Circuit Information - LTE Reference Design for 725-760 MHz, 1 W MMG3014N, MR ...

Freescale Semiconductor
Technical Data
Available at http://freescale.com/RFMMIC > Design Support
> Reference Designs
Rev. 0, 2/2012
RF Power Reference Design
LTE 750 MHz Power Amplifier Lineup
InGaP HBT Driving GaAs pHEMT
Amplifier Lineup Characteristics
This reference design provides a high-gain amplifier solution, specifically
tuned for LTE and W--CDMA base station applications occupying the 725 to
760 MHz frequency band.
• Typical Single--Carrier LTE Performance
• GPA: VCC = 5 Vdc, ICC = 132 mAdc
• Power GaAs FET: VDD = 12 Vdc, IDQ = 180 mA, VGS = --0.82 Vdc
• Output Power: 1.0 Watts Avg.
• 10 MHz Channel Bandwidth @ 10 MHz Offset
• Input Signal PAR = 10.5 dB @ 0.01% Probability on CCDF,
IQ Magnitude Clipping
Frequency
Gps
(dB)
ηD
(%)
Output PAR
(dB)
ACPR
(dBc)
740 MHz
36.5
23.4
9.0
--40.3
750 MHz
36.4
24.1
9.0
--40.4
760 MHz
36.4
24.8
8.9
--40.4
MMG3014N
Driving
MRFG35010AN
LTE
725--760 MHz, 1.0 W AVG., 12 V
LTE AMPLIFIER LINEUP
REFERENCE DESIGN
• Output Capable of Handling 3:1 VSWR, @ 12 Vdc, 750 MHz,
10 Watts CW Output Power
• Designed for Digital Predistortion Error Correction Systems
MMG3014N/MRFG35010AN REFERENCE DESIGN
The amplifier lineup consists of a GaAs HBT pre--driver
and GaAs pHEMT driver amplifier, tuned for optimal gain,
efficiency, linearity and dynamic range performance at
1.0 Watts average output power. Performance
characteristics of the reference design are provided in this
document. Contact your local Freescale sales office or
authorized Freescale distributor for additional information on
reference design board availability for hands--on assessment
and customization.
VDD
VCC
MMG3014N
Bias
RF
INPUT
Bias
Bias
VGS
Input
Matching
Output
Matching
MRFG35010AN
RF
OUTPUT
Matching
Matching
Figure 1. Functional Block Diagram
© Freescale Semiconductor, Inc., 2012. All rights reserved.
RF Reference Design Data
Freescale Semiconductor, Inc.
MMG3014N Driving MRFG35010AN LTE
1
AMPLIFIER LINEUP TEST CONDITIONS
AMPLIFIER LINEUP — ALTERNATE
CHARACTERISTICS
• GPA: VCC = 5 Vdc, ICC = 132 mAdc
• Power GaAs FET: VDD = 12 Vdc, IDQ = 180 mA,
VGS = --0.82 Vdc
• Output Power: 1.0 Watts Avg.
• IQ Magnitude Clipping
• Typical Single--Carrier W--CDMA Performance
• Measured in 3.84 MHz Channel Bandwidth
@ 5 MHz Offset
• Input Signal PAR = 8.5 dB @ 0.01% Probability on CCDF
Note: Refer to Appendix A for Power--up Sequence
Frequency
Gps
(dB)
ηD
(%)
Output PAR
(dB)
ACPR
(dBc)
740 MHz
36.4
23.8
8.3
--40.9
750 MHz
36.3
24.5
8.2
--41.0
760 MHz
36.3
25.2
8.1
--41.0
REFERENCE DESIGN HARDWARE
Figure 2. Performance Optimized Hardware
HEATSINKING
When operating this fixture it is important that adequate heatsinking
is provided for the device. Excessive heating of the device may
degrade the values of the included measurements and continued
operation at excessive temperatures may destroy the device.
MMG3014N Driving MRFG35010AN LTE Reference Design
2
RF Reference Design Data
Freescale Semiconductor, Inc.
