View

TYPICAL PERFORMANCE CURVES
APT20GT60BRDQ1(G)
600V
APT20GT60BRDQ1
APT20GT60BRDQ1G*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Thunderbolt IGBT®
TO
-2
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 150KHz
• Low Tail Current
• Ultra Low Leakage Current
G
C
47
E
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT20GT60BRDQ1(G)
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
43
I C2
Continuous Collector Current @ TC = 110°C
20
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
80
@ TC = 150°C
Switching Safe Operating Area @ TJ = 150°C
80A @ 600V
Total Power Dissipation
Watts
174
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
MIN
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 0.5mA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
(VCE = VGE, I C = 500µA, Tj = 25°C)
3
TYP
4
Collector-Emitter On Voltage (VGE = 15V, I C = 20A, Tj = 25°C)
1.6
2.0
Collector-Emitter On Voltage (VGE = 15V, I C = 20A, Tj = 125°C)
2.8
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
2
Gate-Emitter Leakage Current (VGE = ±20V)
MAX
5 Volts
2.5
50
1000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Units
µA
nA
Rev C 6-2008
Characteristic / Test Conditions
052-6265
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT20GT60BRDQ1(G)
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Total Gate Charge
3
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
Turn-on Delay Time
tr
Current Rise Time
td(off)
Turn-off Delay Time
tf
Eon1
Capacitance
1100
VGE = 0V, VCE = 25V
107
f = 1 MHz
63
Gate Charge
7.5
VGE = 15V
100
VCE = 300V
7
I C = 20A
43
I C = 20A
Current Fall Time
Turn-on Switching Energy
Turn-off Switching Energy
td(on)
Turn-on Delay Time
tr
Current Rise Time
RG = 5Ω
4
Eoff
TJ = +25°C
5
6
VGE = 15V
Turn-off Delay Time
I C = 20A
Current Fall Time
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
RG = 5Ω
44
55
TJ = +125°C
6
UNIT
pF
V
nC
A
8
9
80
39
215
210
245
Inductive Switching (125°C) VCC = 400V
Eon1
MAX
TJ = 150°C, R G = 5Ω, VGE =
80
15V, L = 100µH,VCE = 600V VGE = 15V
Turn-on Switching Energy (Diode)
tf
TYP
Inductive Switching (25°C) VCC = 400V
Eon2
td(off)
MIN
Test Conditions
Characteristic
ns
µJ
8
9
100
60
215
375
395
TYP
ns
µJ
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
RθJC
Junction to Case (IGBT)
.72
RθJC
Junction to Case (DIODE)
5.9
1.35
WT
Package Weight
MAX
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
052-6265
Rev C
6-2008
4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
60
50
TJ = 25°C
40
TJ = 125°C
30
20
10
FIGURE 1, Output Characteristics(TJ = 25°C)
9V
40
8V
7V
20
40
30
TJ = 25°C
20
TJ = 125°C
10
0
J
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 20A
C
T = 25°C
14
0
20
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.5
IC = 40A
3.0
2.5
IC = 20A
2.0
1.5
IC = 10A
1.0
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25 0 25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
4.0
3.5
IC = 40A
3.0
2.5
IC = 20A
2.0
IC = 10A
1.5
1.0
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
60
IC, DC COLLECTOR CURRENT(A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED)
1.15
1.10
120
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4.0
40
60
80
100
GATE CHARGE (nC)
50
40
30
20
10
0
-50 -25 0 25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev C 6-2008
TJ = -55°C
50
0
5
10
15
20
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
60
10V
60
16
250µs PULSE
TEST<0.5 % DUTY
CYCLE
70
0
11V
80
052-6265
80
13V
100
0
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
15V
6V
0
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
70
TJ = -55°C
APT20GT60BRDQ1(G)
120
80
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
VGE = 15V
8
6
4
2 VCE = 400V
TJ = 25°C, or 125°C
0
APT20GT60BRDQ1(G)
120
10
RG = 5Ω
L = 100µH
10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
VGE =15V,TJ=125°C
80
VGE =15V,TJ=25°C
60
40
20 VCE = 400V
RG = 5Ω
0
5
35
100
L = 100µH
5
10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
90
RG = 5Ω, L = 100µH, VCE = 400V
RG = 5Ω, L = 100µH, VCE = 400V
80
30
70
tf, FALL TIME (ns)
tr, RISE TIME (ns)
25
20
15
10
TJ = 125°C, VGE = 15V
60
50
40
30
TJ = 25°C, VGE = 15V
20
5
EON2, TURN ON ENERGY LOSS (µJ)
1200
1000
G
800
600
400
200
TJ = 25°C
G
TJ = 125°C
600
500
400
300
TJ = 25°C
200
100
5 10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
5 10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
1800
1200
1600
V
= 400V
CE
V
= +15V
GE
T = 125°C
Eon2,40A
J
1400
1200
1000
Eoff,40A
800
Eoff,20A
600
400
Eon2,20A
200
0
Eoff,10A
Eon2,10A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
700
V
= 400V
CE
V
= +15V
GE
R = 5Ω
0
0
6-2008
Rev C
5 10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
800
V
= 400V
CE
V
= +15V
GE
R = 5Ω
TJ = 125°C
052-6265
0
5 10 15 20 25 30 35 40 45
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
10
TJ = 25 or 125°C,VGE = 15V
0
1000
V
= 400V
CE
V
= +15V
GE
R = 5Ω
Eon2,40A
G
800
600
Eoff,40A
400
Eon2,20A
Eoff,20A
200
0
Eoff,10A
Eon2,10A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
500
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
1,000
Coes
100
Cres
50
APT20GT60BRDQ1(G)
100
2,000
90
80
70
60
50
40
30
20
10
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0 100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.30
D = 0.9
0.25
0.7
0.20
0.5
0.15
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.35
0.3
0.10
t1
t2
0.05
0
SINGLE PULSE
0.1
0.05
10-5
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.407
0.00165
Power
(watts)
0.314
0.0585
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
50
Fmax = min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
5
1
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 5Ω
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
5
10
15
20
25 30
35 40
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
Rev C 6-2008
Junction
temp. (°C)
100
052-6265
RC MODEL
FMAX, OPERATING FREQUENCY (kHz)
250
APT20GT60BRDQ1(G)
APT15DQ60
Gate Voltage
10%
TJ = 125°C
IC
V CC
td(on)
V CE
tr
90%
5%
A
Switching Energy
D.U.T.
