TI LM124-N

LM124,LM224,LM2902,LM324
LM124/LM224/LM324/LM2902 Low Power Quad Operational Amplifiers
Literature Number: SNOSC16B
LM124/LM224/LM324/LM2902
Low Power Quad Operational Amplifiers
General Description
Advantages
The LM124 series consists of four independent, high gain,
internally frequency compensated operational amplifiers
which were designed specifically to operate from a single
power supply over a wide range of voltages. Operation from
split power supplies is also possible and the low power
supply current drain is independent of the magnitude of the
power supply voltage.
n Eliminates need for dual supplies
n Four internally compensated op amps in a single
package
n Allows directly sensing near GND and VOUT also goes
to GND
n Compatible with all forms of logic
n Power drain suitable for battery operation
Application areas include transducer amplifiers, DC gain
blocks and all the conventional op amp circuits which now
can be more easily implemented in single power supply
systems. For example, the LM124 series can be directly
operated off of the standard +5V power supply voltage which
is used in digital systems and will easily provide the required
interface electronics without requiring the additional ± 15V
power supplies.
Unique Characteristics
n In the linear mode the input common-mode voltage
range includes ground and the output voltage can also
swing to ground, even though operated from only a
single power supply voltage
n The unity gain cross frequency is temperature
compensated
n The input bias current is also temperature compensated
Features
n Internally frequency compensated for unity gain
n Large DC voltage gain 100 dB
n Wide bandwidth (unity gain) 1 MHz
(temperature compensated)
n Wide power supply range:
Single supply 3V to 32V
or dual supplies ± 1.5V to ± 16V
n Very low supply current drain (700 µA) — essentially
independent of supply voltage
n Low input biasing current 45 nA
(temperature compensated)
n Low input offset voltage 2 mV
and offset current: 5 nA
n Input common-mode voltage range includes ground
n Differential input voltage range equal to the power
supply voltage
n Large output voltage swing 0V to V+ − 1.5V
Connection Diagrams
Dual-In-Line Package
00929901
Top View
Order Number LM124J, LM124AJ, LM124J/883 (Note 2), LM124AJ/883 (Note 1), LM224J,
LM224AJ, LM324J, LM324M, LM324MX, LM324AM, LM324AMX, LM2902M, LM2902MX, LM324N, LM324AN,
LM324MT, LM324MTX or LM2902N LM124AJRQML and LM124AJRQMLV(Note 3)
See NS Package Number J14A, M14A or N14A
© 2004 National Semiconductor Corporation
DS009299
www.national.com
LM124/LM224/LM324/LM2902 Low Power Quad Operational Amplifiers
August 2000
LM124/LM224/LM324/LM2902
Connection Diagrams
(Continued)
00929933
Order Number LM124AW/883, LM124AWG/883, LM124W/883 or LM124WG/883
LM124AWRQML and LM124AWRQMLV(Note 3)
See NS Package Number W14B
LM124AWGRQML and LM124AWGRQMLV(Note 3)
See NS Package Number WG14A
Note 1: LM124A available per JM38510/11006
Note 2: LM124 available per JM38510/11005
Note 3: See STD Mil DWG 5962R99504 for Radiation Tolerant Device
Schematic Diagram
(Each Amplifier)
00929902
www.national.com
2
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
LM124/LM224/LM324
LM2902
LM124A/LM224A/LM324A
Supply Voltage, V+
32V
26V
Differential Input Voltage
32V
26V
−0.3V to +32V
−0.3V to +26V
50 mA
50 mA
Molded DIP
1130 mW
1130 mW
Cavity DIP
1260 mW
1260 mW
Small Outline Package
800 mW
800 mW
Input Voltage
Input Current
(VIN < −0.3V) (Note 6)
Power Dissipation (Note 4)
Output Short-Circuit to GND
(One Amplifier) (Note 5)
V+ ≤ 15V and TA = 25˚C
Continuous
Continuous
Operating Temperature Range
−40˚C to +85˚C
LM324/LM324A
0˚C to +70˚C
LM224/LM224A
−25˚C to +85˚C
LM124/LM124A
−55˚C to +125˚C
Storage Temperature Range
−65˚C to +150˚C
−65˚C to +150˚C
260˚C
260˚C
260˚C
260˚C
Vapor Phase (60 seconds)
215˚C
215˚C
Infrared (15 seconds)
220˚C
220˚C
Lead Temperature (Soldering, 10 seconds)
Soldering Information
Dual-In-Line Package
Soldering (10 seconds)
Small Outline Package
See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount
devices.
ESD Tolerance (Note 13)
250V
250V
Electrical Characteristics
V+ = +5.0V, (Note 7), unless otherwise stated
Parameter
Conditions
Input Offset Voltage
(Note 8) TA = 25˚C
Input Bias Current
IIN(+) or IIN(−), VCM = 0V,
(Note 9)
TA = 25˚C
Input Offset Current
IIN(+) or IIN(−), VCM = 0V,
Min
LM124A
LM224A
LM324A
Typ
Typ
Typ
Max
Max Min
Max Min
Units
1
2
1
3
2
3
mV
20
50
40
80
45
100
nA
2
10
2
15
5
30
nA
TA = 25˚C
Input Common-Mode
V+ = 30V, (LM2902, V+ = 26V),
Voltage Range (Note
10)
TA = 25˚C
Supply Current
Over Full Temperature Range
V+−1.5
0
V+−1.5
0
V+−1.5
0
RL = ∞ On All Op Amps
+
mA
+
V = 30V (LM2902 V = 26V)
1.5
3
1.5
3
1.5
3
V+ = 5V
0.7
1.2
0.7
1.2
0.7
1.2
Large Signal
V+ = 15V, RL≥ 2kΩ,
Voltage Gain
(VO = 1V to 11V), TA = 25˚C
Common-Mode
DC, VCM = 0V to V+ − 1.5V,
V
3
50
100
50
100
25
100
V/mV
70
85
70
85
65
85
dB
www.national.com
LM124/LM224/LM324/LM2902
Distributors for availability and specifications.
