APT34M60B_S_C.pdf

APT34M60B
APT34M60S
600V, 36A, 0.19Ω Max
N-Channel MOSFET
Power MOS 8™ is a high speed, high voltage N-channel switch-mode power MOSFET.
A proprietary planar stripe design yields excellent reliability and manufacturability. Low
switching loss is achieved with low input capacitance and ultra low Crss "Miller" capacitance. The intrinsic gate resistance and capacitance of the poly-silicon gate structure
help control slew rates during switching, resulting in low EMI and reliable paralleling,
even when switching at very high frequency. Reliability in flyback, boost, forward, and
other circuits is enhanced by the high avalanche energy capability.
TO
-24
7
D 3 PAK
APT34M60B
APT34M60S
D
Single die MOSFET
G
S
TYPICAL APPLICATIONS
FEATURES
• Fast switching with low EMI/RFI
• PFC and other boost converter
• Low RDS(on)
• Buck converter
• Ultra low Crss for improved noise immunity
• Two switch forward (asymmetrical bridge)
• Low gate charge
• Single switch forward
• Avalanche energy rated
• Flyback
• RoHS compliant
• Inverters
Absolute Maximum Ratings
Symbol
ID
Parameter
Unit
Ratings
Continuous Drain Current @ TC = 25°C
36
Continuous Drain Current @ TC = 100°C
23
A
IDM
Pulsed Drain Current
VGS
Gate-Source Voltage
±30
V
EAS
Single Pulse Avalanche Energy 2
930
mJ
IAR
Avalanche Current, Repetitive or Non-Repetitive
17
A
1
124
Thermal and Mechanical Characteristics
Max
Unit
W
PD
Total Power Dissipation @ TC = 25°C
624
RθJC
Junction to Case Thermal Resistance
0.20
RθCS
Case to Sink Thermal Resistance, Flat, Greased Surface
TJ,TSTG
Operating and Storage Junction Temperature Range
TL
Soldering Temperature for 10 Seconds (1.6mm from case)
WT
Package Weight
Torque
Mounting Torque ( TO-247 Package), 6-32 or M3 screw
Microsemi Website - http://www.microsemi.com
0.15
-55
150
300
°C/W
°C
0.22
oz
6.2
g
10
in·lbf
1.1
N·m
7-2011
Typ
Rev C
Min
Characteristic
050-8076
Symbol
Static Characteristics
TJ = 25°C unless otherwise specified
Symbol
Parameter
Test Conditions
Min
VBR(DSS)
Drain-Source Breakdown Voltage
VGS = 0V, ID = 250μA
600
∆VBR(DSS)/∆TJ
Drain-Source On Resistance
VGS(th)
Gate-Source Threshold Voltage
∆VGS(th)/∆TJ
VGS = 10V, ID = 17A
3
Zero Gate Voltage Drain Current
IGSS
Gate-Source Leakage Current
Dynamic Characteristics
Forward Transconductance
Ciss
Input Capacitance
Crss
Reverse Transfer Capacitance
Coss
Output Capacitance
VDS = 600V
TJ = 25°C
VGS = 0V
TJ = 125°C
Typ
Max
0.57
0.15
4
-10
0.19
5
100
500
±100
VGS = ±30V
Unit
V
V/°C
Ω
V
mV/°C
μA
nA
TJ = 25°C unless otherwise specified
Parameter
gfs
3
VGS = VDS, ID = 1mA
Threshold Voltage Temperature Coefficient
IDSS
Symbol
Reference to 25°C, ID = 250μA
Breakdown Voltage Temperature Coefficient
RDS(on)
APT34M60B_S
Min
Test Conditions
VDS = 50V, ID = 17A
4
Effective Output Capacitance, Charge Related
Co(er)
5
Effective Output Capacitance, Energy Related
Max
32
6640
70
610
VGS = 0V, VDS = 25V
f = 1MHz
Co(cr)
Typ
Unit
S
pF
325
VGS = 0V, VDS = 0V to 400V
170
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
Gate-Drain Charge
td(on)
Turn-On Delay Time
Resistive Switching
Current Rise Time
VDD = 400V, ID = 17A
tr
td(off)
tf
Turn-Off Delay Time
165
36
70
37
43
115
34
VGS = 0 to 10V, ID = 17A,
VDS = 300V
RG = 4.7Ω 6 , VGG = 15V
Current Fall Time
nC
ns
Source-Drain Diode Characteristics
Symbol
IS
ISM
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 1
Test Conditions
MOSFET symbol
showing the
integral reverse p-n
junction diode
(body diode)
Diode Forward Voltage
ISD = 17A, TJ = 25°C, VGS = 0V
trr
Reverse Recovery Time
ISD = 17A 3
Qrr
Reverse Recovery Charge
Peak Recovery dv/dt
Typ
Max
Unit
36
A
G
VSD
dv/dt
Min
D
124
S
diSD/dt = 100A/μs, TJ = 25°C
ISD ≤ 17A, di/dt ≤1000A/μs, VDD = 400V,
TJ = 125°C
1
570
11.8
V
ns
μC
8
V/ns
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Starting at TJ = 25°C, L = 6.44mH, RG = 4.7Ω, IAS = 17A.
