IRF IRLB4030PBF

PD - 97369
IRLB4030PbF
Applications
l DC Motor Drive
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET
D
G
Benefits
l Optimized for Logic Level Drive
l Very Low RDS(ON) at 4.5V VGS
l Superior R*Q at 4.5V VGS
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
S
VDSS
RDS(on) typ.
max.
ID
100V
3.4mΩ
4.3mΩ
180A
S
G
D
TO-220AB
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
Parameter
Max.
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
W/°C
V
21
-55 to + 175
V/ns
°C
c
e
Avalanche Characteristics
EAS (Thermally limited)
IAR
EAR
180
130
730
370
2.5
± 16
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
dv/dt
TJ
TSTG
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
c
d
f
Units
A
W
300
x
x
10lb in (1.1N m)
305
See Fig. 14, 15, 22a, 22b,
mJ
A
mJ
Thermal Resistance
Symbol
RθJC
RθCS
RθJA
www.irf.com
Parameter
j
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
ij
Typ.
Max.
Units
–––
0.50
–––
0.40
–––
62
°C/W
1
02/12/09
IRLB4030PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
V(BR)DSS
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
IDSS
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
100
–––
–––
–––
1.0
–––
–––
–––
–––
RG(int)
Internal Gate Resistance
–––
–––
0.10
3.4
3.6
–––
–––
–––
–––
–––
–––
–––
4.3
4.5
2.5
20
250
100
-100
2.1
–––
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 5mA
mΩ VGS = 10V, ID = 110A
VGS = 4.5V, ID = 92A
V VDS = VGS, ID = 250µA
VDS = 100V, VGS = 0V
µA
VDS = 100V, VGS = 0V, TJ = 125°C
VGS = 16V
nA
VGS = -16V
c
f
f
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
g
h
320 ––– –––
–––
87
130
–––
27
–––
–––
45
–––
–––
42
–––
–––
74
–––
––– 330 –––
––– 110 –––
––– 170 –––
––– 11360 –––
––– 670 –––
––– 290 –––
––– 760 –––
––– 1140 –––
S
nC
ns
Conditions
VDS = 25V, ID = 110A
ID = 110A
VDS = 50V
VGS = 4.5V
ID = 110A, VDS =0V, VGS = 4.5V
VDD = 65V
ID = 110A
RG = 2.7Ω
VGS = 4.5V
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 80V
VGS = 0V, VDS = 0V to 80V
f
f
pF
h
g
Diode Characteristics
Symbol
IS
Parameter
Continuous Source Current
VSD
trr
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
ISM
c
Notes:
 Repetitive rating; pulse width limited by max. junction
temperature.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.05mH
RG = 25Ω, IAS = 110A, VGS =10V. Part not recommended for use
above this value .
ƒ ISD ≤ 110A, di/dt ≤ 1330A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
„ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
Min. Typ. Max. Units
–––
–––
180
A
–––
–––
730
Conditions
MOSFET symbol
showing the
integral reverse
D
G
p-n junction diode.
TJ = 25°C, IS = 110A, VGS = 0V
VR = 85V,
TJ = 25°C
TJ = 125°C
IF = 110A
di/dt = 100A/µs
TJ = 25°C
f
S
––– –––
1.3
V
–––
50
–––
ns
–––
60
–––
–––
88
–––
nC
TJ = 125°C
––– 130 –––
–––
3.3
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
f
… Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
† Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For
recommended footprint and soldering techniquea refer to applocation
note # AN- 994 echniques refer to application note #AN-994.
