Kinetis KV5x: 240MHz Cortex-M7 up to 1MB Flash (144pin)

NXP Semiconductors
Data Sheet: Technical Data
KV5XP144M240
Rev. 4, 06/2016
KV5x Data Sheet
240 MHz Cortex-M7 based MCU for Real-time, high
performance connected control
The Kinetis KV5x family of MCU is a high-performance solution
offering exceptional precision, sensing, and control targeting
Motor Control, Industrial Drives and Automation, and Power
Conversion. Apart from the high performance Cortex-M7 core, it
features top notch real time control peripherals such as high
resolution pulse-width modulation (PWM) with 260 ps resolution,
4 Fast 12-bit ADCs with 5 MSps, up to 44 PWM channels for
supporting multi-motor systems. It also comes with multiple
communication peripherals including 3 FlexCAN modules,
optional Ethernet Communications, and multiple UART, SPI, and
I2C modules. The KV5x is supported by a comprehensive
enablement suite from NXP and third-party resources including
reference designs, software libraries, and motor configuration
tools.
Core
• ARM® Cortex®-M7 core up to 240 MHz with single
precision Floating Point Unit (FPU)
Memories
• Up to 1 MB program flash memory
• Up to 256 KB RAM
• External memory interface (FlexBus)
System peripherals
• 32-channel DMA controller
• Low-leakage wakeup unit
• SWD debug interface
• Advanced independent clocked watchdog
• JTAG debug interface
MKV58F1M0Vxx24
MKV56F1M0Vxx24
MKV58F512Vxx24
MKV56F512Vxx24
144 LQFP
20 x 20 x 1.4 mm Pitch
0.5 mm
144 BGA
13 x 13 x 1.23 mm
Pitch 1.0 mm
100 LQFP
14 x 14 x 1.4 mm Pitch 0.5 mm
Communication interfaces
• Six UART/FlexSCI modules with programmable 8or 9-bit data format
• Three 16-bit SPI modules
• Two I2C modules
• Three FlexCAN modules
• Ethernet Module (Optional)
Analog Modules
• Four 12-bit SAR High Speed ADCs with 5 MSPS
sample rate
• One 16-bit ADC
• Four CMPs with a 6-bit DAC and programmable
reference input
• One 12-bit DAC
Clocks
Timers
• 32 to 40 kHz or 3 to 32 MHz crystal oscillator
• Two eFlexPWM with 4 sub-modules, with 12 PWM
• MCG with FLL and PLL referencing internal or external
outputs, one eFlexPWM module with less than 285
reference clock
ps resolution provided by nano-edge module.
• Two 8-channel FlexTimers (FTM0 and FTM3)
Operating Characteristics
• Two 2-channel FlexTimers (FTM1 and FTM2)
• Voltage range: 1.71 to 3.6 V
• Four Periodic interrupt timers (PIT)
• Temperature range: –40 to 105 °C
• Two Programmable Delay Blocks (PDB)
• Quadrature Encoder/Decoder (ENC)
Human-machine interface
• General-purpose input/output
Security and integrity modules
NXP reserves the right to change the production detail specifications as may be
required to permit improvements in the design of its products.
• Hardware CRC module to support fast cyclic
redundancy checks
• External Watchdog Monitor (EWM)
• True Random Number Generator (TRNG)
• Memory mapped Cryptographic Acceleration Unit
(MMCAU)
• Advanced Watchdog (WDOG) timer modules
Orderable part numbers summary1
NXP part number
CPU
frequency
(MHz)
Ambient
operating
temperat
ure (°C)
Package
Flash/
SRAM
Ethernet
CAN
GPIO
MKV58F1M0VMD242
240
105
144
MAPBGA
1 MB/256
KB
Yes
3
111
MKV58F1M0VLQ24
240
105
144 LQFP
1 MB/256
KB
Yes
3
111
MKV58F1M0VLL24
240
105
100 LQFP
1 MB/256
KB
Yes
3
74
MKV56F1M0VMD242
240
105
144
MAPBGA
1 MB/256
KB
No
2
111
MKV56F1M0VLQ24
240
105
144 LQFP
1 MB/256
KB
No
2
111
MKV56F1M0VLL24
240
105
100 LQFP
1 MB/256
KB
No
2
74
MKV58F512VMD242
240
105
144
MAPBGA
512 KB/128
KB
Yes
3
111
MKV58F512VLQ24
240
105
144 LQFP
512 KB/128
KB
Yes
3
111
MKV58F512VLL24
240
105
100 LQFP
512 KB/128
KB
Yes
3
74
MKV56F512VMD242
240
105
144
MAPBGA
512 KB/128
KB
No
2
111
MKV56F512VLQ24
240
105
144 LQFP
512 KB/128
KB
No
2
111
MKV56F512VLL24
240
105
100 LQFP
512 KB/128
KB
No
2
74
1. To confirm current availability of ordererable part numbers, go to http://www.nxp.com and perform a part number search.
2. The 144-pin MAPBGA package for this product is not yet available. However, it is included in a Package Your Way
program for Kinetis MCUs. Visit nxp.com/KPYW for more details.
Related Resources
Type
Selector
Guide
Description
The Solution Advisor is a web-based tool that features interactive
application wizards and a dynamic product selector.
Resource
Solution Advisor
Table continues on the next page...
2
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Related Resources (continued)
Type
Description
Resource
Reference
Manual
The Reference Manual contains a comprehensive description of the
structure and function (operation) of a device.
KV5XP144M240RM1
Data Sheet
The Data Sheet includes electrical characteristics and signal
connections.
KV5XP144M2401
Chip Errata
The chip mask set Errata provides additional or corrective information for KINETIS_V_0N86P1
a particular device mask set.
KINETIS_V_1N86P1
Package
drawing
Package dimensions are provided in package drawings.
• MAPBGA 144-pin:
98ASA00222D1
• LQFP 144-pin:
98ASS23177W1
• LQFP 100-pin:
98ASS23308W1
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.
KV5x Data Sheet, Rev. 4, 06/2016
3
NXP Semiconductors
MMCAU
Trace
Port
JTAG &
PPB
SWJ-DP
Serial Wire
AHBD
64b TCM
64KB ITCM
32b TCM
64KB DTCM
32b TCM
64KB DTCM
ETM
NVIC
MPU
ITM
DSP
FPB
SFPU
DWT
Cache Controller
8 KB D$
16 KB I$
TCM
32b AHBS
S0
S1
OSC
ARM Cortex-M7 Core
TPIU
PIT
IRC
IRC
FLL
WIC
MCG
32-39kHz 4 MHz
PLL
LPO
DMA
MUX
32b AHBP
1588 tmr
10/100 ENET
eDMA
32 ch
64b AXIM
PL301
M0
M1
M1
M0
S0
S1
Crossbar Switch (AXBS x32)
S6
SMPU
S4
M3
M2
S5
S2
SMPU
Port Split
OCRAM0
Flash
Controller
FlexBus
S3
64K
RAM
BME2
RGPIO
AHB to IPS x2
x256
Flash
1M Byte
flexPWM
x4 subm
NanoEdge
CRC
flexPWM
x4 subm
FlexTimer
PMC
3 x flexCAN
8ch + 8ch+
2ch+2ch
5MSPS-ADC
x4
16bit SAR ADC
Low-power
Timer
FlexSCI x6
12-bit DAC
TRNG
XBARA
XBARB
AOI
ENC
DSPI
x3
WDOG
PDB x2
PIT
I2C
x2
HSCMP x4
with 6b DAC?
EWM
Figure 1. KV5x block diagram
4
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Table of Contents
1 Ratings.................................................................................. 6
1.1 Thermal handling ratings............................................... 6
1.2 Moisture handling ratings...............................................6
1.3 ESD handling ratings..................................................... 6
1.4 Voltage and current operating ratings............................6
2 General................................................................................. 7
2.1 AC electrical characteristics...........................................7
2.2 Nonswitching electrical specifications............................7
2.2.1 Operating Requirements....................................7
2.2.2 HVD, LVD, and POR operating requirements....8
2.2.3 PORT Voltage and current operating behaviors 9
2.2.4 Power mode transition operating behaviors.......10
2.2.5 Power consumption operating behaviors...........11
2.2.6 EMC radiated emissions operating behaviors... 15
2.2.7 Designing with radiated emissions in mind........ 16
2.2.8 Capacitance attributes....................................... 16
2.3 Switching specifications................................................. 16
2.3.1 Typical device clock specifications.................... 16
2.3.2 General switching specifications........................17
2.4 Thermal specifications................................................... 18
2.4.1 Thermal operating requirements........................18
2.4.2 Thermal attributes.............................................. 19
3 Peripheral operating requirements and behaviors................ 19
3.1 Core modules................................................................ 19
3.1.1 SWD Electricals ................................................ 19
3.1.2 Debug trace timing specifications...................... 21
3.1.3 JTAG electricals.................................................22
3.2 System modules............................................................ 25
3.3 Clock modules............................................................... 25
3.3.1 MCG specifications............................................ 25
3.3.2 Oscillator electrical specifications...................... 27
3.4 Memories and memory interfaces................................. 29
3.4.1 Flash (FTFE) electrical specifications................ 29
3.5 Flexbus switching specifications.................................... 31
3.6 Security and integrity modules.......................................34
3.7 Analog............................................................................34
3.7.1 12-bit SAR High Speed Analog-to-Digital
Converter (HSADC) parameters........................ 35
KV5x Data Sheet, Rev. 4, 06/2016
4
5
6
7
8
3.7.2 ADC electrical specifications..............................37
3.7.3 CMP and 6-bit DAC electrical specifications......42
3.7.4 12-bit DAC electrical characteristics.................. 43
3.8 Timers............................................................................ 46
3.8.1 Enhanced NanoEdge PWM characteristics....... 46
3.9 Communication interfaces............................................. 47
3.9.1 CAN switching specifications............................. 47
3.9.2 Ethernet switching specifications....................... 47
3.9.3 DSPI switching specifications (limited voltage
range).................................................................49
3.9.4 DSPI switching specifications (full voltage
range).................................................................50
3.9.5 I2C..................................................................... 52
3.9.6 UART................................................................. 52
Dimensions........................................................................... 52
4.1 Obtaining package dimensions......................................52
Pinouts and Packaging......................................................... 53
5.1 KV5x Signal Multiplexing and Pin Assignments............ 53
5.2 KV5x Pinouts................................................................. 62
Ordering parts....................................................................... 64
6.1 Determining valid orderable parts.................................. 64
Part identification...................................................................65
7.1 Description..................................................................... 65
7.2 Format........................................................................... 65
7.3 Fields............................................................................. 65
7.4 Example......................................................................... 66
Terminology and guidelines.................................................. 66
8.1 Definition: Operating requirement.................................. 66
8.2 Definition: Operating behavior....................................... 66
8.3 Definition: Attribute........................................................ 67
8.4 Definition: Rating........................................................... 67
8.5 Result of exceeding a rating.......................................... 67
8.6 Relationship between ratings and operating
requirements.................................................................. 68
8.7 Guidelines for ratings and operating requirements........ 68
8.8 Definition: Typical value................................................. 69
8.9 Typical Value Conditions............................................... 70
9 Revision History.................................................................... 70
5
NXP Semiconductors
Ratings
1 Ratings
1.1 Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.2 Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
Max.
Unit
Notes
—
3
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.3 ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human-body model
-2000
+2000
V
1
VCDM
Electrostatic discharge voltage, charged-device
model
-500
+500
V
2
Latch-up current at ambient temperature of 105 °C
-100
+100
mA
3
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human
Body Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-up Test.
1.4 Voltage and current operating ratings
6
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
General
Symbol
VDD
IDD
VIO
ID
VDDA
Description
Min.
Max.
Unit
Digital supply voltage
–0.3
3.6
V
—
2201
Digital supply current
mA
0.32
Digital pin input voltage (except open drain pins)
–0.3
VDD +
Instantaneous maximum current single pin limit (applies to
all port pins)
–25
25
mA
VDD – 0.3
VDD + 0.3
V
Analog supply voltage
V
1. All VDD/VSS pins must be utilized for this value to be valid.
2. Maximum value of VIO must be 3.8 V.
2 General
2.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
VIH
Input Signal
High
Low
80%
50%
20%
Midpoint1
Fall Time
VIL
Rise Time
The midpoint is VIL + (VIH - VIL) / 2
Figure 2. Input signal measurement reference
All digital I/O switching characteristics, unless otherwise specified, assume:
1. output pins
• have CL=30pF loads,
• are slew rate disabled, and
• are normal drive strength
2.2 Nonswitching electrical specifications
KV5x Data Sheet, Rev. 4, 06/2016
7
NXP Semiconductors
General
2.2.1 Operating Requirements
This section includes information about recommended operating conditions.
NOTE
Recommended VDD ramp rate is between 1 ms and 200 ms.
Table 1. Operating Requirements (VREFLx=0V, VSSA=0V, VSS=0V)
Symbol
Notes1
Description
Min
Max
Unit
VDD
Digital supply voltage
1.71
3.6
V
VDDA
Analog supply voltage
VDD
3.6
V
VREFHx
ADC Reference Voltage High
1.8
VDDA
V
ΔVDD
Voltage difference VDD to VDDA
-0.1
0.1
V
ΔVSS
Voltage difference VSS to VSSA
-0.1
0.1
V
0.04
100
MHz
0
240
0.7 x VDD
—
V
0.35 x VDD
V
105
°C
F_MCGOU
T
Device Clock Frequency
using internal RC oscillator
using external clock source
•
•
VIH
Input Voltage High (digital inputs)
VIL
Input Voltage Low (digital inputs)
TA
Ambient Operating Temperature
-40
1. Default Mode
• Pin Group 1: GPIO, TDI, TDO, TMS, TCK
• Pin Group 2: RESET
• Pin Group 3: ADC and Comparator Analog Inputs
• Pin Group 4: XTAL, EXTAL
• Pin Group 5: DAC analog output
• Pin Group 6: PTB0, PTB1, PTD4, PTD5, PTD6, PTD7, PTC3, and PTC4. have high output current capability
2.2.2 HVD, LVD, and POR operating requirements
Table 2. VDD supply HVD, LVD and POR operating requirements
Symbol
Description
Min.
Typ.
Max.
Unit
VPOR
Falling VDD POR detect voltage
0.8
1.1
1.5
V
VLVDH
Falling low-voltage detect threshold — high
range (LVDV=01)
2.48
2.56
2.64
V
Low-voltage warning thresholds — high range
1
VLVW1H
• Level 1 falling (LVWV=00)
2.62
2.70
2.78
V
VLVW2H
• Level 2 falling (LVWV=01)
2.72
2.80
2.88
V
VLVW3H
• Level 3 falling (LVWV=10)
2.82
2.90
2.98
V
VLVW4H
• Level 4 falling (LVWV=11)
2.92
3.00
3.08
V
—
±80
—
mV
VHYSH
Low-voltage inhibit reset/recover hysteresis —
high range
Notes
Table continues on the next page...
