APT40GF120JRDQ2_B.pdf

APT40GF120JRDQ2
1200V
TYPICAL PERFORMANCE CURVES
APT40GF120JRDQ2
E
E
FAST IGBT & FRED
The Fast IGBT is a new generation of high voltage power IGBTs. Using Non-Punch through
technology, the Fast IGBT combined with an Microsemi free wheeling Ultra Fast Recovery
Epitaxial Diode (FRED) offers superior ruggedness and fast switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 20KHz
• RBSOA and SCSOA Rated
• Ultra Low Leakage Current
C
G
ISOTOP ®
22
OT
7
S
"UL Recognized"
file # E145592
C
• Ultrafast Soft Recovery Anti-parallel Diode
• Intergrated Gate Resistor: Low EMI, High Reliability
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT40GF120JRDQ2
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
80
I C2
Continuous Collector Current @ TC = 100°C
42
I CM
SSOA
PD
TJ,TSTG
Pulsed Collector Current
1
UNIT
Volts
Amps
150
Switching Safe Operating Area @ TJ = 150°C
150A @ 1200V
Total Power Dissipation
Operating and Storage Junction Temperature Range
347
Watts
-55 to 150
°C
STATIC ELECTRICAL CHARACTERISTICS
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
RG(int)
MAX
5.5
6.5
2.5
3.0
Units
1200
(VCE = VGE, I C = 700µA, Tj = 25°C)
4.5
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
TYP
3.1
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
Volts
200
2
Gate-Emitter Leakage Current (VGE = ±20V)
±100
5
Intergrated Gate Resistor
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
µA
1500
nA
Ω
5-2006
V(BR)CES
MIN
Rev B
Characteristic / Test Conditions
052-6285
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT40GF120JRDQ2
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
MIN
TYP
Capacitance
3460
VGE = 0V, VCE = 25V
385
f = 1 MHz
225
Gate Charge
9.5
VGE = 15V
340
VCE = 600V
MAX
UNIT
pF
V
nC
30
I C = 50A
205
7
SSOA
td(on)
tr
td(off)
tf
Eon1
TJ = 150°C, R G = 1.0Ω, VGE =
Switching Safe Operating Area
15V, L = 100µH,VCE = 1200V
Turn-on Delay Time
Turn-off Switching Energy
td(off)
tf
70
RG = 1.0Ω 7
4
3600
TJ = +25°C
5
ns
260
I C = 50A
Current Fall Time
Eoff
tr
43
Turn-off Delay Time
Turn-on Switching Energy (WithDiode)
td(on)
25
VCC = 800V
VGE = 15V
Eon2
A
Inductive Switching (25°C)
Current Rise Time
Turn-on Switching Energy
150
µJ
4675
6
2640
Turn-on Delay Time
Inductive Switching (125°C)
25
VCC = 800V
43
Current Rise Time
Turn-off Delay Time
VGE = 15V
300
RG = 1.0Ω 7
95
3750
I C = 50A
Current Fall Time
Eon1
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (WithDiode)
Eoff
Turn-off Switching Energy
44
55
TJ = +125°C
ns
µJ
6400
6
3400
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
RθJC
Junction to Case (IGBT)
RθJC
Junction to Case (DIODE)
VIsolation
WT
Torque
1
Characteristic
RMS Voltage (50-60Hz Sinusoidal
MIN
TYP
MAX
0.36
1.1
Waveform from Terminals to Mounting Base for 1 Min.)
Package Weight
Maximum Terminal & Mounting Torque
2500
UNIT
°C/W
Volts
1.03
oz
29.2
gm
10
Ib•in
1.1
N•m
Repetitive Rating: Pulse width limited by maximum junction temperature.
052-6285
Rev B
5-2006
2 For Combi devices, Ices includes both IGBT and diode leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452)
Mircosemi Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
= 15V
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
120
TJ = 25°C
100
TJ = -55°C
80
TJ = 125°C
60
40
20
12V
120
11V
100
80
10V
60
9V
40
8V
0
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
0
5
10
15
20
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
160
120
100
80
60
TJ = -55°C
40
TJ = 25°C
20
TJ = 125°C
0
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
140
IC, COLLECTOR CURRENT (A)
13V
140
20
0
0
15V
160
J
10
VCE = 960V
8
6
4
2
0
50
IC = 100A
4
3
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC = 50A
IC = 25A
2
1
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.00
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
5
IC = 100A
4
IC = 50A
3
IC = 25A
2
1
0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
120
IC, DC COLLECTOR CURRENT(A)
1.05
(NORMALIZED)
VGS(TH), THRESHOLD VOLTAGE
1.15
1.10
100 150 200 250 300 350 400
GATE CHARGE (nC)
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
5
VCE = 240V
VCE = 600V
12
0
2
4
6
8
10
12
14
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 50A
C
T = 25°C
14
100
80
60
40
20
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
5-2006
GE
140
Rev B
V
APT40GF120JRDQ2
180
052-6285
160
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
30
VGE = 15V
25
20
15
10
VCE = 800V
TJ = 25°C or 125°C
RG = 1.0Ω
L = 100µH
5
0
150
100
VCE = 800V
RG = 1.0Ω
L = 100µH
50
100
80
60
40
TJ = 125°C, VGE = 15V
80
60
TJ = 25°C, VGE = 15V
40
20
0
10
30
50
70
90
110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
7
EOFF, TURN OFF ENERGY LOSS (mJ)
= 800V
V
CE
V
= +15V
GE
R = 1.0Ω
G
20
TJ = 125°C
15
10
5
TJ = 25°C
10
30
50
70
90
110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
= 800V
V
CE
= +15V
V
GE
T = 125°C
30
25
20
15
Eoff,100A
Eon2,50A
Eoff,50A
5
Eoff,25A
