APT50GT60B_SR(G)_D.pdf

TYPICAL PERFORMANCE CURVES
600V APT50GT60BR_SR(G)
APT50GT60BR
APT50GT60SR
APT50GT60BRG*
APT50GT60SRG*
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Thunderbolt IGBT®
(B)
TO
• High Freq. Switching to 100KHz
• Low Tail Current
• Ultra Low Leakage Current
D 3 PA K
47
(S)
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
• Low Forward Voltage Drop
-2
C
G
G
C
E
E
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT50GT60BR_SR(G)
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current
I C2
Continuous Collector Current @ TC = 110°C
I CM
SSOA
PD
Pulsed Collector Current
7
@ TC = 25°C
TL
Volts
110
52
1
Amps
150
150A @ 600V
Switching Safe Operating Area @ TJ = 150°C
Total Power Dissipation
TJ,TSTG
UNIT
Watts
446
Operating and Storage Junction Temperature Range
-55 to 150
°C
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
300
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
MIN
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 2mA)
600
VGE(TH)
Gate Threshold Voltage (VCE = VGE, I C = 1mA, Tj = 25°C)
VCE(ON)
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C)
I CES
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
MAX
3
4
5
1.7
2.0
2.5
25
2
Gate-Emitter Leakage Current (VGE = ±20V)
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
MicrosemiWebsite-http://www.microsemi.com
Units
Volts
2.2
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
I GES
TYP
μA
TBD
120
nA
052-6273 Rev D 3-2012
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT50GT60BR_SR(G)
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Qge
Total Gate Charge
SSOA
Switching Safe Operating Area
td(on)
Turn-on Delay Time
tr
td(off )
tf
Eon1
153
Gate Charge
7.5
VGE = 15V
240
VCE = 300V
20
I C = 50A
110
TJ = 150°C, R G = 4.3Ω, VGE =
15V, L = 100μH,VCE = 600V
32
Turn-off Delay Time
240
Current Fall Time
I C = 50A
36
Turn-on Switching Energy
RG = 4.3Ω
995
TJ = +25°C
5
14
Current Rise Time
VCC = 400V
32
Turn-off Delay Time
VGE = 15V
270
Turn-on Delay Time
I C = 50A
Current Fall Time
Turn-on Switching Energy
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
nC
ns
μJ
55
ns
95
1035
RG = 4.3Ω
44
Eon2
V
1070
Inductive Switching (125°C)
Eon1
pF
1110
6
UNIT
A
VGE = 15V
4
MAX
150
Current Rise Time
Turn-off Switching Energy
tf
f = 1 MHz
14
Eoff
td(off )
250
VCC = 400V
Turn-on Switching Energy (Diode)
tr
VGE = 0V, VCE = 25V
Inductive Switching (25°C)
Eon2
td(on)
2660
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
TYP
Capacitance
3
Qgc
MIN
TJ = +125°C
μJ
1655
6
1505
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.28
RθJC
Junction to Case (DIODE)
N/A
WT
Package Weight
5.9
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
052-6273 Rev D 3-2012
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 Continuous current limited by package lead temperature.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
UNIT
°C/W
gm
TYPICAL PERFORMANCE CURVES
APT50GT60BR_SR(G)
200
160
V
GE
180
IC, COLLECTOR CURRENT (A)
TJ = 25°C
100
TJ = -55°C
80
TJ = 125°C
60
40
10
11V
160
10V
140
120
9V
100
80
8V
60
40
7V
20
0
1
2
3
4
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
0
5
6V
0
FIGURE 1, Output Characteristics(TJ = 25°C)
160
VGE, GATE-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
I = 50A
C
T = 25°C
J
14
TJ = -55°C
100
80
60
TJ = 25°C
40
TJ = 125°C
20
2
4
6
8
10
VGE, GATE-TO-EMITTER VOLTAGE (V)
VCE = 120V
12
VCE = 300V
10
VCE = 480V
8
6
4
2
0
12
0
50
FIGURE 3, Transfer Characteristics
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
4
IC = 100A
3
IC = 50A
2
IC = 25A
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
200
250
FIGURE 4, Gate Charge
6
2.5
IC = 50A
2.0
1.5
0.5
140
IC, DC COLLECTOR CURRENT(A)
1.10
0.95
0.90
0.85
0.80
0
120
100
80
Lead Temperatur e
Limited
60
40
20
0.75
0.70
-50
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
25
50
75
100
125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
160
1.00
IC = 25A
1.0
1.15
1.05
IC = 100A
3.0
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
