APT34M120J_C.pdf

APT34M120J
1200V, 35A, 0.29Ω Max
N-Channel MOSFET
S
S
Power MOS 8™ is a high speed, high voltage N-channel switch-mode power MOSFET.
A proprietary planar stripe design yields excellent reliability and manufacturability. Low
switching loss is achieved with low input capacitance and ultra low Crss "Miller" capacitance. The intrinsic gate resistance and capacitance of the poly-silicon gate structure
help control slew rates during switching, resulting in low EMI and reliable paralleling,
even when switching at very high frequency. Reliability in flyback, boost, forward, and
other circuits is enhanced by the high avalanche energy capability.
D
G
SO
2
T-
27
"UL Recognized"
file # E145592
IS OTO P ®
D
APT34M120J
Single die MOSFET
G
S
TYPICAL APPLICATIONS
FEATURES
• Fast switching with low EMI/RFI
• PFC and other boost converter
• Low RDS(on)
• Buck converter
• Ultra low Crss for improved noise immunity
• Two switch forward (asymmetrical bridge)
• Low gate charge
• Single switch forward
• Avalanche energy rated
• Flyback
• RoHS compliant
• Inverters
Absolute Maximum Ratings
Symbol
ID
Parameter
Unit
Ratings
Continuous Drain Current @ TC = 25°C
35
Continuous Drain Current @ TC = 100°C
22
A
IDM
Pulsed Drain Current
VGS
Gate-Source Voltage
±30
V
EAS
Single Pulse Avalanche Energy 2
2700
mJ
IAR
Avalanche Current, Repetitive or Non-Repetitive
25
A
1
195
Thermal and Mechanical Characteristics
Typ
Max
Unit
W
PD
Total Power Dissipation @ TC = 25°C
960
RθJC
Junction to Case Thermal Resistance
0.13
RθCS
Case to Sink Thermal Resistance, Flat, Greased Surface
Operating and Storage Junction Temperature Range
VIsolation
RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)
WT
Torque
Package Weight
Terminals and Mounting Screws.
Microsemi Website - http://www.microsemi.com
-55
150
°C/W
°C
V
2500
1.03
oz
29.2
g
10
in·lbf
1.1
N·m
7-2011
TJ,TSTG
0.11
Rev C
Min
Characteristic
050-8088
Symbol
Static Characteristics
TJ = 25°C unless otherwise specified
Symbol
Parameter
Test Conditions
Min
VBR(DSS)
Drain-Source Breakdown Voltage
VGS = 0V, ID = 250μA
1200
∆VBR(DSS)/∆TJ
Drain-Source On Resistance
VGS(th)
Gate-Source Threshold Voltage
∆VGS(th)/∆TJ
VGS = 10V, ID = 25A
3
Zero Gate Voltage Drain Current
IGSS
Gate-Source Leakage Current
Dynamic Characteristics
VDS = 1200V
VGS = 0V
Forward Transconductance
Ciss
Input Capacitance
Crss
Reverse Transfer Capacitance
Coss
Output Capacitance
Typ
Max
1.41
0.24
4
-10
0.29
5
TJ = 25°C
100
500
±100
TJ = 125°C
VGS = ±30V
Unit
V
V/°C
Ω
V
mV/°C
μA
nA
TJ = 25°C unless otherwise specified
Parameter
gfs
3
VGS = VDS, ID = 2.5mA
Threshold Voltage Temperature Coefficient
IDSS
Symbol
Reference to 25°C, ID = 250μA
Breakdown Voltage Temperature Coefficient
RDS(on)
APT34M120J
Min
Test Conditions
VDS = 50V, ID = 25A
VGS = 0V, VDS = 25V
f = 1MHz
Co(cr)
4
Effective Output Capacitance, Charge Related
Co(er)
5
Effective Output Capacitance, Energy Related
Typ
58
18200
215
1340
Max
Unit
S
pF
520
VGS = 0V, VDS = 0V to 800V
265
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
Gate-Drain Charge
td(on)
Turn-On Delay Time
Resistive Switching
Current Rise Time
VDD = 800V, ID = 25A
tr
td(off)
tf
Turn-Off Delay Time
560
90
265
100
60
315
90
VGS = 0 to 10V, ID = 25A,
VDS = 600V
RG = 2.2Ω 6 , VGG = 15V
Current Fall Time
nC
ns
Source-Drain Diode Characteristics
Symbol
IS
ISM
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 1
Test Conditions
MOSFET symbol
showing the
integral reverse p-n
junction diode
(body diode)
Diode Forward Voltage
ISD = 25A, TJ = 25°C, VGS = 0V
trr
Reverse Recovery Time
ISD = 25A 3
Qrr
Reverse Recovery Charge
Peak Recovery dv/dt
Typ
Max
Unit
35
A
G
VSD
dv/dt
Min
D
195
S
diSD/dt = 100A/μs, TJ = 25°C
ISD ≤ 25A, di/dt ≤1000A/μs, VDD = 100V,
TJ = 125°C
1
1430
46
V
ns
μC
10
V/ns
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Starting at TJ = 25°C, L = 8.64mH, RG = 2.2Ω, IAS = 25A.