0
G
Eon2,25A
5
10
15
20
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
TJ = 125°C
5
4
3
2
TJ = 25°C
1
25
Eon2,100A
J
10
6
10
30
50
70
90
110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (mJ)
35
= 800V
V
CE
V
= +15V
GE
R = 1.0Ω
0
0
0
RG = 1.0Ω, L = 100µH, VCE = 800V
100
TJ = 25 or 125°C,VGE = 15V
tf, FALL TIME (ns)
tr, RISE TIME (ns)
VGE =15V,TJ=25°C
120
RG = 1.0Ω, L = 100µH, VCE = 800V
25
EON2, TURN ON ENERGY LOSS (mJ)
200
140
10
30
50
70
90
110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
SWITCHING ENERGY LOSSES (mJ)
VGE =15V,TJ=125°C
10
30
50
70
90
110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
0
5-2006
250
0
20
Rev B
300
10
30
50
70
90
110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
120
052-6285
APT40GF120JRDQ2
350
35
= 800V
V
CE
= +15V
V
GE
R = 1.0Ω
Eon2,100A
G
20
15
10
Eoff,100A
5
Eon2,50A
Eon2,25A
Eoff,50A
0
Eoff,25A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
IC, COLLECTOR CURRENT (A)
Cies
P
C, CAPACITANCE ( F)
APT40GF120JRDQ2
160
6,000
1,000
500
Coes
140
120
100
80
60
40
Cres
20
100
0
10
20
30
40
50
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
200 400 600 800 1000 1200 1400
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.35
D = 0.9
0.30
0.7
0.25
0.20
0.5
Note:
0.15
0.3
0.10
t1
t2
0.05
0
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.40
t
0.1
0.05
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.0158
0.319
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
5
T = 100°C
C
1
T = 125°C
J
D = 50 %
V
= 800V
CE
R = 1.0Ω
G
Fmax = min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
20
30
40
50
60
70
80
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
10
5-2006
0.241
C
Rev B
0.120
Dissipated Power
(Watts)
T = 75°C
10
052-6285
TC (°C)
ZEXT
TJ (°C)
FMAX, OPERATING FREQUENCY (kHz)
80
APT40GF120JRDQ2
APT2X31DQ120
Gate Voltage
10%
TJ = 125°C
td(on)
tr
V CE
IC
V CC
90%
10%
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
TJ = 125°C
td(off)
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
Rev B
5-2006
Figure 23, Turn-off Switching Waveforms and Definitions
052-6285
5%
Collector Voltage
A
90%
Collector Current
TYPICAL PERFORMANCE CURVES
APT40GF120JRDQ2
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
APT40GF120JRDQ2
Characteristic / Test Conditions
IF(AV)
IF(RMS)
Maximum Average Forward Current (TC = 89°C, Duty Cycle = 0.5)
30
RMS Forward Current (Square wave, 50% duty)
39
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
IFSM
UNIT
Amps
210
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Characteristic / Test Conditions
Forward Voltage
VF
MIN
TYP
IF = 50A
3.06
IF = 100A
3.82
IF = 50A, TJ = 125°C
2.25
MAX
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
25
trr
Reverse Recovery Time
-
300
Qrr
Reverse Recovery Charge
-
360
-
4
-
380
ns
-
1700
nC
-
8
-
160
ns
-
2550
nC
-
28
Amps
IRRM
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 30A, diF/dt = -200A/µs
VR = 800V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
VR = 800V, TC = 25°C
Maximum Reverse Recovery Current
trr
IRRM
IF = 30A, diF/dt = -200A/µs
IF = 30A, diF/dt = -1000A/µs
VR = 800V, TC = 125°C
Maximum Reverse Recovery Current
ns
nC
-
-
Amps
Amps
D = 0.9
0.80
0.7
0.60
0.5
0.40
Note:
PDM
1.00
0.3
t1
t2
0.20
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.05
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
TC (°C)
0.291
0.468
0.341
Dissipated Power
(Watts)
0.00306
0.0463
5-2006
TJ (°C)
0.267
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
Rev B
10-5
052-6285
0
0.1
ZEXT
ZθJC, THERMAL IMPEDANCE (°C/W)
1.20
90
400
80
70
TJ = 175°C
60
50
TJ = 25°C
40
TJ = 125°C
30
20
TJ = -55°C
10
0
1
2
3
4
5
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
Qrr, REVERSE RECOVERY CHARGE
(nC)
T = 125°C
J
V = 800V
R
3500
60A
3000
2500
30A
2000
1500
15A
1000
500
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
Qrr
0
CJ, JUNCTION CAPACITANCE
(pF)
5-2006
200
Rev B
150
100
30
T = 125°C
J
V = 800V
60A
R
25
20
30A
15
10
15A
5
45
Duty cycle = 0.5
T = 175°C
40
J
25
20
15
10
5
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
052-6285
15A
200
30
IRRM
0.2
150
100
50
0
250
35
0.6
0.0
30A
300
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
trr
0.4
350
0
trr
0.8
R
0
200
400
600
800
1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
Qrr
1.0
T = 125°C
J
V = 800V
60A
0
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
APT40GF120JRDQ2
50
0
4000
trr, REVERSE RECOVERY TIME
(ns)
450
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT
(A)
100
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT40GF120JRDQ2
Vr
diF /dt Adjust
+18V
APT10035LLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
ISOTOP® is a registered trademark of ST Microelectronics NV.
Collector/Cathode
Dimensions in Millimeters and (Inches)
Gate
5-2006
3.3 (.129)
3.6 (.143)
Rev B
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
052-6285
7.8 (.307)
8.2 (.322)
Similar pages