APT25GT120BR(G)_D.pdf

TYPICAL PERFORMANCE CURVES
APT25GT120BR(G)
1200V
APT25GT120BR
APT25GT120BRG*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Thunderbolt IGBT®
TO
-2
4
7
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 50KHz
• Low Tail Current
• Ultra Low Leakage Current
G
C
E
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT25GT120BR(G)
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
54
I C2
Continuous Collector Current @ TC = 110°C
25
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
75
Switching Safe Operating Area @ TJ = 150°C
75A @ 1200V
Total Power Dissipation
Watts
347
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
MIN
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1.5mA)
1200
VGE(TH)
Gate Threshold Voltage
4.5
5.5
6.5 2.7
3.2
3.7
3.9
VCE(ON)
I CES
I GES
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
2
Gate-Emitter Leakage Current (VGE = ±20V)
TYP
MAX
100
TBD
120
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Units
Volts
µA
nA
Rev D 6-2008
Characteristic / Test Conditions
052-6268
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT25GT120BR(G)
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Total Gate Charge
3
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
Turn-on Delay Time
tr
Current Rise Time
td(off)
Turn-off Delay Time
tf
Eon1
Capacitance
1650
VGE = 0V, VCE = 25V
250
f = 1 MHz
110
Gate Charge
10.0
VGE = 15V
170
VCE = 600V
20
100
I C = 25A
I C = 25A
Current Fall Time
Turn-on Switching Energy
Turn-off Switching Energy
td(on)
Turn-on Delay Time
tr
Current Rise Time
RG = 5Ω
4
Eoff
TJ = +25°C
5
6
VGE = 15V
Turn-off Delay Time
I C = 25A
Current Fall Time
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
RG = 5Ω
44
55
TJ = +125°C
6
UNIT
pF
V
nC
A
14
27
150
36
930
1860
720
Inductive Switching (125°C) VCC = 800V
Eon1
MAX
TJ = 150°C, R G = 5Ω, VGE =
75
15V, L = 100µH,VCE = 1200V VGE = 15V
Turn-on Switching Energy (Diode)
tf
TYP
Inductive Switching (25°C) VCC = 800V
Eon2
td(off)
MIN
Test Conditions
Characteristic
ns
µJ
14
27
175
45
925
3265
965
TYP
ns
µJ
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
RθJC
Junction to Case (IGBT)
.36
RθJC
Junction to Case (DIODE)
5.9
N/A
WT
Package Weight
MAX
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
6-2008
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
052-6268
Rev D
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
GE
= 15V
15V
60
TJ = 25°C
50
TJ = 125°C
40
TJ = -55°C
30
20
10
0
FIGURE 1, Output Characteristics(TJ = 25°C)
80
50
40
30
TJ = 25°C
TJ = 125°C
10
0
0
9V
8V
7V
0
5
10
15
20
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
I = 25A
C
T = 25°C
J
14
VCE = 600V
10
VCE = 960V
8
6
4
2
0 20 40 60 80 100 120140160 180200
GATE CHARGE (nC)
IC = 50A
5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
4
IC = 25A
3
IC = 12.5A
2
1
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
6
1.00
0.95
0.90
0.85
0.80
0.75
-50 -25 0 25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
6
5
IC = 50A
4
IC = 25A
3
IC = 12.5A
2
1
0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75
100 125 150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
80
IC, DC COLLECTOR CURRENT(A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED)
1.05
VCE = 240V
12
0
2
4
6
8
10
12 14
VGE, GATE-TO-EMITTER VOLTAGE (V)
1.10
10V
20
FIGURE 3, Transfer Characteristics
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
11V
40
FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
TJ = -55°C
60
20
12V
60
16
250µs PULSE
TEST<0.5 % DUTY
CYCLE
70
13V
80
0
0
2
4
6
8
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
70
70
60
50
40
30
20
10
0
-50 -25 0 25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev D 6-2008
V
APT25GT120BR(G)
100
052-6268
80
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
25
20
VGE = 15V
15
10
VCE = 800V
5 T = 25°C, or 125°C
J
0
APT25GT120BR(G)
200
30
RG = 5Ω
L = 100µH
160
140
VGE =15V,TJ=125°C
120
VGE =15V,TJ=25°C
100
80
60
40
VCE = 800V
20 RG = 5Ω
0
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
70
180
L = 100µH
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
50
RG = 5Ω, L = 100µH, VCE = 800V
RG = 5Ω, L = 100µH, VCE = 800V
45
60
tr, RISE TIME (ns)
40
30
TJ = 25 or 125°C,VGE = 15V
20
tf, FALL TIME (ns)
40
50
35
TJ = 125°C, VGE = 15V
TJ = 25°C, VGE = 15V
30
25
20
15
10
10
EON2, TURN ON ENERGY LOSS (µJ)
10,000
G
TJ = 125°C
6,000
4,000
2,000
TJ = 25°C
16,000
Eon2,50A
J
14,000
12,000
10,000
8,000
6,000
Eon2,25A
2,000
0
Eoff,50A
Eon2,12.5A
Eoff,25A
0
Eoff,12.5A
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
TJ = 125°C
1500
1000
TJ = 25°C
500
9,000
V
= 800V
CE
V
= +15V
GE
T = 125°C
4,000
G
2000
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
18,000
V
= 800V
CE
V
= +15V
GE
R = 5Ω
0
0
6-2008
Rev D
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
2500
V
= 800V
CE
V
= +15V
GE
R = 5Ω
8,000
052-6268
0
10 15 20 25 30 35 40 45 50 55
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
5
0
8,000
V
= 800V
CE
V
= +15V
GE
R = 5Ω
Eon2,50A
G
7,000
6,000
5,000
4,000
3,000
Eon2,12.5A
1,000
0
Eoff,50A
Eon2,25A
2,000
Eoff,12.5A
0
Eoff,25A
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
3,000
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
1,000
500
Coes
100
Cres
50
APT25GT120BR(G)
80
Cies
70
60
50
40
30
20
10
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0 200 400 600 800 1000 1200 1400
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.35
D = 0.9
0.30
0.7
0.25
0.20
0.5
Note:
0.15
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.40
0.3
0.10
t2
0.05
0
t1
t
0.1
0.05
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.0101
0.182
0.136
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
Fmax = min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
5
1
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 800V
CE
R = 5Ω
G
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
5
10 15 20 25 30 35 40 45 50
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
Rev D 6-2008
0.178
Power
(watts)
50
052-6268
RC MODEL
Junction
temp. (°C)
FMAX, OPERATING FREQUENCY (kHz)
140
APT25GT120BR(G)
APT40DQ120
Gate Voltage
10%
TJ = 125°C
td(on)
IC
V CC
tr
V CE
Collector Current
5%
90%
10%
5%
Collector Voltage
A
D.U.T.
Switching Energy
Figure 22, Turn-on Switching Waveforms and Definitions
Figure21,InductiveSwitchingTestCircuit
90%
Gate Voltage
TJ = 125°C
td(off)
90%
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
TO-247PackageOutline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
Collector
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
Rev D
6-2008
4.50 (.177) Max.
052-6268
5.38 (.212)
6.20 (.244)
0.40 (.016)
0.79 (.031) 19.81 (.780)
20.32 (.800)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Gate
Collector
Emitter
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)