8
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
General
Table 2. VDD supply HVD, LVD and POR operating requirements (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
VLVDL
Falling low-voltage detect threshold — low
range (LVDV=00)
1.54
1.60
1.66
V
VHVDH
High Voltage Detect (High Trip Point)
—
3.7202
—
V
VHVDL
High Voltage Detect (Low Trip Point)
—
3.4582
—
V
Notes
Low-voltage warning thresholds — low range
1
VLVW1L
• Level 1 falling (LVWV=00)
1.74
1.80
1.86
V
VLVW2L
• Level 2 falling (LVWV=01)
1.84
1.90
1.96
V
VLVW3L
• Level 3 falling (LVWV=10)
1.94
2.00
2.06
V
VLVW4L
• Level 4 falling (LVWV=11)
2.04
2.10
2.16
V
—
±60
—
mV
VHYSL
Low-voltage inhibit reset/recover hysteresis —
low range
VBG
Bandgap voltage reference
0.97
1.00
1.03
V
tLPO
Internal low power oscillator period — factory
trimmed
900
1000
1100
μs
1. Rising thresholds are falling threshold + hysteresis voltage
2.2.3 PORT Voltage and current operating behaviors
Table 3. Voltage and current operating behaviors
Symbol
Min.
Typ.
Max.
Unit
Notes
2.7 V ≤ VDD ≤ 3.6 V, IOH = -10 mA
VDD – 0.5
—
—
V
1
1.71 V ≤ VDD ≤ 2.7 V, IOH = -5 mA
VDD – 0.5
—
—
V
2.7 V ≤ VDD ≤ 3.6 V, IOH = -20 mA
VDD – 0.5
—
—
V
1.71 V ≤ VDD ≤ 2.7 V, IOH = -10 mA
VDD – 0.5
—
—
V
IOHT
Output high current total for all ports
—
—
100
mA
VOL
Output low voltage — Normal drive pad
except RESET_B
2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA
—
—
0.5
V
1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA
—
—
0.5
V
2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA
—
—
0.5
V
1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA
—
—
0.5
V
VOH
VOH
VOL
VOL
Description
Output high voltage — Normal drive pad
except RESET_B
Output high voltage — High drive pad
except RESET_B
1
1
Output low voltage — High drive pad
except RESET_B
1
Output low voltage — RESET_B
Table continues on the next page...
KV5x Data Sheet, Rev. 4, 06/2016
9
NXP Semiconductors
General
Table 3. Voltage and current operating behaviors (continued)
Symbol
IOLT
IIN
IICIO
Description
Min.
Typ.
Max.
Unit
2.7 V ≤ VDD ≤ 3.6 V, IOL = 3 mA
—
—
0.5
V
1.71 V ≤ VDD ≤ 2.7 V, IOL = 1.5 mA
—
—
0.5
V
Output low current total for all ports
—
—
100
mA
All pins other than high drive port pins
—
0.002
0.5
μA
High drive port pins
—
0.004
0.5
μA
IO pin negative DC injection current –
single pin.
-3
—
—
mA
Notes
Input leakage current (per pin) for full
temperature range
1, 2
3
VIN < VSS – 0.3V
IICcont
Contiguous pin DC injection current –
regional limit, includes sum of negative
injection currents of 16 contiguous pins
-25
—
—
mA
VODPU
Open drain pullup voltage level
VDD
—
VDD
mA
4
RPU
Internal pullup resistors
20
—
50
kΩ
5
RPD
Internal pulldown resistors
20
—
50
kΩ
6
1. PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7 I/O have both high drive and normal drive capability selected
by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.
2. Measured at VDD=3.6V
3. All I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode connection to VDD. If VIN is
greater than VIO_MIN (= VSS-0.3 V), then there is no need to provide current limiting resistors at the pads. If this limit
cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is
calculated as R = (VIO_MIN - VIN)/|IICIO|.
4. Open drain outputs must be pulled to VDD.
5. Measured at VDD supply voltage = VDD min and Vinput = VSS
6. Measured at VDD supply voltage = VDD min and Vinput = VDD
2.2.4 Power mode transition operating behaviors
All specifications except tPOR and VLLSx→RUN recovery times in the following table
assume this clock configuration:
• CPU and system clocks = 100 MHz
• Bus and flash clock = 25 MHz
• FEI clock mode
Table 4. Power mode transition operating behaviors
Symbol
tPOR
Description
After a POR event, amount of time from the
point VDD reaches 1.71 V to execution of the
Min.
Typ.
Max.
Unit
—
—
300
μs
Notes
Table continues on the next page...
10
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
General
Table 4. Power mode transition operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
—
—
149
μs
—
—
149
μs
—
—
79
μs
—
—
5.7
μs
—
—
5.7
μs
Notes
first instruction across the operating temperature
range of the chip.
• VLLS0 → RUN
• VLLS1 → RUN
• VLLS3 → RUN
• VLPS → RUN
• STOP → RUN
2.2.5 Power consumption operating behaviors
NOTE
In the following table, the maximum values represent
characterized results equivalent to the mean plus three times
the standard deviation (mean + 3σ).
Table 5. Power consumption operating behaviors
Symbol
IDDA
IDD_RUN
Description
Analog supply current
Run mode current — all peripheral clocks
disabled, code executing from flash, while(1)
loop, excludes ADC IDDA
• @ 1.8V
Min.
Typ.
Max.
Unit
Notes
—
5
8
mA
HSADC0 and
HSADC1 with
66.6 MHz
clock, ADC0
with 25 MHz
clock.
Core frequency
of 25 MHz
—
7.5
36
mA
—
7.6
39
mA
• @ 3.0V
IDD_RUN
Run mode current — all peripheral clocks
disabled, code executing from flash, while(1)
loop, excludes ADC IDDA
• @ 1.8V
• @ 3.0V
Core frequency
of 50 MHz
—
10.8
—
mA
—
10.8
—
mA
Table continues on the next page...
KV5x Data Sheet, Rev. 4, 06/2016
11
NXP Semiconductors
General
Table 5. Power consumption operating behaviors (continued)
Symbol
Description
Min.
IDD_RUN
Run mode current — all peripheral clocks
disabled, code executing from flash, while(1)
loop, excludes ADC IDDA
• @ 3.0V
• @25°C
• @105°C
IDD_RUN
Typ.
Max.
Unit
Core frequency
of 160 MHz.
—
27.9
30.0
mA
—
44.3
55.7
mA
Run mode current — all peripheral clocks
disabled, running benchmark code from
flash, excludes ADC IDDA
• @ 3.0V
• @25°C
• @105°C
—
70.0
—
mA
—
79.9
—
mA
IDD_HSRUN Run mode current — all peripheral clocks
disabled, code executing from flash, while(1)
loop, excludes ADC IDDA
• @ 3.0V
• @25°C
• @105°C
Notes
CoreMark
benchmark
compiled using
IAR 7.50 with
optimization
level set to
High for Speed
with no size
constraints
option
selected.
Clock
frequencies
configured as
follows:
•
Core
clock is
160 MHz
•
Fast
Peripher
al clock
is 80
MHz
• Flexbus
clock is
26.67
MHz
•
Bus/
Flash
clock is
26.67
MHz
Core frequency
of 240 MHz.
—
43.8
47.1
mA
—
62.5
80.8
mA
IDD_HSRUN Run mode current — all peripheral clocks
enabled, code executing from flash, while(1)
loop, excludes ADC IDDA
• @ 3.0V
Core frequency
of 240 MHz.
Nanoedge
module at 120
MHz.
Table continues on the next page...
12
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
General
Table 5. Power consumption operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
• @ 25°C
—
70.8
74.1
mA
• @ 105°C
—
92.3
107.9
mA
IDD_HSRUN HSRun mode current — all peripheral clocks
disabled, running benchmark code from
flash, excludes ADC IDDA
• @ 3.0V
Notes
CoreMark
benchmark
compiled using
IAR 7.50 with
optimization
level set to
High for Speed
with no size
constraints
option
selected.
Clock
frequencies
configured as
follows:
•
Core
clock is
240 MHz
•
Fast
Peripher
al clock
is 120
MHz
• Flexbus
clock is
30 MHz
•
Bus/
Flash
clock is
24 MHz
—
116
—
mA
—
132.9
—
mA
Wait mode high frequency current at 3.0 V —
all peripheral clocks disabled
—
16.3
—
mA
160 MHz PEE
mode, Fast
Peripheral
clock = 80
MHz, Flexbus
clock = 80
MHz, Bus/
Flash clock =
20 MHz
IDD_VLPR Very-low-power run mode current at 3.0 V —
all peripheral clocks disabled
—
0.729
7.6
mA
CPU frequency
4 MHz
IDD_VLPR Very-low-power run mode current at 3.0 V —
all peripheral clocks enabled
—
1.2
9.4
mA
CPU frequency
4 MHz
IDD_VLPW Very-low-power wait mode current at 3.0 V —
all peripheral clocks disabled
—
0.33
0.43
mA
4 MHz System/
Core clock,
Fast peripheral
clock, and
Flexbus clock.
• @ 25°C
• @ 105°C
IDD_WAIT
Table continues on the next page...
KV5x Data Sheet, Rev. 4, 06/2016
13
NXP Semiconductors
General
Table 5. Power consumption operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
1 MHz bus/
flash clock. All
peripheral
clocks
disabled. Temp
= 25°C.
IDD_STOP Stop mode current at 3.0 V
• @ –40 to 25°C
—
0.55
0.91
mA
• @ 105°C
—
11.1
18.3
mA
• @ –40 to 25°C
—
0.107
0.33
mA
• @ 105°C
—
4.0
7.6
mA
• @ –40 to 25°C
—
5.2
8.6
μA
• @ 70°C
—
29.8
85
μA
• @ 105°C
—
122.4
185
μA
• @ –40 to 25°C
—
3.2
4.8
μA
• @ 70°C
—
11.6
45
μA
• @ 105°C
—
47.2
71
μA
• @ –40 to 25°C
—
0.778
2.6
μA
• @ 70°C
—
3.9
21
μA
• @ 105°C
—
18.8
36
μA
• @ –40 to 25°C
—
0.5
2.1
μA
• @ 70°C
—
3.4
21
μA
• @ 105°C
—
18.2
36
μA
• @ –40 to 25°C
—
0.147
1.69
μA
• @ 70°C
—
3.0
16.8
μA
• @ 105°C
—
17.6
29.2
μA
IDD_VLPS Very-low-power stop mode current at 3.0 V
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0
V
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0
V
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0
V
IDD_VLLS0B Very low-leakage stop mode 0 current at 3.0
V with POR detect circuit enabled
IDD_VLLS0A Very low-leakage stop mode 0 current at 3.0
V with POR detect circuit disabled
14
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
General
Table 6. Low power mode peripheral adders — typical value
Symbol
Description
Temperature (°C)
Unit
-40
25
50
70
85
105
IIREFSTEN4MHz 4 MHz internal reference clock (IRC) adder.
Measured by entering STOP or VLPS
mode with 4 MHz IRC enabled.
56
56
56
56
56
56
µA
IIREFSTEN32KHz 32 kHz internal reference clock (IRC)
adder. Measured by entering STOP mode
with the 32 kHz IRC enabled.
52
52
52
52
52
52
µA
IEREFSTEN4MHz External 4 MHz crystal clock adder.
Measured by entering STOP or VLPS
mode with the crystal enabled.
206
228
237
245
251
258
uA
IEREFSTEN32KHz External 32 kHz crystal clock adder by
means of the OSC0_CR[EREFSTEN and
EREFSTEN] bits. Measured by entering all
modes with the crystal enabled.
nA
VLLS1
VLLS3
440
490
540
560
570
580
LLS
440
490
540
560
570
580
VLPS
490
490
540
560
570
680
STOP
510
560
560
560
610
680
510
560
560
560
610
680
22
22
22
22
22
22
ICMP
CMP peripheral adder measured by placing
the device in VLLS1 mode with CMP
enabled using the 6-bit DAC and a single
external input for compare. Includes 6-bit
DAC power consumption.
IUART
UART peripheral adder measured by
placing the device in STOP or VLPS mode
with selected clock source waiting for RX
data at 115200 baud rate. Includes
selected clock source power consumption.
MCGIRCLK (4 MHz internal reference
clock)
OSCERCLK (4 MHz external crystal)
IBG
Bandgap adder when BGEN bit is set and
device is placed in VLPx, LLS, or VLLSx
mode.
KV5x Data Sheet, Rev. 4, 06/2016
µA
µA
66
66
66
66
66
66
214
234
246
254
260
268
45
45
45
45
45
45
µA
15
NXP Semiconductors
General
2.2.6 EMC radiated emissions operating behaviors
Table 7. EMC radiated emissions operating behaviors
Symbol
VEME
Conditions
Device configuration, test
conditions and EM testing per
standard IEC 61967-2.
• Supply voltage VDD = 3.3
V
• Temperature = 25 °C
Clocks
Frequency
band (MHz)
Typ.
Unit
Notes
• fOSC= 20
MHz
(crystal)
• fSYS = 150
MHz
0.15–50
14
dBμV
1
50–150
25
dBμV
150–500
23
dBμV
500–1000
16
dBμV
0.15–1000
K
—
2
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement
of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and
Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code.
The reported emission level is the value of the maximum measured emission, rounded up to the next whole number,
from among the measured orientations in each frequency range.
2. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and
Wideband TEM Cell Method
2.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to www.nxp.com.
2. Perform a keyword search for “EMC design.”
2.2.8 Capacitance attributes
Table 8. Capacitance attributes
Symbol
Description
Min.
Max.
Unit
CIN_A
Input capacitance: analog pins
—
7
pF
CIN_D
Input capacitance: digital pins
—
7
pF
2.3 Switching specifications
16
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
General
2.3.1 Typical device clock specifications
Table 9. Device clock specifications
Symbol
Description
Min.
Max.
Unit
—
240
MHz
Notes
High Speed run mode
fsys
System (CPU) clock
Normal run mode (and High Speed run mode unless otherwise specified above)
fsys
System (CPU) clock
—
160
MHz
Fast Peripheral Clock
—
120
MHz
FB_CLK
FlexBus clock
—
60
MHz
fBus_Flash
Bus / Flash clock
—
27.5
MHz
—
24
MHz
System (CPU) clock
—
4
MHz
Fast Peripheral Clock
—
4
MHz
FB_CLK
FlexBus clock
—
4
MHz
fBus_Flash
Bus / Flash Clock
—
500
kHz
fERCLK
External reference clock
—
16
MHz
fLPTMR
LPTMR clock
—
24
MHz
fFastPeripheral
fLPTMR
LPTMR clock
1
VLPR mode
fsys
fFastPeripheral
2
1. When using this clock to supply the nano-edge module, this clock must be 1/2 of the system clock.
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is a clock input connected to the
EXTAL pin with the OSC configured for bypass (external clock) operation.
2.3.2 General switching specifications
These general purpose specifications apply to all signals configured for GPIO, UART,
FlexCAN, and I2C signals.
Table 10. General switching specifications
Description
Min.
Max.