--VGS
C12 C11
C8 C7
C9
C13
C6
C10
C14
C5
C15
C4
+VCC
+VDS
C3
C16
R1
C2
R2
C22
C23
C1
C18
RFOUT
Q2
RFIN
C21
L1
C24
C25
L2
Q1
C19
C17
C20
MMG3014N/MRFG35010AN
Rev. 1
Figure 3. MMG3014N Driving MRFG35010AN Board Layout
Table 1. MMG3014N Driving MRFG35010AN Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C18
100 pF Chip Capacitors
ATC600F101JT250XT
ATC
C2
22 pF Chip Capacitor
ATC600F220JT250XT
ATC
C3, C16
10 pF Chip Capacitors
ATC100A100JP150XT
ATC
C4, C15
100 pF Chip Capacitors
ATC100A101JP150XT
ATC
C5, C14
100 pF Chip Capacitors
ATC100B101JP500XT
ATC
C6, C13
1000 pF Chip Capacitors
ATC100B102JP500XT
ATC
C7, C12
0.1 μF Chip Capacitors
CDR33BX104AKYS
Kemet
C8, C11
39K pF Chip Capacitor
ATC200B393KP50XT
ATC
C9, C10
22 μF, 35 V Tantalum Capacitors
T491X226K035AT
Kemet
C17
12 pF Chip Capacitor
ATC600F120JT250XT
ATC
C19
1.8 pF Chip Capacitor
ATC600F1R8BT250XT
ATC
C20
8.2 pF Chip Capacitor
ATC600F8R2BT250XT
ATC
C21, C23
220 pF Chip Capacitors
C0805C221J5GAC
Kemet
C22
5.6 pF Chip Capacitor
06035J5R6BBS
AVX
C24
2.2 μF, 16 V Tantalum Capacitor
T491A225K016AS
Kemet
C25
0.1 μF Chip Capacitor
C0603C104J5RAC
Kemet
L1
4.7 nH Chip Inductor
LL1608--FH4N7S
TOKO
L2
10 nH Chip Inductor
LL1608--FH10NJ
TOKO
Q1
Power FET GaAs Transistor
MRFG35010ANT1
Freescale
Q2
InGaP HBT GPA
MMG3014NT1
Freescale
R1
51 Ω, 1/8 W Chip Resistor
RM73BIJT510J
KOA Speer
R2
5.1 Ω, 1/4 W Chip Resistor
CRCW08055R10JNEA
Newark
PCB
0.020″, εr = 3.5
RO4350B
Rogers
MMG3014N Driving MRFG35010AN LTE Reference Design
RF Reference Design Data
Freescale Semiconductor, Inc.
3
TYPICAL CHARACTERISTICS — 10 MHz LTE Test Signal
(Single--Carrier LTE, Test Model 1.1, 10 MHz, PAR = 10.5 dB @ 0.01% Probability on CCDF)
38
40
740 MHz
750 MHz
Gps, POWER GAIN (dB)
37
760 MHz
36
VCC = 5 Vdc
ICC = 132 mA
VDD = 12 Vdc
IDQ = 180 mA
VGS = --0.82 Vdc
35
34
14
19
24
29
30
ηD, DRAIN EFFICIENCY (%)
750 MHz
20
740 MHz
VCC = 5 Vdc
ICC = 132 mA
VDD = 12 Vdc
IDQ = 180 mA
VGS = --0.82 Vdc
10
0
34
14
19
24
29
34
Pout, OUTPUT POWER (dBm)
Pout, OUTPUT POWER (dBm)
Figure 4. Power Gain versus Output Power
Figure 5. Drain Efficency versus Output Power
11
PAR, PEAK--TO--AVERAGE RATIO (dB)
--30
ACP, ADJACENT CHANNEL POWER (dBc)
760 MHz
--36
740 MHz
--42
750 MHz
VCC = 5 Vdc
ICC = 132 mA
VDD = 12 Vdc
IDQ = 180 mA
VGS = --0.82 Vdc
--48
760 MHz
--54
14
19
24
29
740 MHz
10
760 MHz
9
VCC = 5 Vdc
ICC = 132 mA
VDD = 12 Vdc
IDQ = 180 mA
VGS = --0.82 Vdc
8
7
34
750 MHz
14
19
24
29
34
Pout, OUTPUT POWER (dBm)
Pout, OUTPUT POWER (dBm)
Figure 6. Adjacent Channel Power versus
Output Power
Figure 7. Peak--to--Average Ratio versus
Output Power
10 MHz LTE TEST SIGNAL
100
10
0
--10
10 MHz
Channel BW
--20
1
--30
Input Signal
(dB)
PROBABILITY (%)
10
0.1
LTE. ACPR Measured in 10 MHz
Channel Bandwidth @ ±10 MHz Offset.