3 Pulse test: Pulse Width < 380μs, duty cycle < 2%.
050-8088
Rev C
7-2011
4 Co(cr) is defined as a fixed capacitance with the same stored charge as COSS with VDS = 67% of V(BR)DSS.
5 Co(er) is defined as a fixed capacitance with the same stored energy as COSS with VDS = 67% of V(BR)DSS. To calculate Co(er) for any value of
VDS less than V(BR)DSS, use this equation: Co(er) = -8.27E-7/VDS^2 + 1.01E-7/VDS + 1.43E-10.
6 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
APT34M120J
160
V
GS
50
= 10V
T = 125°C
J
V
120
TJ = -55°C
100
80
TJ = 25°C
60
40
20
0
30
5V
20
10
4.5V
TJ = 125°C
TJ = 150°C
0
0
5
10
15
20
25
30
VDS(ON), DRAIN-TO-SOURCE VOLTAGE (V)
0
3.0
NORMALIZED TO
VGS = 10V @ 25A
2.5
VDS> ID(ON) x RDS(ON) MAX.
250μSEC. PULSE TEST
@ <0.5 % DUTY CYCLE
140
2.0
1.5
1.0
5
10
15
20
25
30
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 2, Output Characteristics
160
ID, DRAIN CURRENT (A)
RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE
Figure 1, Output Characteristics
0.5
120
100
TJ = -55°C
80
TJ = 25°C
60
TJ = 125°C
40
20
0
0
-55 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
Figure 3, RDS(ON) vs Junction Temperature
70
0
1
2
3
4
5
6
7
8
VGS, GATE-TO-SOURCE VOLTAGE (V)
Figure 4, Transfer Characteristics
30,000
TJ = -55°C
60
TJ = 25°C
50
TJ = 125°C
40
Ciss
10,000
C, CAPACITANCE (pF)
gfs, TRANSCONDUCTANCE
= 6, 7, 8 & 9V
GS
40
ID, DRIAN CURRENT (A)
ID, DRAIN CURRENT (A)
140
30
20
1000
Coss
100
Crss
10
10
15
20
25
ID, DRAIN CURRENT (A)
Figure 5, Gain vs Drain Current
200
400
600
800 1000 1200
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 6, Capacitance vs Drain-to-Source Voltage
10
VDS = 240V
8
VDS = 600V
4
VDS = 960V
2
0
100 200 300 400 500 600 700 800
Qg, TOTAL GATE CHARGE (nC)
Figure 7, Gate Charge vs Gate-to-Source Voltage
180
160
140
120
100
TJ = 25°C
80
60
TJ = 150°C
40
20
0
0
0.2
0.4
0.6
0.8
1.0
1.2
VSD, SOURCE-TO-DRAIN VOLTAGE (V)
Figure 8, Reverse Drain Current vs Source-to-Drain Voltage
7-2011
12
6
0
200
ID = 25A
14
0
10
30
Rev C
VGS, GATE-TO-SOURCE VOLTAGE (V)
16
5
050-8088
0
ISD, REVERSE DRAIN CURRENT (A)
0
APT34M120J
250
250
100
IDM
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
100
10
13μs
100μs
1ms
Rds(on)
1
10ms
100ms
0.1
TJ = 125°C
TC = 75°C
1
IDM
13μs
10
100μs
1ms
Rds(on)
TJ = 150°C
TC = 25°C
1
0.1
DC line
Scaling for Different Case & Junction
Temperatures:
ID = ID(T = 25°C)*(TJ - TC)/125
DC line
10
100
1200
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 9, Forward Safe Operating Area
10ms
100ms
C
1
10
100
1200
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 10, Maximum Forward Safe Operating Area
D = 0.9
0.12
0.10
0.7
0.08
0.5
Note:
0.06
P DM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.14
t1
0.3
0.04
t2
t1 = Pulse Duration
t
0.02
0
0.1
SINGLE PULSE
0.05
10-5
Duty Factor D = 1 /t2
Peak T J = P DM x Z θJC + T C
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (seconds)
Figure 11. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
7.8 (.307)
8.2 (.322)
r = 4.0 (.157)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
4.0 (.157)
4.2 (.165)
(2 places)
7-2011
38.0 (1.496)
38.2 (1.504)
050-8088
14.9 (.587)
15.1 (.594)
Rev C
3.3 (.129)
3.6 (.143)
* Source
30.1 (1.185)
30.3 (1.193)
8.9 (.350)
9.6 (.378)
Hex Nut M 4
(4 places )
0.75 (.030)
0.85 (.033)
12.6 (.496)
12.8 (.504)
25.2 (0.992)
25.4 (1.000)
1.95 (.077)
2.14 (.084)
Drai n
* Emitter terminals are shorte d
internally. Current handlin g
capability is equal for either
Source terminal .
* Source
Dimensions in Millimeters (Inches)
Gate
1.0