Unit
Notes
GPIO pin interrupt pulse width (digital glitch filter disabled)
— Synchronous path
1.5
—
Bus clock
cycles
1
GPIO pin interrupt pulse width (digital glitch filter enabled,
analog filter disabled) — Asynchronous path
80
—
ns
2
GPIO pin interrupt pulse width (digital glitch filter disabled,
analog filter disabled) — Asynchronous path
50
—
ns
2
External RESET and NMI pin interrupt pulse width —
Asynchronous path
100
—
ns
2
GPIO pin interrupt pulse width — Asynchronous path
10
—
ns
2
Normal drive fast pins
3, 4
• 2.7≤ VDD ≤ 3.6 V
Table continues on the next page...
KV5x Data Sheet, Rev. 4, 06/2016
17
NXP Semiconductors
General
Table 10. General switching specifications (continued)
Description
Min.
Max.
Unit
• Fast slew rate
—
0.7
ns
• Slow slew rate
• 1.71≤ VDD < 2.7 V
• Fast slew rate
—
16
ns
Notes
2.15
16
• Slow slew rate
High drive fast pins (normal/low drive enabled)
• 2.7≤ VDD ≤ 3.6 V
• Fast slew rate
• Slow slew rate
• 1.71≤ VDD < 2.7 V
• Fast slew rate
3, 5
—
0.7
ns
—
15.65
ns
2.35
35.3
• Slow slew rate
High drive fast pins (high drive enabled)
• 2.7≤ VDD ≤ 3.6 V
• Fast slew rate
• Slow slew rate
• 1.71≤ VDD < 2.7 V
• Fast slew rate
—
3
ns
—
16.5
ns
6.5
36.3
• Slow slew rate
1. The synchronous and asynchronous timing must be met.
2. This is the shortest pulse that is guaranteed to be recognized.
3. For high drive pins with high drive enabled, load is 75pF; other pins load (normal/low drive) is 25pF. Fast slew rate is
enabled by clearing PORTx_PCRn[SRE].
4. Normal drive fast pins: All other GPIO pins that are not high drive fast pins.
5. High drive fast pins: PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7. High drive capability is enabled by
setting PORTx_PCRn[DSE]
2.4 Thermal specifications
2.4.1 Thermal operating requirements
Table 11. Thermal operating requirements
Symbol
Description
Min.
Max.
Unit
TJ
Die junction temperature
–40
125
°C
TA
Ambient temperature
–40
105
°C
Notes
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to
determine TJ is:
TJ = TA + RθJA x chip power dissipation
18
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
2.4.2 Thermal attributes
Table 12. Thermal attributes
Board type
Symbol
Single-layer (1S)
RθJA
Four-layer (2s2p)
Description
144
MAPBG
A1
144
LQFP
100
LQFP
Unit
Notes
Thermal resistance, junction to
ambient (natural convection)
—
51
51
°C/W
2
RθJA
Thermal resistance, junction to
ambient (natural convection)
—
42
38
°C/W
Single-layer (1S)
RθJMA
Thermal resistance, junction to
ambient (200 ft./min. air speed)
—
42
41
°C/W
Four-layer (2s2p)
RθJMA
Thermal resistance, junction to
ambient (200 ft./min. air speed)
—
36
32
°C/W
—
RθJB
Thermal resistance, junction to
board
—
30
23
°C/W
3
—
RθJC
Thermal resistance, junction to
case
—
11
10
°C/W
4
—
ΨJT
Thermal characterization
parameter, junction to package
top outside center (natural
convection)
—
2
2
°C/W
5
1. Package Your Way
2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test
Method Environmental Conditions—Forced Convection (Moving Air).
3. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental
Conditions—Junction-to-Board.
4. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material
between the top of the package and the cold plate.
5. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
3 Peripheral operating requirements and behaviors
3.1 Core modules
KV5x Data Sheet, Rev. 4, 06/2016
19
NXP Semiconductors
Peripheral operating requirements and behaviors
3.1.1 SWD Electricals
Table 13. SWD full voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
0
25
MHz
1/J1
—
ns
20
—
ns
SWD_CLK frequency of operation
• Serial wire debug
J2
SWD_CLK cycle period
J3
SWD_CLK clock pulse width
• Serial wire debug
J4
SWD_CLK rise and fall times
—
3
ns
J9
SWD_DIO input data setup time to SWD_CLK rise
10
—
ns
J10
SWD_DIO input data hold time after SWD_CLK rise
0
—
ns
J11
SWD_CLK high to SWD_DIO data valid
—
32
ns
J12
SWD_CLK high to SWD_DIO high-Z
5
—
ns
J2
J3
J3
SWD_CLK (input)
J4
J4
Figure 3. Serial wire clock input timing
20
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
SWD_CLK
J9
SWD_DIO
J10
Input data valid
J11
SWD_DIO
Output data valid
J12
SWD_DIO
J11
SWD_DIO
Output data valid
Figure 4. Serial wire data timing
3.1.2 Debug trace timing specifications
Table 14. Debug trace operating behaviors
Symbol
Description
Tcyc
Clock period
Twl
Low pulse width
2
—
ns
Twh
High pulse width
2
—
ns
Tr
Clock and data rise time
—
3
ns
Tf
Clock and data fall time
—
3
ns
Ts
Data setup
3
1.5
ns
Th
Data hold
2
1.0
ns
KV5x Data Sheet, Rev. 4, 06/2016
Min.
Max.
Unit
Frequency dependent
MHz
21
NXP Semiconductors
Peripheral operating requirements and behaviors
TRACECLK
Tr
Tf
Twh
Twl
Tcyc
Figure 5. TRACE_CLKOUT specifications
TRACE_CLKOUT
Ts
Th
Ts
Th
TRACE_D[3:0]
Figure 6. Trace data specifications
3.1.3 JTAG electricals
Table 15. JTAG limited voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
TCLK frequency of operation
MHz
• Boundary Scan
0
10
• JTAG and CJTAG
0
25
• Serial Wire Debug
0
50
1/J1
—
ns
• Boundary Scan
50
—
ns
• JTAG and CJTAG
20
—
ns
• Serial Wire Debug
10
—
ns
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J6
Boundary scan input data hold time after TCLK rise
2.0
—
ns
J7
TCLK low to boundary scan output data valid
—
28
ns
J8
TCLK low to boundary scan output high-Z
—
25
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1
—
ns
J2
TCLK cycle period
J3
TCLK clock pulse width
Table continues on the next page...
22
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
Table 15. JTAG limited voltage range electricals (continued)
Symbol
Description
Min.
Max.
Unit
J11
TCLK low to TDO data valid
—
19
ns
J12
TCLK low to TDO high-Z
—
17
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
Table 16. JTAG full voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
TCLK frequency of operation
MHz
• Boundary Scan
0
10
• JTAG and CJTAG
0
20
• Serial Wire Debug
0
40
1/J1
—
ns
• Boundary Scan
50
—
ns
• JTAG and CJTAG
25
—
ns
• Serial Wire Debug
12.5
—
ns
J2
TCLK cycle period
J3
TCLK clock pulse width
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J6
Boundary scan input data hold time after TCLK rise
2.0
—
ns
J7
TCLK low to boundary scan output data valid
—
30.6
ns
J8
TCLK low to boundary scan output high-Z
—
25
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1.0
—
ns
J11
TCLK low to TDO data valid
—
19.0
ns
J12
TCLK low to TDO high-Z
—
17.0
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
J2
J3
J3
TCLK (input)
J4
J4
Figure 7. Test clock input timing
KV5x Data Sheet, Rev. 4, 06/2016
23
NXP Semiconductors
Peripheral operating requirements and behaviors
TCLK
J5
Data inputs
J6
Input data valid
J7
Data outputs
Output data valid
J8
Data outputs
J7
Data outputs
Output data valid
Figure 8. Boundary scan (JTAG) timing
TCLK
J9
TDI/TMS
J10
Input data valid
J11
TDO
Output data valid
J12
TDO
J11
TDO
Output data valid
Figure 9. Test Access Port timing
24
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
TCLK
J14
J13
TRST
Figure 10. TRST timing
3.2 System modules
There are no specifications necessary for the device's system modules.
3.3 Clock modules
3.3.1 MCG specifications
Table 17. MCG specifications
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
fints_ft
Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
—
32.768
—
kHz
fints_t
Internal reference frequency (slow clock) —
user trimmed
31.25
—
39.0625
kHz
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM and SCFTRIM
—
± 0.3
± 0.6
%fdco
1
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM only
—
± 0.2
± 0.5
%fdco
1
± 0.5
±2
%fdco
1,
±1
%fdco
1
Δfdco_t
Total deviation of trimmed average DCO output
frequency over voltage and temperature
—
Δfdco_t
Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70°C
—
fintf_ft
Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25°C
—
4
—
MHz
fintf_t
Internal reference frequency (fast clock) —
user trimmed at nominal VDD and 25 °C
3
—
5
MHz
(3/5) x
fints_t
—
—
kHz
floc_low
Loss of external clock minimum frequency —
RANGE = 00
Table continues on the next page...
KV5x Data Sheet, Rev. 4, 06/2016
25
NXP Semiconductors
Peripheral operating requirements and behaviors
Table 17. MCG specifications (continued)
Symbol
Description
floc_high
Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
Min.
Typ.
Max.
Unit
(16/5) x
fints_t
—
—
kHz
31.25
—
39.0625
kHz
20
20.97
25
MHz
40
41.94
50
MHz
60
62.91
75
MHz
80
83.89
100
MHz
—
23.99
—
MHz
—
47.97
—
MHz
—
71.99
—
MHz
—
95.98
—
MHz
—
180
—
—
150
—
—
—
1
ms
Notes
FLL
ffll_ref
fdco
FLL reference frequency range
DCO output
frequency range
Low range (DRS=00)
2, 3
640 × ffll_ref
Mid range (DRS=01)
1280 × ffll_ref
Mid-high range (DRS=10)
1920 × ffll_ref
High range (DRS=11)
2560 × ffll_ref
fdco_t_DMX3 DCO output
frequency
2
Low range (DRS=00)
4, 5
732 × ffll_ref
Mid range (DRS=01)
1464 × ffll_ref
Mid-high range (DRS=10)
2197 × ffll_ref
High range (DRS=11)
2929 × ffll_ref
Jcyc_fll
FLL period jitter
• fDCO = 48 MHz
• fDCO = 98 MHz
tfll_acquire
FLL target frequency acquisition time
ps
6
PLL
8
—
16
MHz
fvcoclk_2x
fpll_ref
VCO output frequency
220
—
480
MHz
fvcoclk
PLL output frequency
110
—
240
MHz
PLL quadrature output frequency
110
—
240
MHz
—
2.8
—
mA
—
4.7
—
mA
fvcoclk_90
PLL reference frequency range
Ipll
PLL operating current
• VCO @ 176 MHz (fosc_hi_1 = 32 MHz,
fpll_ref = 8 MHz, VDIV multiplier = 22)
Ipll
PLL operating current
• VCO @ 360 MHz (fosc_hi_1 = 32 MHz,
fpll_ref = 8 MHz, VDIV multiplier = 45)
Jcyc_pll
Jacc_pll
PLL period jitter (RMS)
7
7
8
• fvco = 48 MHz
—
120
—
ps
• fvco = 120 MHz
—
75
—
ps
PLL accumulated jitter over 1µs (RMS)
8
Table continues on the next page...
26
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
Table 17. MCG specifications (continued)
Symbol
Dunl
tpll_lock
Description
Min.
Typ.
Max.
Unit
• fvco = 48 MHz
—
1350
—
ps
• fvco = 120 MHz
—
600
—
ps
± 4.47
—
± 5.97
Lock exit frequency tolerance
Lock detector detection time
—
—
10-6
150 ×
+ 1075(1/
fpll_ref)
Notes
%
s
9
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency
deviation (Δfdco_t) over voltage and temperature should be considered.
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
8. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of
each PCB and results will vary.
9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL
disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this
specification assumes it is already running.
3.3.2 Oscillator electrical specifications
3.3.2.1
Oscillator DC electrical specifications
Table 18. Oscillator DC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDOSC
IDDOSC
Supply current — low-power mode (HGO=0)
1
• 32 kHz
—
500
—
nA
• 4 MHz
—
200
—
μA
• 8 MHz
—
300
—
μA
• 16 MHz
—
950
—
μA
• 24 MHz
—
1.2
—
mA
• 32 MHz
—
1.5
—
mA
Supply current — high gain mode (HGO=1)
• 4 MHz
Notes
1
—
400
—
μA
Table continues on the next page...
KV5x Data Sheet, Rev. 4, 06/2016
27
NXP Semiconductors
Peripheral operating requirements and behaviors
Table 18. Oscillator DC electrical specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
• 8 MHz
—
500
—
μA
• 16 MHz
—
2.5
—
mA
• 24 MHz
—
3
—
mA
• 32 MHz
—
4
—
mA
Notes
Cx
EXTAL load capacitance
—
—
—
2, 3
Cy
XTAL load capacitance
—
—
—
2, 3
RF
Feedback resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
—
10
—
MΩ
Feedback resistor — high-frequency, lowpower mode (HGO=0)
—
—
—
MΩ
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
—
1
—
MΩ
Series resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
Series resistor — low-frequency, high-gain
mode (HGO=1)
—
200
—
kΩ
Series resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
—
0
—
kΩ
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
RS
2, 4
Series resistor — high-frequency, high-gain
mode (HGO=1)
5
Vpp
1. VDD=3.3 V, Temperature =25 °C
2. See crystal or resonator manufacturer's recommendation
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For
all other cases external capacitors must be used.
4. When low power mode is selected, RF is integrated and must not be attached externally.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to
any other devices.
28
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
3.3.2.2
Symbol
Oscillator frequency specifications
Table 19. Oscillator frequency specifications
Min.
Typ.
Max.
Unit
Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00)
32
—
40
kHz
fec_extal
Input clock frequency (external clock mode)
—
—
48
MHz
tdc_extal
Input clock duty cycle (external clock mode)
40
50
60
%
Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
—
1000
—
ms
fosc_lo
tcst
Description
Notes
1, 2
3, 4
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by
FRDIV, it remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S
register being set.
NOTE
The 32 kHz oscillator works in low power mode by default
and cannot be moved into high power/gain mode.
3.4 Memories and memory interfaces
3.4.1 Flash (FTFE) electrical specifications
This section describes the electrical characteristics of the FTFE module.
NOTE
All flash programerase functions can only be performed
when the MCU is in Normal Run mode. Programming or
erasing the flash in HSRUN mode is not allowed.
3.4.1.1
Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps
are active and do not include command overhead.
Table 20. NVM program/erase timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
thvpgm8
Program Phrase high-voltage time
—
7.5
18
μs
thversscr
Erase Flash Sector high-voltage time
—
13
113
ms
Notes
1
Table continues on the next page...
KV5x Data Sheet, Rev. 4, 06/2016
29
NXP Semiconductors
Peripheral operating requirements and behaviors
Table 20. NVM program/erase timing specifications (continued)
Symbol
Description
thversall1m Erase All Blocks high-voltage time for 1 MB
Min.