Input Signal PAR = 10.5 dB @ 0.01%
Probability on CCDF
0.01
0.001
0
3
6
--40
--50
--60
--70
+ACPR in 10 MHz
Integrated BW
--ACPR in 10 MHz
Integrated BW
--80
9
12
PEAK--TO--AVERAGE (dB)
Figure 8. CCDF LTE IQ Magnitude Clipping,
Single--Carrier Test Signal
--90
--100
--25
--20
--15
--10
--5
0
5
10
15
20
25
f, FREQUENCY (MHz)
Figure 9. Single--Carrier LTE Spectrum
MMG3014N Driving MRFG35010AN LTE Reference Design
4
RF Reference Design Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS — 8.5 dB Input PAR W--CDMA Test Signal
(Single--Carrier W--CDMA, 3GPP Test Model 1, 64 DPCH, PAR = 8.5 dB @ 0.01% Probability on CCDF)
38
40
740 MHz
Gps, POWER GAIN (dB)
37
750 MHz
36
760 MHz
VCC = 5 Vdc
ICC = 132 mA
VDD = 12 Vdc
IDQ = 180 mA
VGS = --0.82 Vdc
35
34
ηD, DRAIN EFFICIENCY (%)
740 MHz
14
19
24
29
20
750 MHz
VCC = 5 Vdc
ICC = 132 mA
VDD = 12 Vdc
IDQ = 180 mA
VGS = --0.82 Vdc
10
14
19
24
29
34
Pout, OUTPUT POWER (dBm)
Pout, OUTPUT POWER (dBm)
Figure 10. Power Gain versus Output Power
Figure 11. Drain Efficency versus Output Power
10
PAR, PEAK--TO--AVERAGE RATIO (dB)
ACP, ADJACENT CHANNEL POWER (dBc)
760 MHz
0
34
--30
--36
750 MHz
--42
740 MHz
VCC = 5 Vdc
ICC = 132 mA
VDD = 12 Vdc
IDQ = 180 mA
VGS = --0.82 Vdc
--48
760 MHz
--54
30
14
19
24
29
750 MHz
740 MHz
8
VCC = 5 Vdc
ICC = 132 mA
VDD = 12 Vdc
IDQ = 180 mA
VGS = --0.82 Vdc
7
6
34
760 MHz
9
14
19
24
29
34
Pout, OUTPUT POWER (dBm)
Pout, OUTPUT POWER (dBm)
Figure 12. Adjacent Channel Power versus
Output Power
Figure 13. Peak--to--Average Ratio versus
Output Power
8.5 dB W--CDMA TEST SIGNAL
100
10
0
--10
3.84 MHz
Channel BW
--20
1
--30
Input Signal
(dB)
PROBABILITY (%)
10
0.1
W--CDMA. ACPR Measured in 3.84 MHz
Channel Bandwidth @ ±5 MHz Offset.