90%
Gate Voltage
td(off)
Collector Voltage
90%
10%
Switching Energy
0
Collector Current
052-6265
Rev C
6-2008
Figure 23, Turn-off Switching Waveforms and Definitions
5%
Collector Voltage
Figure 22, Turn-on Switching Waveforms and Definitions
Figure21,InductiveSwitchingTestCircuit
tf
10%
Collector Current
TJ = 125°C
TYPICAL PERFORMANCE CURVES
APT20GT60BRDQ1(G)
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS Symbol
All Ratings: TC = 25°C unless otherwise specified.
APT20GT60BRDQ1(G) UNIT
Characteristic / Test Conditions
IF(AV)
IF(RMS)
Maximum Average Forward Current (TC = 129°C, Duty Cycle = 0.5)
15
RMS Forward Current (Square wave, 50% duty)
30
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
IFSM
Amps
110
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Characteristic / Test Conditions
VF
MIN
TYP
IF = 20A
2.18
Forward Voltage
IF = 40A
2.76
IF = 20A, TJ = 125°C
1.75
MIN
TYP
MAX UNIT
Volts
DYNAMIC CHARACTERISTICS
Characteristic
Symbol
Test Conditions
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F
F
R
J
-
15
trr
Reverse Recovery Time
-
19
Qrr
Reverse Recovery Charge
-
21
-
2
-
105
ns
-
250
nC
-
5
-
55
ns
-
420
nC
-
15
Amps
IRRM
IF = 15A, diF/dt = -200A/µs
VR = 400V, TC = 25°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
IF = 15A, diF/dt = -200A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
IF = 15A, diF/dt = -1000A/µs
Maximum Reverse Recovery Current
VR = 400V, TC = 125°C
ns
nC
-
-
Amps
Amps
D = 0.9
1.20
1.00
0.7
0.80
0.5
Note:
0.60
0.3
0.40
t
0.1
SINGLE PULSE
0.05
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
RC MODEL
Junction
temp. (°C)
0.676
0.00147
0.504
0.0440
Power
(watts)
Case temperature. (°C)
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
Rev C 6-2008
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
052-6265
t1
t2
0.20
0
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
1.40
50
TJ = 175°C
40
TJ = 125°C
30
20
10
TJ = 25°C
TJ = -55°C
0
0
1
2
3
4
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
IRRM, REVERSE RECOVERY CURRENT
(A)
30A
500
15A
300
7.5A
200
100
0
0 200 400 600 800 1000120014001600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
trr
0.6
trr
0.4
T =125°C
J
V =400V
R
20
30A
15
10
15A
7.5A
5
Duty cycle = 0.5
T =175°C
J
20
15
10
Qrr
5
25
50
75
100 125 150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
0
0
75
100 125 150 175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
90
80
70
60
50
40
30
20
10
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
1
CJ, JUNCTION CAPACITANCE
(pF)
25
30
IRRM
0
20
25
0.2
6-2008
Rev C
052-6265
40
35
0.8
0.0
7.5A
60
0 200 400 600 800 1000120014001600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
Qrr
1.0
15A
80
0
IF(AV) (A) Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
30A
100
0 200 400 600 800 1000120014001600
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
R
400
R
0
T =125°C
J
V =400V
600
T =125°C
J
V =400V
120
Qrr, REVERSE RECOVERY CHARGE
(nC)
700
APT20GT60BRDQ1(G)
140
trr, REVERSE RECOVERY TIME (ns)
IF, FORWARD CURRENT
(A)
60
25
50
TYPICAL PERFORMANCE CURVES
APT20GT60BRDQ1(G)
Vr
diF /dt Adjust
+18V
APT6017LLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure32.DiodeTestCircuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
4
Zero
5
3
0.25IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure33,DiodeReverseRecoveryWaveformandDefinitions
TO-247PackageOutline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
20.80 (.819)
21.46 (.845)
Collector
(Cathode)
3.55 (.138)
3.81 (.150)
4.50 (.177) Max.
2.21 (.087)
2.59 (.102)
19.81 (.780)
20.32 (.800)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Gate
Collector
(Cathode)
Emitter
(Anode)
Rev C 6-2008
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)
052-6265
5
1