Typ.
Max.
Unit
Notes
—
832
7232
ms
1
1. Maximum time based on expectations at cycling end-of-life.
3.4.1.2
Flash timing specifications — commands
Table 21. Flash command timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
trd1sec8k
Read 1s Section execution time (8 KB flash)
—
—
200
μs
1
tpgmchk
Program Check execution time
—
—
95
μs
1
trdrsrc
Read Resource execution time
—
—
40
μs
1
tpgm8
Program Phrase execution time
—
90
150
μs
tersscr
Erase Flash Sector execution time
—
15
115
ms
Program Section execution time (1KB flash)
—
5
—
ms
trd1allx
Read 1s All Blocks execution time
—
—
1.8
ms
trdonce
Read Once execution time
—
—
30
μs
Program Once execution time
—
90
—
μs
tersall
Erase All Blocks execution time
—
870
7400
ms
2
tvfykey
Verify Backdoor Access Key execution time
—
—
30
μs
1
tersallu
Erase All Blocks Unsecure execution time
—
870
7400
ms
2
tpgmsec1k
tpgmonce
2
1
1. Assumes 25MHz or greater flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3.4.1.3
Flash high voltage current behaviors
Table 22. Flash high voltage current behaviors
Symbol
Description
Min.
Typ.
Max.
Unit
IDD_PGM
Average current
adder during high
voltage flash
programming
operation
—
3.5
7.5
mA
IDD_ERS
Average current
adder during high
voltage flash erase
operation
—
1.5
4.0
mA
30
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
3.4.1.4
Symbol
Reliability specifications
Table 23. NVM reliability specifications
Description
Min.
Typ.1
Max.
Unit
Notes
Program Flash
tnvmretp10k Data retention after up to 10 K cycles
5
50
—
years
tnvmretp1k
Data retention after up to 1 K cycles
20
100
—
years
nnvmcycp
Cycling endurance
10 K
50 K
—
cycles
2
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a
constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
Engineering Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.
3.5 Flexbus switching specifications
All processor bus timings are synchronous; input setup/hold and output delay are
given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK
frequency may be the same as the internal system bus frequency or an integer divider
of that frequency.
The following timing numbers indicate when data is latched or driven onto the
external bus, relative to the Flexbus output clock (FB_CLK). All other timing
relationships can be derived from these values.
Table 24. Flexbus limited voltage range switching specifications
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Frequency of operation
—
FB_CLK
MHz
FB1
Clock period
1/FB_CLK
—
ns
FB2
Address, data, and control output valid
—
11.8
ns
FB3
Address, data, and control output hold
1.0
—
ns
FB4
Data and FB_TA input setup
11.9
—
ns
FB5
Data and FB_TA input hold
0.0
—
ns
Notes
1
2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0],
FB_ALE, and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
Table 25. Flexbus full voltage range switching specifications
Num
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
Notes
Table continues on the next page...
KV5x Data Sheet, Rev. 4, 06/2016
31
NXP Semiconductors
Peripheral operating requirements and behaviors
Table 25. Flexbus full voltage range switching specifications (continued)
Num
Description
Frequency of operation
Min.
Max.
Unit
—
FB_CLK
MHz
1/FB_CLK
—
ns
—
12.6
ns
FB1
Clock period
FB2
Address, data, and control output valid
FB3
Address, data, and control output hold
1.0
—
ns
FB4
Data and FB_TA input setup
12.5
—
ns
FB5
Data and FB_TA input hold
0
—
ns
Notes
1
2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,
and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
32
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
Read Timing Parameters
S0
S1
S2
S3
S0
FB1
FB_CLK
FB5
FB_A[Y]
Address
FB4
FB2
FB_D[X]
FB3
Address
Data
FB_RW
FB_TS
FB_ALE
AA=1
FB_CSn
AA=0
FB_OEn
electricals_read.svg
FB4
FB_BEn
FB5
AA=1
FB_TA
AA=0
FB_TSIZ[1:0]
TSIZ
S0
S1
S2
S3
S0
Figure 11. FlexBus read timing diagram
KV5x Data Sheet, Rev. 4, 06/2016
33
NXP Semiconductors
Peripheral operating requirements and behaviors
Write Timing Parameters
FB1
FB_CLK
FB2
FB3
FB_A[Y]
FB_D[X]
Address
Address
Data
FB_RW
FB_TS
FB_ALE
AA=1
FB_CSn
AA=0
FB_OEn
FB_BEn
electricals_write.svg
FB4
FB5
AA=1
FB_TA
FB_TSIZ[1:0]
AA=0
TSIZ
Figure 12. FlexBus write timing diagram
3.6 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
3.7 Analog
34
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
3.7.1 12-bit SAR High Speed Analog-to-Digital Converter (HSADC)
parameters
Table 26. 12-bit HSADC electrical specifications
Characteristic
Symbol
Min
Typ
Max
Unit
Analog supply voltage
VDDA
1.71
—
3.6
V
Vrefh Supply Voltage
• VDDA ≥ 2V
Vrefh
VDDA
VDDA
V
VSSA
0.1
V
Vrefh
V
Recommended Operating Conditions
2.0
VDDA
• VDDA < 2V
Vrefl Supply Voltage
Vrefl
VSSA
Analog Input
Full-scale input range (single-ended mode)
Vrefl
Full-scale input range (differential mode)
2*(Vrefh - Vrefl)
V
Input signal common mode (only for
differential mode)
(Vrefh + Vrefl)/2
V
5
pF
Input sampling capacitance (no parasitic
capacitances included)
Cs
Current Consumption
Fs=5MSPS (Conversion in progress,
differential mode)1
• IDDA
µA
—
1150
—
—
85
—
• IDD
Fs=1MSPS (Conversion in progress,
differential mode)1
• IDDA
µA
—
260
—
—
19
—
• IDD
Fs=10kSPS (Conversion in progress,
differential mode)1
• IDDA
µA
—
19
—
—
2.9
—
• IDD
Fs=5MSPS (Conversion in progress, singleended mode)1
• IDDA
µA
—
1030
—
—
85
—
• IDD
Fs=1MSPS (Conversion in progress, singleended mode)1
• IDDA
µA
—
230
—
—
18
—
• IDD
Fs=10kSPS (Conversion in progress, singleended mode)1
µA
Table continues on the next page...
KV5x Data Sheet, Rev. 4, 06/2016
35
NXP Semiconductors
Peripheral operating requirements and behaviors
Table 26. 12-bit HSADC electrical specifications (continued)
Characteristic
Symbol
• IDDA
• IDD
Fs=5MSPS (Conversion not in progress)
• IDDA
Min
Typ
Max
—
19
—
—
2.9
—
Unit
µA
• IDD
Fs=1MSPS (Conversion not in progress)
• IDDA
—
38
—
—
57
—
µA
• IDD
Fs=10kSPS (Conversion not in progress)
• IDDA
—
22
—
—
14
—
µA
• IDD
—
19
—
—
2.7
—
Timing Characteristics
Input clock frequency
fclk
0.14
70
80
MHz
Input clock frequency during calibration
fclk
0.14
—
60
MHz
Sampling
rate2
Fs
• ADCRES=11 (12 bits conversion result)
• ADCRES=10 (10 bits conversion result)
• ADCRES=01 (8 bits conversion result)
• ADCRES=00 (6 bits conversion result)
MSPS
0.01
5
5.71
0.012
5.83
6.66
0.014
7
8
0.0175
8.75
10
Conversion cycle2 (back to back)
Clock cycles
14
• ADCRES=11 (12 bits conversion result)
12
• ADCRES=10 (10 bits conversion result)
10
• ADCRES=01 (8 bits conversion result)
8
• ADCRES=00 (6 bits conversion result)
Data latency2
Clock cycles
12.5
• ADCRES=11 (12 bits conversion result)
10.5
• ADCRES=10 (10 bits conversion result)
8.5
• ADCRES=01 (8 bits conversion result)
6.5
• ADCRES=00 (6 bits conversion result)
Accuracy (DC or Absolute)
Integral non-Linearity
INL
+/- 3.0
LSB
Differential non-Linearity
DNL
+/- 1.0
LSB
Table continues on the next page...
36
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
Table 26. 12-bit HSADC electrical specifications (continued)
Characteristic
Symbol
Signal-to-noise and distortion
ratio3
Min
Typ
SINAD
Max
Unit
65
dBFS
Offset error (calibration enabled)
+/- 2.0
LSB
Offset error (calibration disabled)
+/- 64
LSB
+/- 5
LSB
Total unadjusted error (calibration enabled)
TUE
1. Successive conversion mode
2. "ADCRES" refers to the resolution selection control signal
3. Value measured with a –0.5dBFS input signal and then extrapolated to full scale.
3.7.2 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 1 and Table 28 are achievable on the
differential pins ADCx_DP0, ADCx_DM0.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
3.7.2.1
16-bit ADC operating conditions
Table 27. 16-bit ADC operating conditions
Symbol
Description
Conditions
Min.
Typ.1
Max.
Unit
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
ΔVDDA
Supply voltage
Delta to VDD (VDD –
VDDA)
-100
0
+100
mV
2
ΔVSSA
Ground voltage
Delta to VSS (VSS –
VSSA)
-100
0
+100
mV
2
VREFH
ADC reference voltage
high
1.13
VDDA
VDDA
V
VREFL
ADC reference voltage
low
VSSA
VSSA
VSSA
V
VADIN
Input voltage
CADIN
Input capacitance
RADIN
RAS
VREFL
—
VREFH
V
• 16-bit mode
—
8
10
pF
• 8-bit / 10-bit /
12-bit modes
—
4
5
—
2
5
Input series resistance
Analog source
resistance (external)
kΩ
13-bit / 12-bit modes
fADCK < 4 MHz
Notes
3
—
—
5
kΩ
Table continues on the next page...
KV5x Data Sheet, Rev. 4, 06/2016
37
NXP Semiconductors
Peripheral operating requirements and behaviors
Table 27. 16-bit ADC operating conditions (continued)
Description
Conditions
Min.
Typ.1
Max.
Unit
Notes
fADCK
ADC conversion clock
frequency
≤ 13-bit mode
1.0
—
24.0
MHz
4
fADCK
ADC conversion clock
frequency
16-bit mode
2.0
—
12.0
MHz
4
Crate
ADC conversion rate
≤ 13-bit modes
Symbol
No ADC hardware
averaging
5
20.000
—
818.330
ksps
Continuous
conversions
enabled, subsequent
conversion time
Crate
ADC conversion rate
16-bit mode
No ADC hardware
averaging
5
37.037
—
461.467
ksps
Continuous
conversions
enabled, subsequent
conversion time
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for
reference only, and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The
RAS/CAS time constant should be kept to < 1 ns.
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
38
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
ZADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
Pad
leakage
due to
input
protection
ZAS
RAS
ADC SAR
ENGINE
RADIN
VADIN
CAS
VAS
RADIN
INPUT PIN
RADIN
INPUT PIN
RADIN
INPUT PIN
CADIN
Figure 13. ADC input impedance equivalency diagram
3.7.2.2
16-bit ADC electrical characteristics
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol Description
Conditions1
Min.
Typ.2
Max.
Unit
Notes
0.215
—
1.7
mA
3
• ADLPC = 1, ADHSC = 0
1.2
2.4
3.9
MHz
• ADLPC = 1, ADHSC = 1
2.4
4.0
6.1
MHz
tADACK = 1/
fADACK
• ADLPC = 0, ADHSC = 0
3.0
5.2
7.3
MHz
• ADLPC = 0, ADHSC = 1
4.4
6.2
9.5
MHz
LSB4
5
LSB4
5
LSB4
5
IDDA_ADC Supply current
ADC asynchronous
clock source
fADACK
Sample Time
TUE
DNL
INL
See Reference Manual chapter for sample times
Total unadjusted
error
• 12-bit modes
—
±4
±6.8
• <12-bit modes
—
±1.4
±2.1
Differential nonlinearity
• 12-bit modes
—
±0.7
–1.1 to
+1.9
• <12-bit modes
—
±0.2
• 12-bit modes
—
±1.0
Integral non-linearity
–0.3 to
0.5
–2.7 to
+1.9
Table continues on the next page...
KV5x Data Sheet, Rev. 4, 06/2016
39
NXP Semiconductors
Peripheral operating requirements and behaviors
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol Description
Conditions1
Min.
Typ.2
Max.
—
±0.5
–0.7 to
+0.5
• 12-bit modes
—
–4
–5.4
• <12-bit modes
—
–1.4
–1.8
• 16-bit modes
—
–1 to 0
—
• ≤13-bit modes
—
—
±0.5
• <12-bit modes
EFS
EQ
ENOB
Full-scale error
Quantization error
Effective number of
bits
Unit
Notes
LSB4
VADIN = VDDA5
LSB4
16-bit differential mode
6
• Avg = 32
12.8
14.5
• Avg = 4
11.9
13.8
—
—
bits
bits
16-bit single-ended mode
• Avg = 32
• Avg = 4
SINAD
THD
Signal-to-noise plus See ENOB
distortion
Total harmonic
distortion
12.2
13.9
11.4
13.1
—
—
6.02 × ENOB + 1.76
16-bit differential mode
• Avg = 32
bits
bits
dB
dB
—
-94
7
—
dB
16-bit single-ended mode
• Avg = 32
SFDR
Spurious free
dynamic range
—
-85
82
95
16-bit differential mode
• Avg = 32
16-bit single-ended mode
78
—
—
dB
—
dB
7
90
• Avg = 32
EIL
Input leakage error
IIn × RAS
mV
IIn = leakage
current
(refer to the
MCU's
voltage and
current
operating
ratings)
