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.35
0.3
0.10
t1
t2
0.05
0
SINGLE PULSE
0.1
0.05
10-5
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.00165
0.314
0.0585
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
Fmax = min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
5
1
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 5Ω
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
5
10
15
20
25 30
35 40
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
6-2008
0.407
Power
(watts)
50
Rev E
Junction
temp. (°C)
100
052-6210
RC MODEL
FMAX, OPERATING FREQUENCY (kHz)
250
APT20GT60BR(G)
APT15DQ60
Gate Voltage
10%
TJ = 125°C
IC
V CC
td(on)
V CE
tr
90%
5%
A
Collector Current
5%
10%
Collector Voltage
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure21,InductiveSwitchingTestCircuit
90%
Gate Voltage
TJ = 125°C
td(off)
tf
Collector Voltage
90%
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
TO-247PackageOutline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
Collector
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
Rev E
6-2008
0.40 (.016)
0.79 (.031) 19.81 (.780)
20.32 (.800)
052-6210
5.38 (.212)
6.20 (.244)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Gate
Collector
Emitter