100
150
GATE CHARGE (nC)
3.5
5
0
20
FIGURE 2, Output Characteristics (TJ = 125°C)
120
0
5
10
15
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
16
250μs PULSE
TEST<0.5 % DUTY
CYCLE
140
0
13V
-25
0
25
50
75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6273 Rev D 3-2012
IC, COLLECTOR CURRENT (A)
120
0
15V
= 15V
140
APT50GT60BR_SR(G)
350
20
VGE = 15V
15
10
5 VCE = 400V
TJ = 25°C, or 125°C
0
RG = 4.3Ω
L = 100μH
250
150
50 VCE = 400V
RG = 4.3Ω
0
20
40
60
80
100
125
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
180
RG = 4.3Ω, L = 100μH, VCE = 400V
70
140
60
120
tf, FALL TIME (ns)
160
50
40
30
RG = 4.3Ω, L = 100μH, VCE = 400V
TJ = 125°C, VGE = 15V
100
80
60
40
TJ = 25 or 125°C,VGE = 15V
TJ = 25°C, VGE = 15V
20
10
0
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
5000
EOFF, TURN OFF ENERGY LOSS (μJ)
G
TJ = 125°C
3000
2000
1000
TJ = 25°C
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
V = 400V
CE
V = +15V
GE
R = 4.3Ω
3000
G
TJ = 125°C
2500
2000
1500
1000
TJ = 25°C
500
0
0
10,000
0
3500
V = 400V
CE
V = +15V
GE
R = 4.3Ω
4000
0
VGE =15V,TJ=25°C
200
80
0
VGE =15V,TJ=125°C
L = 100μH
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
20
EON2, TURN ON ENERGY LOSS (μJ)
300
0
0
90
tr, RISE TIME (ns)
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
25
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
5,000
V = 400V
CE
V = +15V
GE
T = 125°C
V = 400V
CE
V = +15V
GE
R = 4.3Ω
Eon2,100A
6,000
Eoff,100A
4,000
Eoff,50A
Eon2,50A
2,000
SWITCHING ENERGY LOSSES (μJ)
SWITCHING ENERGY LOSSES (μJ)
052-6273 Rev D 3-2012
J
8,000
G
Eoff,100A
3,000
2,000
Eon2,50A
Eoff,50A
1,000
Eon2,25A
Eoff,25A
Eon2,25A
0
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
Eon2,100A
4,000
0
Eoff,25A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT50GT60BR_SR(G)
160
4,000
140
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
Cies
1,000
500
120
100
Coes
60
40
20
Cres
100
80
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.30
D = 0.9
0.20
0.7
0.15
0.5
0.10
0.3
P DM
Note:
t1
SINGLE PULSE
0.05
t2
t
0.1
Duty Factor D = 1 /t2
Peak T J = P DM x Z θJC + T C
0.05
0
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
T J (°C)
1.0
T C (°C)
0.114
0.113
Dissipated Powe r
(Watts )
0.0057
0.0276
Z EX T
Z EX T are the external therma l
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling onl y
the case to junction.
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
120
50
F
= min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
10
2
T = 125°C
J
T = 75°C
C
D = 50 %
V = 400V
CE
R = 4.3Ω
G
10 20 30 40 50 60 70 80 90 100
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
max
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
052-6273 Rev D 3-2012
10-5
FMAX, OPERATING FREQUENCY (kHz)
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
APT50GT60BR_SR(G)
Gate Voltage
APT40DQ60
10%
TJ = 125°C
td(on)
tr
Collector Current
90%
V CE
IC
V CC
5%
5%
10%
Collector Voltage
A
D.U.T.
Switching Energy
Figure 21, Inductive Switching Test Circui
Figure 22, Turn-on Switching Waveforms and Definitions
t
90%
Gate Voltage
TJ = 125°C
td(off )
90%
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
3
TO -247 P ackage Outlin e
D PAK Package Outlin e
e1 SAC: Tin, Silver, Copper
15.49 (.610)
16.26 (.640)
5.38 (.212)
6.20 (.244)
6.15 (.242) BSC
Collector
(Heat Sink)
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
e3 SAC: Tin, Silver, Copper
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
Collector
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
2.87 (.113)
3.12 (.123)
4.50 (.177) Max.
052-6273 Rev D 3-2012
13.41 (.528)
13.51(.532)
0.40 (.016)
0.79 (.031)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
2.21 (.087)
2.59 (.102)
Gate
Collector
Emitter
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches
)
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs. }
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
3.81 (.150)
4.06 (.160)
(Base of Lead )
Heat Sink (Collector)
and Leads are Plated