Temp sensor slope
VTEMP25 Temp sensor
voltage
Across the full temperature
range of the device
1.55
1.62
1.69
mV/°C
8
25 °C
706
716
726
mV
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
40
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with
1 MHz ADC conversion clock speed.
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
8. ADC conversion clock < 3 MHz
Typical ADC 16-bit Differential ENOB vs ADC Clock
100Hz, 90% FS Sine Input
15.00
14.70
14.40
14.10
ENOB
13.80
13.50
13.20
12.90
12.60
Hardware Averaging Disabled
Averaging of 4 samples
Averaging of 8 samples
Averaging of 32 samples
12.30
12.00
1
2
3
4
5
6
7
8
9
10
11
12
ADC Clock Frequency (MHz)
Figure 14. Typical ENOB vs. ADC_CLK for 16-bit differential mode
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock
100Hz, 90% FS Sine Input
14.00
13.75
13.50
13.25
13.00
ENOB
12.75
12.50
12.25
12.00
11.75
11.50
11.25
11.00
Averaging of 4 samples
Averaging of 32 samples
1
2
3
4
5
6
7
8
9
10
11
12
ADC Clock Frequency (MHz)
Figure 15. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
KV5x Data Sheet, Rev. 4, 06/2016
41
NXP Semiconductors
Peripheral operating requirements and behaviors
3.7.3 CMP and 6-bit DAC electrical specifications
Table 29. Comparator and 6-bit DAC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDHS
Supply current, high-speed mode (EN = 1, PMODE =
1)
—
—
200
μA
IDDLS
Supply current, low-speed mode (EN = 1, PMODE =
0)
—
—
20
μA
VAIN
Analog input voltage
VSS
—
VDD
V
VAIO
Analog input offset voltage
—
—
20
mV
• CR0[HYSTCTR] = 00
—
5
—
mV
• CR0[HYSTCTR] = 01
—
10
—
mV
• CR0[HYSTCTR] = 10
—
20
—
mV
• CR0[HYSTCTR] = 11
—
30
—
mV
VH
Analog comparator hysteresis1
VCMPOh
Output high
VDD – 0.5
—
—
V
VCMPOl
Output low
—
—
0.5
V
tDHS
Propagation delay, high-speed mode (EN = 1,
PMODE = 1)
20
50
200
ns
tDLS
Propagation delay, low-speed mode (EN = 1, PMODE
= 0)
80
250
600
ns
Analog comparator initialization delay2
—
—
40
μs
6-bit DAC current adder (enabled)
—
7
—
μA
IDAC6b
INL
6-bit DAC integral non-linearity
–0.5
—
0.5
LSB3
DNL
6-bit DAC differential non-linearity
–0.3
—
0.3
LSB
1. Typical hysteresis is measured with input voltage range limited to 0.7 to VDD – 0.7 V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to
DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
42
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
CMP Hysteresis vs Vinn
90.00E-03
80.00E-03
CMP Hysteresis (V)
70.00E-03
60.00E-03
HYSTCTR
Setting
50.00E-03
0
1
2
3
40.00E-03
30.00E-03
20.00E-03
10.00E-03
000.00E+00
0.1
0.4
0.7
1
1.3
1.6
1.9
Vinn (V)
2.2
2.5
2.8
3.1
Figure 16. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)
CMP Hysteresis vs Vinn
180.00E-03
160.00E-03
CMP Hysteresis (V)
140.00E-03
120.00E-03
HYSTCTR
Setting
100.00E-03
0
1
2
3
80.00E-03
60.00E-03
40.00E-03
20.00E-03
000.00E+00
-20.00E-03
0.1
0.4
0.7
1
1.3
1.6
1.9
2.2
2.5
2.8
3.1
Vinn (V)
Figure 17. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)
3.7.4 12-bit DAC electrical characteristics
KV5x Data Sheet, Rev. 4, 06/2016
43
NXP Semiconductors
Peripheral operating requirements and behaviors
3.7.4.1
Symbol
12-bit DAC operating requirements
Table 30. 12-bit DAC operating requirements
Desciption
Min.
VDDA
Supply voltage
VDACR
Reference voltage
Max.
Unit
3.6
V
Notes
1.13
3.6
V
1
CL
Output load capacitance
—
100
pF
2
IL
Output load current
—
1
mA
1. The DAC reference can be selected to be VDDA or VREFH.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.
3.7.4.2
Symbol
12-bit DAC operating behaviors
Table 31. 12-bit DAC operating behaviors
Description
IDDA_DACL Supply current — low-power mode
Min.
Typ.
Max.
Unit
—
—
150
μA
—
—
700
μA
Notes
P
IDDA_DACH Supply current — high-speed mode
P
tDACLP
Full-scale settling time (0x080 to 0xF7F) —
low-power mode
—
100
200
μs
1
tDACHP
Full-scale settling time (0x080 to 0xF7F) —
high-power mode
—
15
30
μs
1
μs
1
tCCDACLP Code-to-code settling time (0xBF8 to
0xC08)
• High-speed mode
• Low speed mode
—
1
5
Vdacoutl
DAC output voltage range low — highspeed mode, no load, DAC set to 0x000
—
—
100
mV
Vdacouth
DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF
VDACR
−100
—
VDACR
mV
INL
Integral non-linearity error — high speed
mode
—
—
±8
LSB
2
DNL
Differential non-linearity error — VDACR > 2
V
—
—
±1
LSB
3
DNL
Differential non-linearity error — VDACR =
VREF_OUT
—
—
±1
LSB
4
VOFFSET Offset error
—
±0.4
±0.8
%FSR
5
Gain error
—
±0.1
±0.6
%FSR
5
Power supply rejection ratio, VDDA ≥ 2.4 V
60
—
90
dB
TCO
Temperature coefficient offset voltage
—
3.7
—
μV/C
TGE
Temperature coefficient gain error
—
0.000421
—
%FSR/C
Rop
Output resistance (load = 3 kΩ)
—
—
250
Ω
SR
Slew rate -80h→ F7Fh→ 80h
EG
PSRR
6
V/μs
Table continues on the next page...
44
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
Table 31. 12-bit DAC operating behaviors (continued)
Symbol
Description
BW
1.
2.
3.
4.
5.
6.
Min.
Typ.
Max.
• High power (SPHP)
1.2
1.7
—
• Low power (SPLP)
0.05
0.12
—
3dB bandwidth
Unit
Notes
kHz
• High power (SPHP)
550
—
—
• Low power (SPLP)
40
—
—
Settling within ±1 LSB
The INL is measured for 0 + 100 mV to VDACR −100 mV
The DNL is measured for 0 + 100 mV to VDACR −100 mV
The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V
Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV
VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC
set to 0x800, temperature range is across the full range of the device
8
6
4
DAC12 INL (LSB)
2
0
-2
-4
-6
-8
0
500
1000
1500
2000
2500
3000
3500
4000
Digital Code
Figure 18. Typical INL error vs. digital code
KV5x Data Sheet, Rev. 4, 06/2016
45
NXP Semiconductors
Peripheral operating requirements and behaviors
1.499
DAC12 Mid Level Code Voltage
1.4985
1.498
1.4975
1.497
1.4965
1.496
55
25
-40
85
105
125
Temperature °C
Figure 19. Offset at half scale vs. temperature
3.8 Timers
See General switching specifications.
3.8.1 Enhanced NanoEdge PWM characteristics
Table 32. NanoEdge PWM timing parameters
Characteristic
Symbol
PWM clock frequency
NanoEdge Placement (NEP) Step
• @ 80 MHz
Power-up
46
NXP Semiconductors
Typ
80
Size1
Max
Unit
120
MHz
pwmp
• @ 120 MHz
Time2
Min
tpu
ps
—
390
—
—
260
—
25
µs
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
1. Temperature and voltage variations do not affect NanoEdge Placement step size.
2. Powerdown to NanoEdge mode transition.
3.9 Communication interfaces
3.9.1 CAN switching specifications
See General switching specifications.
3.9.2 Ethernet switching specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface.
3.9.2.1
MII signal switching specifications
The following timing specs meet the requirements for MII style interfaces for a range
of transceiver devices.
Table 33. MII signal switching specifications
Symbol
Description
Min.
Max.
—
Operating Voltage
1.71
3.6
V
—
RXCLK frequency
—
25
MHz
35%
65%
RXCLK
MII1
RXCLK pulse width high
Unit
period
MII2
RXCLK pulse width low
35%
65%
RXCLK
period
MII3
RXD[3:0], RXDV, RXER to RXCLK setup
5
—
ns
MII4
RXCLK to RXD[3:0], RXDV, RXER hold
5
—
ns
TXCLK frequency
—
25
MHz
35%
65%
TXCLK
—
MII5
TXCLK pulse width high
period
MII6
TXCLK pulse width low
35%
65%
TXCLK
period
MII7
TXCLK to TXD[3:0], TXEN, TXER invalid
2
—
ns
MII8
TXCLK to TXD[3:0], TXEN, TXER valid
—
25
ns
KV5x Data Sheet, Rev. 4, 06/2016
47
NXP Semiconductors
Peripheral operating requirements and behaviors
MII6
MII5
TXCLK (input)
MII8
MII7
TXD[n:0]
Valid data
TXEN
Valid data
TXER
Valid data
Figure 20. RMII/MII transmit signal timing diagram
MII2
MII1
MII3
MII4
RXCLK (input)
RXD[n:0]
Valid data
RXDV
Valid data
RXER
Valid data
Figure 21. RMII/MII receive signal timing diagram
3.9.2.2
RMII signal switching specifications
The following timing specs meet the requirements for RMII style interfaces for a range
of transceiver devices.
Table 34. RMII signal switching specifications
Num
Description
Min.
Max.
Unit
—
Operating Voltage
1.71
3.6
—
EXTAL frequency (RMII input clock RMII_CLK)
—
50
MHz
RMII1
RMII_CLK pulse width high
35%
65%
RMII_CLK
period
RMII2
RMII_CLK pulse width low
35%
65%
RMII_CLK
period
RMII3
RXD[1:0], CRS_DV, RXER to RMII_CLK setup
4
—
ns
RMII4
RMII_CLK to RXD[1:0], CRS_DV, RXER hold
2
—
ns
Table continues on the next page...
48
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
Table 34. RMII signal switching specifications
(continued)
Num
Description
Min.
Max.
Unit
RMII7
RMII_CLK to TXD[1:0], TXEN invalid
4
—
ns
RMII8
RMII_CLK to TXD[1:0], TXEN valid
—
15.4
ns
3.9.3 DSPI switching specifications (limited voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The
tables below provide DSPI timing characteristics for classic SPI timing modes. Refer
to the DSPI chapter of the Reference Manual for information on the modified transfer
formats used for communicating with slower peripheral devices.
Table 35. Master mode DSPI timing (limited voltage range)
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Frequency of operation
—
30
MHz
2 x tBUS
—
ns
Notes
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) − 2 (tSCK/2) + 2
ns
DS3
DSPI_PCSn to DSPI_SCK output valid
(tBUS x 2) −
2
—
ns
1
DS4
DSPI_SCK to DSPI_PCSn output hold
(tBUS x 2) −
2
—
ns
2
DS5
DSPI_SCK to DSPI_SOUT valid
—
8.5
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
−2
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
17
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
KV5x Data Sheet, Rev. 4, 06/2016
49
NXP Semiconductors
Peripheral operating requirements and behaviors
DSPI_PCSn
DS3
DS4
DS8
DS7
(CPOL=0)
DS1
DS2
DSPI_SCK
DSPI_SIN
Data
First data
DSPI_SOUT
Last data
DS5
DS6
First data
Data
Last data
Figure 22. DSPI classic SPI timing — master mode
Table 36. Slave mode DSPI timing (limited voltage range)
Num
Description
Operating voltage
Min.
Max.
Unit
2.7
3.6
V
15
MHz
4 x tBUS
—
ns
(tSCK/2) − 2
(tSCK/2) + 2
ns
Frequency of operation
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
—
21
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
2
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
15
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
15
ns
DSPI_SS
DS10
DS9
DSPI_SCK
(CPOL=0)
DS15
DSPI_SOUT
First data
DS13
DSPI_SIN
DS12
DS16
DS11
Data
Last data
DS14
First data
Data
Last data
Figure 23. DSPI classic SPI timing — slave mode
50
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Peripheral operating requirements and behaviors
3.9.4 DSPI switching specifications (full voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The
tables below provides DSPI timing characteristics for classic SPI timing modes. Refer
to the DSPI chapter of the Reference Manual for information on the modified transfer
formats used for communicating with slower peripheral devices.
Table 37. Master mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
Notes
1.71
3.6
V
1
—
25
MHz
4 x tBUS
—
ns
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS3
DSPI_PCSn valid to DSPI_SCK delay
(tBUS x 2) −
4
—
ns
2
DS4
DSPI_SCK to DSPI_PCSn invalid delay
(tBUS x 2) −
4
—
ns
3
DS5
DSPI_SCK to DSPI_SOUT valid
—
10
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
-7.8
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
24
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage
range the maximum frequency of operation is reduced.
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DSPI_PCSn
DS3
DSPI_SCK
(CPOL=0)
DS7
DSPI_SIN
DS4
DS8
First data
DSPI_SOUT
DS1
DS2
Data
Last data
DS5
First data
DS6
Data
Last data
Figure 24. DSPI classic SPI timing — master mode
Table 38. Slave mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Min.
Max.
Unit
1.71
3.6
V
Table continues on the next page...
KV5x Data Sheet, Rev. 4, 06/2016
51
NXP Semiconductors
Dimensions
Table 38. Slave mode DSPI timing (full voltage range) (continued)
Num
Description
Frequency of operation
Min.
Max.
Unit
—
12.5
MHz
8 x tBUS
—
ns
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
—
27.5
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
2.5
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
22
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
22
ns
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DSPI_SOUT
DS12
First data
DS13
DSPI_SIN
DS16
DS11
Data
Last data
DS14
First data
Data
Last data
Figure 25. DSPI classic SPI timing — slave mode
3.9.5 I2C
See General switching specifications.
3.9.6 UART
See General switching specifications.
4 Dimensions
52
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Pinouts and Packaging
4.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
To find a package drawing, go to www.nxp.com and perform a keyword search for the
drawing’s document number:
If you want the drawing for this package
Then use this document number
144-pin MAPBGA
98ASA00222D
144-pin LQFP
98ASS23177W
100-pin LQFP
98ASS23308W
5 Pinouts and Packaging
5.1 KV5x Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is
responsible for selecting which ALT functionality is available on each pin.