ˆ Rθ is measured at TJ approximately 90°C.
www.irf.com
IRLB4030PbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
4.5V
3.5V
3.0V
2.7V
2.5V
BOTTOM
100
10
2.5V
2.5V
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
1
10
0.1
1
10
100
1000
0.1
V DS, Drain-to-Source Voltage (V)
10
100
1000
Fig 2. Typical Output Characteristics
1000
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
TJ = 175°C
100
TJ = 25°C
10
V DS = 50V
≤60µs PULSE WIDTH
1.0
1
2
3
4
ID = 110A
V GS = 10V
2.0
1.5
1.0
0.5
0.0
5
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
V GS, Gate-to-Source Voltage (V)
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
5.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
V GS, Gate-to-Source Voltage (V)
ID= 110A
C oss = C ds + C gd
C, Capacitance (pF)
VGS
15V
10V
8.0V
4.5V
3.5V
3.0V
2.7V
2.5V
Ciss
10000
Coss
1000
Crss
100
V DS= 80V
V DS= 50V
4.0
3.0
2.0
1.0
0.0
1
10
100
V DS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
20
40
60
80
100
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRLB4030PbF
10000
TJ = 175°C
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100
TJ = 25°C
10
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100µsec
100
10msec
1msec
DC
10
Tc = 25°C
Tj = 175°C
Single Pulse
V GS = 0V
0.1
1
0.0
0.5
1.0
1.5
2.0
2.5
0
V SD, Source-to-Drain Voltage (V)
180
ID, Drain Current (A)
160
140
120
100
80
60
40
20
0
75
100
125
150
175
V (BR)DSS, Drain-to-Source Breakdown Voltage (V)
200
50
1000
Id = 5mA
120
115
110
105
100
95
90
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Temperature ( °C )
Fig 10. Drain-to-Source Breakdown Voltage
4.5
EAS , Single Pulse Avalanche Energy (mJ)
1400
4.0
ID
17A
40A
BOTTOM 110A
1200
3.5
TOP
1000
3.0
Energy (µJ)
100
125
TC , Case Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
2.5
2.0
1.5
1.0
0.5
0.0
800
600
400
200
0
-20
0
20
40
60
80
100
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
10
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
25
1
VDS, Drain-to-Source Voltage (V)
120
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRLB4030PbF
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
0.01
τJ
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τ2
R3
R3
τ3
τC
τ
τ3
Ci= τi/Ri
Ci i/Ri
0.001
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
Ri (°C/W) τi (sec)
0.0477 0.000071
0.1631
0.1893
0.000881
0.007457
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
0.01
0.05
0.10
10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
350
300
EAR , Avalanche Energy (mJ)
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 110A
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRLB4030PbF
40
IF = 73A
V R = 85V
35
2.0
TJ = 25°C
TJ = 125°C
30
1.5
IRRM (A)
VGS(th), Gate threshold Voltage (V)
2.5
ID = 250µA
ID = 1.0mA
ID = 1.0A
1.0
25
20
15
10
0.5
5
0
0.0
-75 -50 -25
0
0
25 50 75 100 125 150 175
200
T J , Temperature ( °C )
600
800
1000
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
35
800
IF = 110A
V R = 85V
30
IF = 73A
V R = 85V
720
640
TJ = 25°C
TJ = 125°C
25
TJ = 25°C
TJ = 125°C
560
20
QRR (A)
IRRM (A)
400
diF /dt (A/µs)
15
480
400
320
10
240
5
160
0
80
0
200
400
600
800
1000
0
diF /dt (A/µs)
200
400
600
800
1000
diF /dt (A/µs)
Fig. 19 - Typical Stored Charge vs. dif/dt
Fig. 18 - Typical Recovery Current vs. dif/dt
880
IF = 110A
V R = 85V
800
720
TJ = 25°C
TJ = 125°C
QRR (A)
640
560
480
400
320
240
160
80
0
200
400
600
800
1000
diF /dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRLB4030PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
VGS
20V
+
V
- DD
IAS
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2µF
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRLB4030PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
(;$03/(
7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
,17(51$7,21$/
3$57180%(5
5(&7,),(5
/2*2
'$7(&2'(
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
$66(0%/<
/27&2'(
<($5
:((.
/,1(&
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/09
8
www.irf.com