Input Signal PAR = 8.5 dB @ 0.01%
Probability on CCDF
0.01
0.001
0
6
3
--40
--50
--60
--ACPR in 3.84 MHz
Integrated BW
--70
+ACPR in 3.84 MHz
Integrated BW
--80
9
PEAK--TO--AVERAGE (dB)
Figure 14. CCDF W--CDMA IQ Magnitude
Clipping, Single--Carrier Test Signal
12
--90
--100
--9
--7.2 --5.4
--3.6 --1.8
0
1.8 3.6
f, FREQUENCY (MHz)
5.4
7.2
9
Figure 15. Single--Carrier W--CDMA Spectrum
MMG3014N Driving MRFG35010AN LTE Reference Design
RF Reference Design Data
Freescale Semiconductor, Inc.
5
CHARACTERISTICS — CW Test Signal
Gp, SMALL--SIGNAL GAIN (dB)
S21
S11
30
--7
--14
20
S22
--21
10
0
Pin = --25 dBm
500
600
700
800
900
1000
1100
IRL, INPUT RETURN LOSS (dB)
ORL, OUTPUT RETURN LOSS (dB)
0
40
--28
1200
f, FREQUENCY (MHz)
Note: Reference Impedance = 50 Ω
Figure 16. Small--Signal Gain, Input and Output Return
Loss versus Frequency
60
39
45
38
ηD
30
37
Gain
36
35
20
25
30
15
35
40
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
f = 750 MHz
0
Pout, OUTPUT POWER (dBm)
Figure 17. Power Gain and Drain Efficency versus
Output Power
MMG3014N Driving MRFG35010AN LTE Reference Design
6
RF Reference Design Data
Freescale Semiconductor, Inc.
APPENDIX A
Power--Up Sequence
The MMG3014N and MRFG35010AN devices are biased
separately. Apply bias as follows:
1. Terminate the RF input and output with 50 Ω
impedances: no RF signal applied.
2. Apply --1.5 Vdc supply across the --VGS (negative gate
voltage) and GND terminals of MRFG35010AN.
3. Apply +12 Vdc supply across the +VDS (positive drain
voltage) and GND terminals of MRFG35010AN.
4. Increase the --V GS value to set the I DQ (drain
quiescent current) to 180 mA. --V GS should be
approximately --0.82 Vdc.
5. Apply +5 V supply to VCC terminal of MMG3014N.
6. ICC should be around 132 mA.
7. Apply RF signal to input terminal and set signal level to
--20 dBm.
Power--Down Sequence
1. Remove RF signal from input terminal.
2. Remove VCC from MMG3014N.
3. Adjust MRFG35010AN’s --VGS to --1.5 Vdc.
4. IDQ should be near zero.
5. Remove +VDS from MRFG35010AN.
6. Remove --VGS from MRFG35010AN.
MMG3014N Driving MRFG35010AN LTE Reference Design
RF Reference Design Data
Freescale Semiconductor, Inc.
7
APPENDIX B
Tuning Tips
• Adjusting the value or location of C19 and C20 will have
significant effect on ACPR, output return loss and
efficiency.
• Adjusting the values or locations of C17 on
MRFG35010AN input will have significant impact on gain
and input return loss.
MMG3014N Driving MRFG35010AN LTE Reference Design
8
RF Reference Design Data
Freescale Semiconductor, Inc.
APPENDIX C
Simulation Models
Download s imulation models of MMG3014N and
MRFG35010AN from:
http://www.freescale.com/RFMMIC (click on the “Design
Support” tab)
MMG3014N Driving MRFG35010AN LTE Reference Design
RF Reference Design Data
Freescale Semiconductor, Inc.
9
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1--800--521--6274 or +1--480--768--2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1--8--1, Shimo--Meguro, Meguro--ku,
Tokyo 153--0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1--800--441--2447 or +1--303--675--2140
Fax: +1--303--675--2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2012. All rights reserved.
MMG3014N Driving MRFG35010AN LTE Reference Design
Available at http://freescale.com/RFMMIC > Design Support > Reference Designs
Rev. 0, 2/2012
10
RF Reference Design Data
Freescale Semiconductor, Inc.