144 144 100 Pin Name
MAP LQFP LQFP
BGA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
ALT8
D3
1
1
PTE0
HSADC0B
_CH16/
HSADC1A
_CH0
HSADC0B PTE0
_CH16/
HSADC1A
_CH0
SPI1_
PCS1
UART1_
TX
XB_
OUT10
XB_IN11
I2C1_SDA
TRACE_
CLKOUT
D2
2
2
PTE1/
LLWU_P0
HSADC0B
_CH17/
HSADC1A
_CH1
HSADC0B PTE1/
_CH17/
LLWU_P0
HSADC1A
_CH1
SPI1_
SOUT
UART1_
RX
XB_
OUT11
XB_IN7
I2C1_SCL
TRACE_
D3
D1
3
3
PTE2/
LLWU_P1
HSADC0B
_CH10/
HSADC1B
_CH0
HSADC0B PTE2/
_CH10/
LLWU_P1
HSADC1B
_CH0
SPI1_SCK UART1_
CTS_b
TRACE_
D2
E4
4
4
PTE3
HSADC0B
_CH11/
HSADC1B
_CH1
HSADC0B PTE3
_CH11/
HSADC1B
_CH1
SPI1_SIN
UART1_
RTS_b
TRACE_
D1
E5
5
—
VDD
VDD
VDD
F6
6
—
VSS
VSS
VSS
E3
7
5
PTE4/
LLWU_P2
HSADC1A HSADC1A PTE4/
_CH4/
_CH4/
LLWU_P2
ADC0_
ADC0_
SPI1_
PCS0
UART3_
TX
TRACE_
D0
KV5x Data Sheet, Rev. 4, 06/2016
ALT9
53
NXP Semiconductors
Pinouts and Packaging
144 144 100 Pin Name
MAP LQFP LQFP
BGA
Default
ALT0
SE2/
ADC0_
DP2
SE2/
ADC0_
DP2
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
E2
8
6
PTE5
HSADC1A
_CH5/
ADC0_
SE10/
ADC0_
DM2
HSADC1A PTE5
_CH5/
ADC0_
SE10/
ADC0_
DM2
SPI1_
PCS2
UART3_
RX
FLEXPWM FTM3_
1_A0
CH0
E1
9
7
PTE6/
LLWU_
P16
HSADC1B
_CH7/
ADC0_
SE4a
HSADC1B PTE6/
_CH7/
LLWU_
ADC0_
P16
SE4a
SPI1_
PCS3
UART3_
CTS_b
FLEXPWM FTM3_
1_B0
CH1
F4
10
—
PTE7
DISABLED
PTE7
UART3_
RTS_b
FLEXPWM FTM3_
1_A1
CH2
F3
11
—
PTE8
DISABLED
PTE8
UART5_
TX
FLEXPWM FTM3_
1_B1
CH3
F2
12
—
PTE9/
LLWU_
P17
DISABLED
PTE9/
LLWU_
P17
UART5_
RX
FLEXPWM FTM3_
1_A2
CH4
F1
13
—
PTE10/
LLWU_
P18
DISABLED
PTE10/
LLWU_
P18
UART5_
CTS_b
FLEXPWM FTM3_
1_B2
CH5
G4
14
—
PTE11
HSADC1A
_CH6/
ADC0_
SE3/
ADC0_
DP3
HSADC1A PTE11
_CH6/
ADC0_
SE3/
ADC0_
DP3
UART5_
RTS_b
FLEXPWM FTM3_
1_A3
CH6
G3
15
—
PTE12
HSADC1B
_CH6/
ADC0_
SE11/
ADC0_
DM3
HSADC1B PTE12
_CH6/
ADC0_
SE11/
ADC0_
DM3
E6
16
8
VDD
VDD
VDD
F7
17
9
VSS
VSS
VSS
H1
18
10
PTE16
HSADC0A
_CH0/
ADC0_
SE1/
ADC0_
DP1
HSADC0A PTE16
_CH0/
ADC0_
SE1/
ADC0_
DP1
SPI0_
PCS0
UART2_
TX
FTM_
CLKIN0
FTM0_
FLT3
H2
19
11
PTE17/
LLWU_
P19
HSADC0A
_CH1/
ADC0_
SE9/
ADC0_
DM1
HSADC0A PTE17/
_CH1/
LLWU_
ADC0_
P19
SE9/
ADC0_
DM1
SPI0_SCK UART2_
RX
FTM_
CLKIN1
LPTMR0_
ALT3
54
NXP Semiconductors
ALT7
ALT8
ALT9
FLEXPWM FTM3_
1_B3
CH7
KV5x Data Sheet, Rev. 4, 06/2016
Pinouts and Packaging
144 144 100 Pin Name
MAP LQFP LQFP
BGA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
G1
20
12
PTE18/
LLWU_
P20
HSADC0B
_CH0/
ADC0_
SE5a
HSADC0B PTE18/
_CH0/
LLWU_
ADC0_
P20
SE5a
SPI0_
SOUT
UART2_
CTS_b
I2C0_SDA
G2
21
13
PTE19
HSADC0B
_CH1/
ADC0_
SE6a
HSADC0B PTE19
_CH1/
ADC0_
SE6a
SPI0_SIN
UART2_
RTS_b
I2C0_SCL
H3
22
—
VSS
VSS
VSS
J1
23
14
HSADC0A HSADC0A HSADC0A
_CH6
_CH6/
_CH6/
ADC0_
ADC0_
SE7a
SE7a
J2
24
15
HSADC0A
_CH7/
ADC0_
SE4b
HSADC0A
_CH7/
ADC0_
SE4b
HSADC0A
_CH7/
ADC0_
SE4b
K1
25
16
PTE20
HSADC0A
_CH8/
ADC0_
SE5b
HSADC0A PTE20
_CH8/
ADC0_
SE5b
FTM1_
CH0
UART0_
TX
FTM1_
QD_PHA
K2
26
17
PTE21
HSADC0A
_CH9/
HSADC1A
_CH7
HSADC0A PTE21
_CH9/
HSADC1A
_CH7
FTM1_
CH1
UART0_
RX
FTM1_
QD_PHB
L1
27
18
HSADC0A
_CH2/
HSADC1A
_CH2
HSADC0A
_CH2/
HSADC1A
_CH2
HSADC0A
_CH2/
HSADC1A
_CH2
L2
28
19
HSADC0A
_CH3/
HSADC1A
_CH3
HSADC0A
_CH3/
HSADC1A
_CH3
HSADC0A
_CH3/
HSADC1A
_CH3
M1
29
20
HSADC0A
_CH10/
HSADC1B
_CH2
HSADC0A
_CH10/
HSADC1B
_CH2
HSADC0A
_CH10/
HSADC1B
_CH2
M2
30
21
HSADC0A
_CH11/
HSADC1B
_CH3
HSADC0A
_CH11/
HSADC1B
_CH3
HSADC0A
_CH11/
HSADC1B
_CH3
H5
31
22
VDDA
VDDA
VDDA
G5
32
23
VREFH
VREFH
VREFH
G6
33
24
VREFL
VREFL
VREFL
H6
34
25
VSSA
VSSA
VSSA
K3
35
—
ADC0_
SE0/
ADC0_
ADC0_
SE0/
ADC0_
ADC0_
SE0/
ADC0_
KV5x Data Sheet, Rev. 4, 06/2016
XB_IN9
ALT6
ALT7
ALT8
ALT9
CMP3_
OUT
55
NXP Semiconductors
Pinouts and Packaging
144 144 100 Pin Name
MAP LQFP LQFP
BGA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
ALT8
ALT9
DP0/
DP0/
DP0/
CMP2_IN5 CMP2_IN5 CMP2_IN5
J3
36
—
ADC0_
SE8/
ADC0_
DM0/
CMP1_IN2
ADC0_
SE8/
ADC0_
DM0/
CMP1_IN2
ADC0_
SE8/
ADC0_
DM0/
CMP1_IN2
M3
37
26
PTE29
HSADC0A
_CH4/
CMP1_
IN5/
CMP0_IN5
HSADC0A PTE29
_CH4/
CMP1_
IN5/
CMP0_IN5
FTM0_
CH2
FTM_
CLKIN0
L3
38
27
PTE30
DAC0_
OUT/
CMP1_
IN3/
HSADC0A
_CH5
DAC0_
PTE30
OUT/
CMP1_
IN3/
HSADC0A
_CH5
FTM0_
CH3
FTM_
CLKIN1
L4
39
28
HSADC0A
_CH12/
CMP0_
IN4/
CMP2_IN3
HSADC0A
_CH12/
CMP0_
IN4/
CMP2_IN3
HSADC0A
_CH12/
CMP0_
IN4/
CMP2_IN3
L5
40
—
PTE13
DISABLED
PTE13
M7
41
—
PTE22
DISABLED
PTE22
FTM2_
CH0
XB_IN2
FTM2_
QD_PHA
M6
42
—
PTE23
DISABLED
PTE23
FTM2_
CH1
XB_IN3
FTM2_
QD_PHB
—
—
29
VSS
VSS
VSS
L6
43
30
VDD
VDD
VDD
—
44
—
VSS
VSS
VSS
M4
45
31
PTE24
HSADC0B
_CH4/
HSADC1B
_CH4
HSADC0B PTE24
_CH4/
HSADC1B
_CH4
CAN1_TX
FTM0_
CH0
XB_IN2
I2C0_SCL
K5
46
32
PTE25/
LLWU_
P21
HSADC0B
_CH5/
HSADC1B
_CH5
HSADC0B PTE25/
_CH5/
LLWU_
HSADC1B P21
_CH5
CAN1_RX
FTM0_
CH1
XB_IN3
I2C0_SDA EWM_IN
K4
47
33
PTE26
DISABLED
PTE26
ENET_
1588_
CLKIN
FTM0_
CH4
J4
48
—
PTE27
DISABLED
PTE27
CAN2_TX
H4
49
—
PTE28
DISABLED
PTE28
CAN2_RX
J5
50
34
PTA0
JTAG_
TCLK/
SWD_CLK
PTA0
UART0_
CTS_b/
56
NXP Semiconductors
EWM_
OUT_b
XB_OUT4
UART4_
TX
XB_OUT5
UART4_
RX
UART4_
CTS_b
UART4_
RTS_b
FTM0_
CH5
XB_IN4
EWM_IN
JTAG_
TCLK/
SWD_CLK
KV5x Data Sheet, Rev. 4, 06/2016
Pinouts and Packaging
144 144 100 Pin Name
MAP LQFP LQFP
BGA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
ALT8
ALT9
UART0_
COL_b
J6
51
35
PTA1
JTAG_TDI
PTA1
UART0_
RX
FTM0_
CH6
CMP0_
OUT
FTM2_
QD_PHA
FTM1_
CH1
JTAG_TDI
K6
52
36
PTA2
JTAG_
TDO/
TRACE_
SWO
PTA2
UART0_
TX
FTM0_
CH7
CMP1_
OUT
FTM2_
QD_PHB
FTM1_
CH0
JTAG_
TDO/
TRACE_
SWO
K7
53
37
PTA3
JTAG_
TMS/
SWD_DIO
PTA3
UART0_
RTS_b
FTM0_
CH0
XB_IN9
EWM_
OUT_b
FLEXPWM JTAG_
0_A0
TMS/
SWD_DIO
L7
54
38
PTA4/
LLWU_P3
NMI_b
PTA4/
LLWU_P3
FTM0_
CH1
XB_IN10
FTM0_
FLT3
FLEXPWM NMI_b
0_B0
M8
55
39
PTA5
DISABLED
PTA5
FTM0_
CH2
RMII0_
RXER/
MII0_
RXER
CMP2_
OUT
JTAG_
TRST_b
E7
56
40
VDD
VDD
VDD
G7
57
41
VSS
VSS
VSS
J7
58
—
PTA6
DISABLED
PTA6
FTM0_
CH3
CLKOUT
TRACE_
CLKOUT
J8
59
—
PTA7
HSADC1B HSADC1B PTA7
_CH8
_CH8
FTM0_
CH4
RMII0_
MDIO/
MII0_
MDIO
TRACE_
D3
K8
60
—
PTA8
HSADC1B HSADC1B PTA8
_CH9
_CH9
FTM1_
CH0
RMII0_
MDC/
MII0_MDC
TRACE_
D2
L8
61
—
PTA9
DISABLED
PTA9
FTM1_
CH1
MII0_
RXD3
TRACE_
D1
M9
62
—
PTA10/
LLWU_
P22
DISABLED
PTA10/
LLWU_
P22
FTM2_
CH0
MII0_
RXD2
FTM2_
QD_PHA
L9
63
—
PTA11/
LLWU_
P23
DISABLED
PTA11/
LLWU_
P23
FTM2_
CH1
MII0_
RXCLK
FTM2_
QD_PHB
K9
64
42
PTA12
CMP2_IN0 CMP2_IN0 PTA12
CAN0_TX
FTM1_
CH0
RMII0_
RXD1/
MII0_
RXD1
FTM1_
QD_PHA
I2C0_SCL
J9
65
43
PTA13/
LLWU_P4
CMP2_IN1 CMP2_IN1 PTA13/
LLWU_P4
CAN0_RX
FTM1_
CH1
RMII0_
RXD0/
MII0_
RXD0
FTM1_
QD_PHB
I2C1_SDA
L10
66
44
PTA14
CMP3_IN0 CMP3_IN0 PTA14
SPI0_
PCS0
UART0_
TX
KV5x Data Sheet, Rev. 4, 06/2016
CAN2_TX
RMII0_
CRS_DV/
MII0_
RXDV
TRACE_
D0
I2C0_SDA
I2C1_SCL
57
NXP Semiconductors
Pinouts and Packaging
144 144 100 Pin Name
MAP LQFP LQFP
BGA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT6
ALT7
ALT8
L11
67
45
PTA15
CMP3_IN1 CMP3_IN1 PTA15
SPI0_SCK UART0_
RX
K10
68
46
PTA16
CMP3_IN2 CMP3_IN2 PTA16
SPI0_
SOUT
UART0_
CTS_b/
UART0_
COL_b
RMII0_
TXD0/
MII0_TXD0
K11
69
47
PTA17
HSADC0A HSADC0A PTA17
_CH15
_CH15
SPI0_SIN
UART0_
RTS_b
RMII0_
TXD1/
MII0_TXD1
E8
70
48
VDD
VDD
VDD
G8
71
49
VSS
VSS
VSS
M12
72
50
PTA18
EXTAL0
EXTAL0
PTA18
XB_IN7
FTM0_
FLT2
FTM_
CLKIN0
XB_OUT8
FTM3_
CH2
M11
73
51
PTA19
XTAL0
XTAL0