3 Pulse test: Pulse Width < 380μs, duty cycle < 2%.
050-8076
Rev C 7-2011
4 Co(cr) is defined as a fixed capacitance with the same stored charge as COSS with VDS = 67% of V(BR)DSS.
5 Co(er) is defined as a fixed capacitance with the same stored energy as COSS with VDS = 67% of V(BR)DSS. To calculate Co(er) for any value of
VDS less than V(BR)DSS, use this equation: Co(er) = -8.03E-8/VDS^2 + 2.80E-8/VDS + 9.89E-11.
6 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
APT34M60B_S
120
V
GS
60
= 10V
T = 125°C
J
TJ = -55°C
ID, DRIAN CURRENT (A)
60
40
20
40
6V
30
20
5.5V
10
TJ = 150°C
5V
TJ = 125°C
0
0
5
10
15
20
25
30
VDS(ON), DRAIN-TO-SOURCE VOLTAGE (V)
0
Figure 2, Output Characteristics
120
NORMALIZED TO
VGS = 10V @ 17A
2.5
VDS> ID(ON) x RDS(ON) MAX.
250μSEC. PULSE TEST
@ <0.5 % DUTY CYCLE
100
ID, DRAIN CURRENT (A)
2.0
1.5
1.0
80
TJ = -55°C
60
TJ = 25°C
40
TJ = 125°C
20
0.5
0
0
-55 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
Figure 3, RDS(ON) vs Junction Temperature
60
0
1
2
3
4
5
6
7
8
VGS, GATE-TO-SOURCE VOLTAGE (V)
Figure 4, Transfer Characteristics
20,000
10,000
C, CAPACITANCE (pF)
TJ = 25°C
40
TJ = 125°C
30
20
1000
Coss
100
10
Crss
5
10 15 20 25 30 35
ID, DRAIN CURRENT (A)
Figure 5, Gain vs Drain Current
100
200
300
400
500
600
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 6, Capacitance vs Drain-to-Source Voltage
12
VDS = 120V
10
VDS = 300V
8
6
VDS = 480V
4
2
0
0
120
ID = 17A
14
0
10
40
50
100
150
200
250
Qg, TOTAL GATE CHARGE (nC)
Figure 7, Gate Charge vs Gate-to-Source Voltage
100
80
TJ = 25°C
60
TJ = 150°C
40
7-2011
0
16
VGS, GATE-TO-SOURCE VOLTAGE (V)
Ciss
TJ = -55°C
ISD, REVERSE DRAIN CURRENT (A)
gfs, TRANSCONDUCTANCE
50
20
0
0
0.3
0.6
0.9
1.2
1.5
VSD, SOURCE-TO-DRAIN VOLTAGE (V)
Figure 8, Reverse Drain Current vs Source-to-Drain Voltage
Rev C
RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE
Figure 1, Output Characteristics
3.0
5
10
15
20
25
30
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
050-8076
ID, DRAIN CURRENT (A)
TJ = 25°C
0
= 7&8V
GS
80
0
V
50
100
APT34M60B_S
200
200
100
100
IDM
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
IDM
10
13μs
100μs
Rds(on)
1
0.1
1ms
10ms
13μs
Rds(on)
0.1
1ms
10ms
Scaling for Different Case & Junction
Temperatures:
100ms
ID = ID(T = 25°C)*(TJ - TC)/125
C
DC line
DC line
10
100
800
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 9, Forward Safe Operating Area
100μs
TJ = 150°C
TC = 25°C
1
100ms
TJ = 125°C
TC = 75°C
1
10
1
10
100
800
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 10, Maximum Forward Safe Operating Area
D = 0.9
0.20
0.15
0.7
Note:
0.5
0.10
P DM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
t2
0.3
0.05
0
t1 = Pulse Duration
SINGLE PULSE
t
Duty Factor D = 1 /t2
Peak T J = P DM x Z θJC + T C
0.1
0.05
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (seconds)
Figure 11. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration
e1 SAC: Tin, Silver, Copper
e3 100% Sn Plated
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Drai n
(Heat Sink)
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
1.0
D3PAK Package Outline
TO-247 (B) Package Outline
Drai n
t1
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
13.41 (.528)
13.51(.532)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
050-8076
Rev C 7-2011
4.50 (.177) Max.
0.40 (.016)
1.016(.040)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters (Inches)
Gate
Drai n
Source
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs. }
Source
Drai n
Gate
Dimensions in Millimeters (Inches)
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Drain)
and Leads
are Plated