PTA19
XB_IN8
FTM1_
FLT0
FTM_
CLKIN1
XB_OUT9
LPTMR0_
ALT1
L12
74
52
RESET_b
RESET_b
RESET_b
K12
75
—
PTA24
DISABLED
PTA24
XB_IN4
MII0_TXD2
FB_A29
J12
76
—
PTA25
DISABLED
PTA25
XB_IN5
MII0_
TXCLK
FB_A28
J11
77
—
PTA26
DISABLED
PTA26
MII0_TXD3
FB_A27
J10
78
—
PTA27
DISABLED
PTA27
MII0_CRS
FB_A26
H12
79
—
PTA28
DISABLED
PTA28
MII0_
TXER
FB_A25
H11
80
—
PTA29
DISABLED
PTA29
MII0_COL
FB_A24
H10
81
53
PTB0/
LLWU_P5
HSADC0B HSADC0B PTB0/
_CH2
_CH2
LLWU_P5
I2C0_SCL
H9
82
54
PTB1
HSADC0B HSADC0B PTB1
_CH3
_CH3
I2C0_SDA FTM1_
CH1
FTM0_
FLT2
G12
83
55
PTB2
HSADC0A HSADC0A PTB2
_CH14/
_CH14/
CMP2_IN2 CMP2_IN2
I2C0_SCL
FTM0_
FLT1
G11
84
56
PTB3
HSADC0B HSADC0B PTB3
_CH15/
_CH15/
CMP3_IN5 CMP3_IN5
I2C0_SDA UART0_
CTS_b/
UART0_
COL_b
G10
85
—
PTB4
ADC0_
SE6b
ADC0_
SE6b
G9
86
—
PTB5
ADC0_
SE7b
ADC0_
SE7b
58
NXP Semiconductors
CAN2_RX
ALT5
RMII0_
TXEN/
MII0_
TXEN
FTM1_
CH0
FTM1_
QD_PHA
UART0_
RX
RMII0_
MDIO/
MII0_
MDIO
EWM_IN
FTM1_
QD_PHB
UART0_
TX
RMII0_
MDC/
MII0_MDC
ENET0_
1588_
TMR0
FTM0_
FLT3
ENET0_
1588_
TMR1
FTM0_
FLT0
PTB4
FLEXPWM ENET0_
1_X0
1588_
TMR2
FTM1_
FLT0
PTB5
FLEXPWM ENET0_
1_X1
1588_
TMR3
FTM2_
FLT0
UART0_
RTS_b
ALT9
KV5x Data Sheet, Rev. 4, 06/2016
Pinouts and Packaging
144 144 100 Pin Name
MAP LQFP LQFP
BGA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
ALT8
F12
87
—
PTB6
HSADC1A HSADC1A PTB6
_CH12
_CH12
CAN2_TX
FLEXPWM
1_X2
FB_AD23
F11
88
—
PTB7
HSADC1A HSADC1A PTB7
_CH13
_CH13
CAN2_RX
FLEXPWM
1_X3
FB_AD22
F10
89
—
PTB8
DISABLED
PTB8
F9
90
57
PTB9
DISABLED
PTB9
E12
91
58
PTB10
E11
92
59
H7
93
UART3_
RTS_b
FB_AD21
SPI1_
PCS1
UART3_
CTS_b
ENET0_
1588_
TMR2
HSADC0B HSADC0B PTB10
_CH6
_CH6
SPI1_
PCS0
UART3_
RX
ENET0_
1588_
TMR3
PTB11
HSADC0B HSADC0B PTB11
_CH7
_CH7
SPI1_SCK UART3_
TX
60
VSS
VSS
VSS
VDD
FB_AD20
FTM0_
FLT1
FB_AD19
FTM0_
FLT2
FB_AD18
F5
94
61
VDD
VDD
E10
95
62
PTB16
DISABLED
PTB16
SPI1_
SOUT
UART0_
RX
FTM_
CLKIN2
CAN0_TX
EWM_IN
E9
96
63
PTB17
DISABLED
PTB17
SPI1_SIN
UART0_
TX
FTM_
CLKIN1
CAN0_RX
EWM_
OUT_b
D12
97
64
PTB18
DISABLED
PTB18
CAN0_TX
FTM2_
CH0
FTM3_
CH2
FLEXPWM FTM2_
1_A1
QD_PHA
FB_AD15
D11
98
65
PTB19
DISABLED
PTB19
CAN0_RX
FTM2_
CH1
FTM3_
CH3
FLEXPWM FTM2_
1_B1
QD_PHB
FB_OE_b
D10
99
66
PTB20
DISABLED
PTB20
SPI2_
PCS0
FLEXPWM CMP0_
0_X0
OUT
FB_AD31
D9
100
67
PTB21
DISABLED
PTB21
SPI2_SCK
FLEXPWM CMP1_
0_X1
OUT
FB_AD30
C12
101
68
PTB22
DISABLED
PTB22
SPI2_
SOUT
FLEXPWM CMP2_
0_X2
OUT
FB_AD29
C11
102
69
PTB23
DISABLED
PTB23
SPI2_SIN
SPI0_
PCS5
FLEXPWM CMP3_
0_X3
OUT
FB_AD28
B12
103
70
PTC0
HSADC0B HSADC0B PTC0
_CH8
_CH8
SPI0_
PCS4
PDB0_
EXTRG
B11
104
71
PTC1/
LLWU_P6
HSADC0B HSADC0B PTC1/
_CH9
_CH9
LLWU_P6
SPI0_
PCS3
UART1_
RTS_b
FTM0_
CH0
FLEXPWM XB_IN11
0_A3
FB_AD13
A12
105
72
PTC2
HSADC1B HSADC1B PTC2
_CH10/
_CH10/
CMP1_IN0 CMP1_IN0
SPI0_
PCS2
UART1_
CTS_b
FTM0_
CH1
FLEXPWM XB_IN6
0_B3
FB_AD12
A11
106
73
PTC3/
LLWU_P7
CMP1_IN1 CMP1_IN1 PTC3/
LLWU_P7
SPI0_
PCS1
UART1_
RX
FTM0_
CH2
CLKOUT
H8
107
74
VSS
VSS
VSS
—
108
75
VDD
VDD
VDD
A9
109
76
PTC4/
LLWU_P8
DISABLED
SPI0_
PCS0
UART1_
TX
FTM0_
CH3
KV5x Data Sheet, Rev. 4, 06/2016
PTC4/
LLWU_P8
ALT9
FTM0_
FLT1
XB_IN5
FB_AD17
FB_AD16
SPI0_
PCS0
FB_AD14
FTM3_
FLT0
CMP1_
OUT
FB_AD11
59
NXP Semiconductors
Pinouts and Packaging
144 144 100 Pin Name
MAP LQFP LQFP
BGA
Default
D8
110
77
PTC5/
LLWU_P9
DISABLED
C8
111
78
PTC6/
LLWU_
P10
B8
112
79
A8
113
D7
ALT0
ALT1
PTC5/
LLWU_P9
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
ALT8
SPI0_SCK LPTMR0_
ALT2
XB_IN2
CMP2_
CMP2_
PTC6/
IN4/
IN4/
LLWU_
CMP0_IN0 CMP0_IN0 P10
SPI0_
SOUT
XB_IN3
PTC7
CMP3_
CMP3_
PTC7
IN4/
IN4/
CMP0_IN1 CMP0_IN1
SPI0_SIN
XB_IN4
80
PTC8
HSADC1B HSADC1B PTC8
_CH11/
_CH11/
CMP0_IN2 CMP0_IN2
FTM3_
CH4
FLEXPWM
1_A2
FB_AD7
114
81
PTC9
HSADC1B HSADC1B PTC9
_CH12/
_CH12/
CMP0_IN3 CMP0_IN3
FTM3_
CH5
FLEXPWM
1_B2
FB_AD6
C7
115
82
PTC10
HSADC1B HSADC1B PTC10
_CH13
_CH13
I2C1_SCL
FTM3_
CH6
FLEXPWM
1_A3
FB_AD5
B7
116
83
PTC11/
LLWU_
P11
HSADC1B HSADC1B PTC11/
_CH14
_CH14
LLWU_
P11
I2C1_SDA FTM3_
CH7
FLEXPWM
1_B3
FB_RW_b
A7
117
84
PTC12
DISABLED
PTC12
CAN2_TX
FTM_
CLKIN0
FLEXPWM FTM3_
1_A1
FLT0
D6
118
85
PTC13
DISABLED
PTC13
CAN2_RX
FTM_
CLKIN1
C6
119
86
PTC14
DISABLED
PTC14
I2C1_SCL
B6
120
87
PTC15
DISABLED
—
121
88
VSS
VSS
VSS
—
122
89
VDD
VDD
VDD
A6
123
90
PTC16
D5
124
91
C5
125
B5
126
PDB0_
EXTRG
CMP0_
OUT
FTM0_
CH2
FB_AD10
UART0_
RX
XB_OUT6
I2C0_SCL
FB_AD9
UART0_
TX
XB_OUT7
I2C0_SDA FB_AD8
FB_AD27
UART4_
RTS_b
FLEXPWM
1_B1
FB_AD26
UART4_
CTS_b
I2C0_SCL
FLEXPWM
1_A0
FB_AD25
UART4_
RX
PTC15
I2C1_SDA I2C0_SDA
FLEXPWM
1_B0
FB_AD24
UART4_
TX
DISABLED
PTC16
CAN1_RX
UART3_
RX
ENET0_
1588_
TMR0
FLEXPWM
1_A2
FB_CS5_
b/
FB_TSIZ1/
FB_BE23_
16_b
PTC17
DISABLED
PTC17
CAN1_TX
UART3_
TX
ENET0_
1588_
TMR1
FLEXPWM
1_B2
FB_CS4_
b/
FB_TSIZ0/
FB_BE31_
24_b
92
PTC18
DISABLED
PTC18
UART3_
RTS_b
ENET0_
1588_
TMR2
FLEXPWM
1_A3
FB_TBST_
b/
FB_CS2_
b/
FB_BE15_
8_b
—
PTC19
DISABLED
PTC19
UART3_
CTS_b
ENET0_
1588_
TMR3
FLEXPWM
1_B3
FB_CS3_
b/
60
NXP Semiconductors
SPI2_
PCS1
ALT9
FB_TA_b
KV5x Data Sheet, Rev. 4, 06/2016
Pinouts and Packaging
144 144 100 Pin Name
MAP LQFP LQFP
BGA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
ALT8
ALT9
FB_BE7_
0_b
A5
127
93
PTD0/
LLWU_
P12
DISABLED
D4
128
94
PTD1
C4
129
95
B4
130
A4
UART2_
RTS_b
FTM3_
CH0
FTM0_
CH0
FLEXPWM
0_A0
FB_ALE/
FB_CS1_
b/
FB_TS_b
HSADC1A HSADC1A PTD1
_CH11
_CH11
SPI0_SCK UART2_
CTS_b
FTM3_
CH1
FTM0_
CH1
FLEXPWM
0_B0
FB_CS0_b FLEXPWM
1_B0
PTD2/
LLWU_
P13
DISABLED
PTD2/
LLWU_
P13
SPI0_
SOUT
UART2_
RX
FTM3_
CH2
FTM0_
CH2
FLEXPWM I2C0_SCL
0_A1
FB_AD4
FLEXPWM
1_A1
96
PTD3
DISABLED
PTD3
SPI0_SIN
UART2_
TX
FTM3_
CH3
FTM0_
CH3
FLEXPWM I2C0_SDA FB_AD3
0_B1
FLEXPWM
1_B1
131
97
PTD4/
LLWU_
P14
DISABLED
PTD4/
LLWU_
P14
SPI0_
PCS1
UART0_
RTS_b
FTM0_
CH4
FLEXPWM EWM_IN
0_A2
SPI1_
PCS0
A3
132
98
PTD5
HSADC1A HSADC1A PTD5
_CH8
_CH8
SPI0_
PCS2
UART0_
CTS_b/
UART0_
COL_b
FTM0_
CH5
FLEXPWM EWM_
0_B2
OUT_b
SPI1_SCK FB_AD1
A2
133
99
PTD6/
LLWU_
P15
HSADC1A HSADC1A PTD6/
_CH9
_CH9
LLWU_
P15
SPI0_
PCS3
UART0_
RX
FTM0_
CH6
FTM1_
CH0
FTM0_
FLT0
SPI1_
SOUT
M10
134
—
VSS
VSS
VSS
F8
135
—
VDD
VDD
VDD
A1
136
100
PTD7
DISABLED
PTD7
UART0_
TX
FTM0_
CH7
FTM1_
CH1
FTM0_
FLT1
SPI1_SIN
C9
137
—
PTD8/
LLWU_
P24
DISABLED
PTD8/
LLWU_
P24
I2C1_SCL
UART5_
RX
FLEXPWM
0_A3
FB_A16
B9
138
—
PTD9
DISABLED
PTD9
I2C1_SDA UART5_
TX
FLEXPWM
0_B3
FB_A17
B3
139
—
PTD10
DISABLED
PTD10
UART5_
RTS_b
FLEXPWM
0_A2
FB_A18
B2
140
—
PTD11/
LLWU_
P25
DISABLED
PTD11/
LLWU_
P25
SPI2_
PCS0
UART5_
CTS_b
FLEXPWM
0_B2
FB_A19
B1
141
—
PTD12
DISABLED
PTD12
SPI2_SCK FTM3_
FLT0
XB_IN5
XB_OUT5
FLEXPWM
0_A1
FB_A20
C3
142
—
PTD13
DISABLED
PTD13
SPI2_
SOUT
XB_IN7
XB_OUT7
FLEXPWM
0_B1
FB_A21
C2
143
—
PTD14
DISABLED
PTD14
SPI2_SIN
XB_IN11
XB_
OUT11
FLEXPWM
0_A0
FB_A22
C1
144
—
PTD15
DISABLED
PTD15
SPI2_
PCS1
FLEXPWM
0_B0
FB_A23
KV5x Data Sheet, Rev. 4, 06/2016
PTD0/
LLWU_
P12
SPI0_
PCS0
FLEXPWM
1_A0
FB_AD2
FB_AD0
61
NXP Semiconductors
Pinouts and Packaging
5.2 KV5x Pinouts
The below figure shows the pinout diagram for the devices supported by this document.
Many signals may be multiplexed onto a single pin. To determine what signals can be
used on which pin, see the previous section.
1
2
3
4
5
6
7
8
9
A
PTD7
PTD6/
LLWU_P15
PTD5
PTD4/
LLWU_P14
PTD0/
LLWU_P12
PTC16
PTC12
PTC8
B
PTD12
PTD11/
LLWU_P25
PTD10
PTD3
PTC19
PTC15
PTC11/
LLWU_P11
C
PTD15
PTD14
PTD13
PTD2/
LLWU_P13
PTC18
PTC14
D
PTE2/
LLWU_P1
PTE1/
LLWU_P0
PTE0
PTD1
PTC17
E
PTE6/
LLWU_P16
PTE5
PTE4/
LLWU_P2
PTE3
F
PTE10/
LLWU_P18
PTE9/
LLWU_P17
PTE8
G
PTE18/
LLWU_P20
PTE19
H
PTE16
J
11
12
PTC4/
LLWU_P8
PTC3/
LLWU_P7
PTC2
A
PTC7
PTD9
PTC1/
LLWU_P6
PTC0
B
PTC10
PTC6/
LLWU_P10
LLWU_P24
PTB23
PTB22
C
PTC13
PTC9
PTC5/
LLWU_P9
PTB21
PTB20
PTB19
PTB18
D
VDD
VDD
VDD
VDD
PTB17
PTB16
PTB11
PTB10
E
PTE7
VDD
VSS
VSS
VDD
PTB9
PTB8
PTB7
PTB6
F
PTE12
PTE11
VREFH
VREFL
VSS
VSS
PTB5
PTB4
PTB3
PTB2
G
PTE17/
LLWU_P19
VSS
PTE28
VDDA
VSSA
VSS
VSS
PTB1
PTB0/
LLWU_P5
PTA29
PTA28
H
HSADC0A_
CH6
HSADC0A_
CH7/
ADC0_SE4b
ADC0_SE8/
ADC0_DM0/
CMP1_IN2
PTE27
PTA0
PTA1
PTA6
PTA7
PTA13/
LLWU_P4
PTA27
PTA26
PTA25
J
K
PTE20
PTE21
ADC0_SE0/
ADC0_DP0/
CMP2_IN5
PTE26
PTE25/
LLWU_P21
PTA2
PTA3
PTA8
PTA12
PTA16
PTA17
PTA24
K
L
HSADC0A_
CH2/
HSADC1A_
CH2
HSADC0A_
CH3/
HSADC1A_
CH3
PTE30
HSADC0A_
CH12/
CMP0_IN4/
CMP2_IN3
PTE13
VDD
PTA4/
LLWU_P3
PTA9
PTA11/
LLWU_P23
PTA14
PTA15
RESET_b
L
M
HSADC0A_
CH10/
HSADC1B_
CH2
HSADC0A_
CH11/
HSADC1B_
CH3
PTE29
PTE24
PTE23
PTE22
PTA5
PTA10/
LLWU_P22
VSS
PTA19
PTA18
M
1
2
3
4
6
7
8
9
10
11
12
5
10
PTD8/
Figure 26. 144 MAPBGA Pinout Diagram
62
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
111
110
109
PTC13
PTC8
PTC14
118
112
PTC15
119
PTC9
VSS
120
113
VDD
121
PTC10
PTC16
122
115
PTC17
123
114
PTC18
124
PTC12
PTC19
125
PTC11/LLWU_P11
PTD0/LLWU_P12
126
116
PTD1
127
117
PTD2/LLWU_P13
VSS
134
128
VDD
135
PTD3
PTD7
136
129
PTD8/LLWU_P24
137
PTD4/LLWU_P14
PTD9
138
131
PTD10
139
130
PTD11/LLWU_P25
140
PTD6/LLWU_P15
PTD12
141
PTD5
PTD13
142
132
PTD14
143
133
PTD15
144
Pinouts and Packaging
PTE0
1
108
VDD
PTE1/LLWU_P0
2
107
VSS
PTE2/LLWU_P1
3
106
PTC3/LLWU_P7
PTE3
4
105
PTC2
VDD
5
104
PTC1/LLWU_P6
VSS
6
103
PTC0
PTE4/LLWU_P2
7
102
PTB23
PTE5
8
101
PTB22
PTE6/LLWU_P16
9
100
PTB21
PTB20
PTE7
10
99
PTE8
11
98
PTB19
PTE9/LLWU_P17
12
97
PTB18
PTE10/LLWU_P18
13
96
PTB17
PTE11
14
95
PTB16
PTE12
15
94
VDD
VDD
16
93
VSS
VSS
17
92
PTB11
PTE16
18
91
PTB10
PTE17/LLWU_P19
19
90
PTB9
PTE18/LLWU_P20
20
89
PTB8
PTE19
21
88
PTB7
VSS
22
87
PTB6
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
VDD
VSS
PTA6
PTA7
PTA8
PTA9
PTA10/LLWU_P22
PTA11/LLWU_P23
PTA12
PTA13/LLWU_P4
PTA14
PTA15
PTA16
PTA17
VDD
VSS
PTA18
PTA19
55
RESET_b
73
PTA5
74
36
54
35
PTA4/LLWU_P3
ADC0_SE0/ADC0_DP0/CMP2_IN5
ADC0_SE8/ADC0_DM0/CMP1_IN2
53
PTA24
PTA3
75
52
34
PTA2
PTA25
VSSA
51
PTA26
76
50
77
33
PTA1
32
VREFL
PTA0
VREFH
49
PTA27
PTE28
78
48
31
PTE27
PTA28
VDDA
47
79
PTE26
30
46
PTA29
HSADC0A_CH11/HSADC1B_CH3
PTE25/LLWU_P21
80
45
29
PTE24
PTB0/LLWU_P5
HSADC0A_CH10/HSADC1B_CH2
44
81
VSS
28
43
PTB1
HSADC0A_CH3/HSADC1A_CH3
VDD
82
42
27
PTE23
PTB2
HSADC0A_CH2/HSADC1A_CH2
41
83
PTE22
26
40
PTB3
PTE21
PTE13
84
39
25
HSADC0A_CH12/CMP0_IN4/CMP2_IN3
PTB4
PTE20
38
PTB5
85
37
86
24
PTE30
23
PTE29
HSADC0A_CH6
HSADC0A_CH7/ADC0_SE4b
Figure 27. 144 LQFP Pinout Diagram
KV5x Data Sheet, Rev. 4, 06/2016
63
NXP Semiconductors
PTC16
VDD
VSS
PTC15
PTC14
PTC13
PTC12
PTC11/LLWU_P11
PTC10
PTC9
PTC8
90
89
88
87
86
85
84
83
82
81
80
PTC4/LLWU_P8
PTC17
91
PTC5/LLWU_P9
PTC18
92
76
PTD0/LLWU_P12
93
77
PTD1
94
PTC7
PTD2/LLWU_P13
95
PTC6/LLWU_P10
PTD3
96
79
PTD4/LLWU_P14
97
78
PTD5
98
PTD7
PTD6/LLWU_P15
100
99
Ordering parts
PTE0
1
75
VDD
PTE1/LLWU_P0
2
74
VSS
PTE2/LLWU_P1
3
73
PTC3/LLWU_P7
PTE3
4
72
PTC2
PTE4/LLWU_P2
5
71
PTC1/LLWU_P6
PTE5
6
70
PTC0
PTE6/LLWU_P16
7
69
PTB23
VDD
8
68
PTB22
9
67
PTB21
PTE16
10
66
PTB20
PTE17/LLWU_P19
11
65
PTB19
PTE18/LLWU_P20
12
64
PTB18
PTE19
13
63
PTB17
VSS
47
48
49
50
VSS
PTA18
46
PTA16
VDD
45
PTA15
PTA17
44
PTA14
PTA19
43
51
42
25
PTA12
VSSA
PTA13/LLWU_P4
RESET_b
VSS
VREFL
41
PTB0/LLWU_P5
52
40
53
24
VDD
23
39
VREFH
PTA5
PTB1
38
54
PTA4/LLWU_P3
22
37
PTB2
VDDA
36
55
PTA3
21
PTA2
PTB3
HSADC0A_CH11/HSADC1B_CH3
35
56
PTA1
20
34
PTB9
HSADC0A_CH10/HSADC1B_CH2
PTA0
57
33
19
PTE26
HSADC0A_CH3/HSADC1A_CH3
32
PTB10
31
58
PTE24
18
PTE25/LLWU_P21
PTB11
HSADC0A_CH2/HSADC1A_CH2
VDD
59
30
17
29
VSS
PTE21
28
60
VSS
16
HSADC0A_CH12/CMP0_IN4/CMP2_IN3
VDD
PTE20
27
PTB16
61
26
62
15
PTE30
14
PTE29
HSADC0A_CH6
HSADC0A_CH7/ADC0_SE4b
Figure 28. 100 LQFP Pinout Diagram
6 Ordering parts
64
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Part identification
6.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable
part numbers for this device, go to www.nxp.com and perform a part number search
for the MKV5x device numbers.
7 Part identification
7.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
7.2 Format
Part numbers for this device have the following format:
Q KV## A FFF T PP CC N
7.3 Fields
This table lists the possible values for each field in the part number (not all
combinations are valid):
Field
Description
Values
Q
Qualification status
• M = Fully qualified, general market flow
• P = Prequalification
KV##
Kinetis family
• KV58
• KV56
A
Key attribute
• F = Cortex-M7
FFF
Program flash memory size
• 1M0 = 1 MB
• 512 = 512 KB
T
Temperature range (°C)
• V = –40 to 105
PP
Package identifier
• LQ = 144 LQFP (20 mm x 20 mm)
• LL = 100 LQFP (14 mm x 14 mm)
• MD = 144 MAPBGA (13 mm x 13 mm)
CC
Maximum CPU frequency (MHz)
• 24 = 240 MHz
N
Packaging type
• R = Tape and reel
• (Blank) = Trays
KV5x Data Sheet, Rev. 4, 06/2016
65
NXP Semiconductors
Terminology and guidelines
7.4 Example
This is an example part number:
MKV58F1M0VLQ24
MKV56F512VLL24
8 Terminology and guidelines
8.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
8.1.1 Example
This is an example of an operating requirement:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
0.9
Max.
1.1
Unit
V
8.2 Definition: Operating behavior
Unless otherwise specified, an operating behavior is a specified value or range of
values for a technical characteristic that are guaranteed during operation if you meet the
operating requirements and any other specified conditions.
8.2.1 Example
This is an example of an operating behavior:
66
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Terminology and guidelines
Symbol
IWP
Description
Min.
Digital I/O weak pullup/ 10
pulldown current
Max.
130
Unit
µA
8.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that
are guaranteed, regardless of whether you meet the operating requirements.
8.3.1 Example
This is an example of an attribute:
Symbol
CIN_D
Description
Input capacitance:
digital pins
Min.
—
Max.
7
Unit
pF
8.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if
exceeded, may cause permanent chip failure:
• Operating ratings apply during operation of the chip.
• Handling ratings apply when the chip is not powered.
8.4.1 Example
This is an example of an operating rating:
Symbol
VDD
Description
1.0 V core supply
voltage
KV5x Data Sheet, Rev. 4, 06/2016
Min.
–0.3
Max.
1.2
Unit
V
67
NXP Semiconductors
Terminology and guidelines
8.5 Result of exceeding a rating
Failures in time (ppm)
40
30
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
20
10
0
Operating rating
Measured characteristic
8.6 Relationship between ratings and operating requirements
g(
g
tin
era
Op
in
rat
i
(m
nt
me
n.)
mi
g
tin
era
Op
n.)
e
uir
req
g
tin
era
Op
t
en
em
uir
q
re
ax
(m
.)
x
ma
g(
g
tin
era
in
rat
.)
Op
Fatal range
Degraded operating range
Normal operating range
Degraded operating range
Fatal range
Expected permanent failure
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Correct operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
Expected permanent failure
–∞
∞
Operating (power on)
dli
n
Ha
ng
x.)
n.)
mi
g(
in
rat
li
nd
Ha
ng
a
(m
ing
rat
Fatal range
Handling range
Fatal range
Expected permanent failure
No permanent failure
Expected permanent failure
–∞
∞
Handling (power off)
8.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
• Never exceed any of the chip’s ratings.
• During normal operation, don’t exceed any of the chip’s operating requirements.
• If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
68
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Terminology and guidelines
8.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
• Lies within the range of values specified by the operating behavior
• Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
8.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Symbol
IWP
Description
Digital I/O weak
pullup/pulldown
current
Min.
10
Typ.
70
Max.
130
Unit
µA
8.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
KV5x Data Sheet, Rev. 4, 06/2016
69
NXP Semiconductors
Revision History
5000
4500
4000
TJ
3500
150 °C
IDD_STOP (μA)
3000
105 °C
2500
25 °C
2000
–40 °C
1500
1000
500
0
0.95
0.90
1.00
1.05
1.10
VDD (V)
8.9 Typical Value Conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Symbol
Description
Value
Unit
TA
Ambient temperature
25
°C
VDD
3.3 V supply voltage
3.3
V
9 Revision History
The following table provides a revision history for this document.
Table 39. Revision History
Rev. No.
Date
0
02/2015
1
06/2015
Substantial Changes
Initial release
• Updated the features list to include FlexBus, TRNG, MMCAU, Advanced WatchDog
Timer and JTAG modules
• Updated the ordering information table to highlight differences in the parts in terms of
flash, SRAM, modules or instances.
Table continues on the next page...
70
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
Revision History
Table 39. Revision History (continued)
Rev. No.
Date
Substantial Changes
• Added KV5x block diagram
• Editorial changes in the table "Recommended Operating Conditions."
• Removed the Typical values column from the table "Recommended Operating
Conditions."
• Removed the following parameters from the table "Recommended Operating
Conditions."
• Output Source Current High (IOH)
• Output Source Current Low (IOL)
• Oscillator Input Voltage High(VIHOSC)
• Oscillator Input Voltage Low (VILOSC)
• DAC Output Current Drive Strength (Cout)
• Added HVD characteristics to the table "LVD, and POR operating requirements" and
changed the title to HVD, LVD, and POR operating requirements."
• Added the following parameters to the table "Voltage and current operating behaviors"
• Output high current total for all ports (IOHT)
• Output low current total for all ports (IOHL)
• Internal pull-down resistance (RPD)
• Removed the footnote "PTC6 and PTC7 are true open drain so have no high drive
output transistor so there is no VOH spec for them. These pins must be terminated
with a pull-up resistor to VDD" from the table "Voltage and current operating
behaviors"
• Added a note above the table "Low power mode peripheral adders — typical value"
suggesting that the values are preliminary data.
• Updated the notes in the table "Power consumption operating behaviors" for run
mode currents with all peripherals disabled.
• Updated the table "EMC radiated emissions operating behaviors" by splitting
description column into Conditions and Clocks columns.
• Changed Typ. values to TBDs in the table "EMC radiated emissions operating
behaviors."
• Updated the table "Typical device clock specifications"
• Added a footnote to the ambient temperature entry in the table "Thermal operating
requirements"
• Updated the table "Thermal attributes"
• Changed ADC to HSADC in the title of the section "12-bit SAR High Speed Analog-toDigital Converter (ADC) parameters"
• Changed minimum operating voltage value from 2.7 V to 1.71 V in the table "MII
signal switching specifications" and RMII signal switching specifications."
2
10/2015
• Updated the part numbers in the table Orderable part numbers summary and the front
page
• In the features list:
• Updated the instances of UART and SPI modules
• Added Ether module to the list of communication interfaces
• Remove Micro Trace Buffer from the list of System peripherals
• In table Operating Requirements, removed rows for NF, TR, and tFLRET
• In table PORT Voltage and current operating behaviors, added IICIO, IICcont, and
VODPU rows
• Updated table Power mode transition operating behaviors
• Updated table Power consumption operating behaviors
• Updated table EMC radiated emissions operating behaviors
• Updated table General switching specifications
• In section DSPI switching specifications (limited voltage range)
• Removed the notes
• Removed table "Master mode DSPI timing for fast pads (limited voltage range)"
Table continues on the next page...
KV5x Data Sheet, Rev. 4, 06/2016
71
NXP Semiconductors
Revision History
Table 39. Revision History (continued)
Rev. No.
Date
Substantial Changes
• Removed the tbale "Master mode DSPI timing for open drain pads (limited
voltage range)"
• Removed the table "Slave mode DSPI timing for fast pads (limited voltage
range)"
• Removed the table "Slave mode DSPI timing for open drain pads (limited
voltage range)"
• Removed the table "Master mode DSPI timing fast pads (full voltage range)"
• Removed the table "Master mode DSPI timing open drain pads (full voltage
range)"
• Removed the table "Slave mode DSPI timing for fast pads (full voltage range)"
• Removed the table "Slave mode DSPI timing for open drain pads (full voltage
range)"
• Updated the pinouts
• Updated table Device clock specifications
3
02/2016
• Added new part numbers for 240 MHz and removed the 220 MHz and 200 MHz part
numbers
• Updated the document number to reflect change from 220 MHz to 240 MHz
• Updated Voltage and current operating ratings
• Updated Operating Requirements
• Updated VLPS → RUN and STOP → RUN values in Power mode transition operating
behaviors
• In section Power consumption operating behaviors :
• Added a note at the beginning of the table
• Updated table to reflect 240 MHz values
• Updated Typical device clock specifications
• In section MCG specifications, updated the values listed under "PLL"
4
06/2016
• Updated PWM resolution in the introduction to 260 ps
• Added table Enhanced NanoEdge PWM characteristics
72
NXP Semiconductors
KV5x Data Sheet, Rev. 4, 06/2016
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support
Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based
on the information in this document. NXP reserves the right to make changes
without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of
its products for any particular purpose, nor does NXP assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer's technical experts. NXP
does not convey any license under its patent rights nor the rights of others. NXP
sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V.
All other product or service names are the property of their respective owners.
ARM, the ARM powered logo, and Cortex are registered trademarks of ARM
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.
©2016 NXP B.V.
Document Number KV5XP144M240
Revision 4, 06/2016