Absolute Maximum Ratings (Note 12)
LM124/LM224/LM324/LM2902
Electrical Characteristics
(Continued)
V+ = +5.0V, (Note 7), unless otherwise stated
Parameter
Conditions
Rejection Ratio
TA = 25˚C
Power Supply
V+ = 5V to 30V
Rejection Ratio
(LM2902, V+ = 5V to 26V),
LM124A
LM224A
LM324A
Min
Typ
Max Min
Typ
Max Min
Typ
65
100
65
100
65
100
dB
−120
dB
Max
Units
TA = 25˚C
Amplifier-to-Amplifier
f = 1 kHz to 20 kHz, TA = 25˚C
Coupling (Note 11)
(Input Referred)
Output
Current
VIN+ = 1V, VIN− = 0V,
Source
−120
20
−120
40
20
40
20
40
V+ = 15V, VO = 2V, TA = 25˚C
Sink
−
mA
+
VIN = 1V, VIN = 0V,
10
20
10
20
10
20
12
50
12
50
12
50
V+ = 15V, VO = 2V, TA = 25˚C
VIN− = 1V, VIN+ = 0V,
µA
V+ = 15V, VO = 200 mV, TA = 25˚C
Short Circuit to Ground
(Note 5) V+ = 15V, TA = 25˚C
Input Offset Voltage
(Note 8)
VOS Drift
RS = 0Ω
Input Offset Current
IIN(+) − IIN(−), VCM = 0V
IOS Drift
RS = 0Ω
Input Bias Current
IIN(+) or IIN(−)
V+ = +30V
20
10
200
40
60
60
mA
5
mV
7
20
7
30
µV/˚C
10
200
75
nA
10
300 pA/˚C
30
100
V+−2
40
4
40
100
V+−2
0
40
0
200
nA
V+−2
V
+
Large Signal
V+ = +15V (VOSwing = 1V to 11V)
Voltage Gain
RL ≥ 2 kΩ
Output
Current
7
0
(LM2902, V = 26V)
Swing
40
30
Voltage Range (Note
10)
VOH
60
4
Input Common-Mode
Output
Voltage
40
+
25
25
15
V/mV
26
26
V
V = 30V
RL = 2 kΩ
26
(LM2902, V+ = 26V)
RL = 10 kΩ
27
VOL
V+ = 5V, RL = 10 kΩ
Source
VO = 2V
28
5
VIN+ = +1V,
10
27
20
20
28
27
5
10
20
20
28
5
10
20
20
VIN− = 0V,
V+ = 15V
mA
VIN− = +1V,
Sink
mV
10
15
5
8
5
8
VIN+ = 0V,
V+ = 15V
Electrical Characteristics
V+ = +5.0V, (Note 7), unless otherwise stated
Parameter
LM124/LM224
Conditions
Input Offset Voltage
(Note 8) TA = 25˚C
Input Bias Current
IIN(+) or IIN(−), VCM = 0V,
(Note 9)
TA = 25˚C
Input Offset Current
IIN(+) or IIN(−), VCM = 0V,
Min
Typ
LM324
Max Min
Typ
LM2902
Max Min
Typ
Max
Units
2
5
2
7
2
7
mV
45
150
45
250
45
250
nA
3
30
5
50
5
50
nA
TA = 25˚C
Input Common-Mode
V+ = 30V, (LM2902, V+ = 26V),
Voltage Range (Note
10)
TA = 25˚C
www.national.com
0
4
V+−1.5
0
V+−1.5
0
V+−1.5
V
(Continued)
V+ = +5.0V, (Note 7), unless otherwise stated
Parameter
Supply Current
LM124/LM224
Conditions
Min
Typ
LM324
Max Min
Typ
LM2902
Max Min
Typ
Max
Units
Over Full Temperature Range
RL = ∞ On All Op Amps
+
mA
+
V = 30V (LM2902 V = 26V)
1.5
3
1.5
3
1.5
3
V+ = 5V
0.7
1.2
0.7
1.2
0.7
1.2
Large Signal
V+ = 15V, RL≥ 2kΩ,
Voltage Gain
(VO = 1V to 11V), TA = 25˚C
Common-Mode
DC, VCM = 0V to V+ − 1.5V,
Rejection Ratio
TA = 25˚C
Power Supply
V+ = 5V to 30V
Rejection Ratio
(LM2902, V+ = 5V to 26V),
50
100
25
100
25
100
V/mV
70
85
65
85
50
70
dB
65
100
65
100
50
100
dB
−120
dB
TA = 25˚C
Amplifier-to-Amplifier
f = 1 kHz to 20 kHz, TA = 25˚C
Coupling (Note 11)
(Input Referred)
Output
Current
VIN+ = 1V, VIN− = 0V,
Source
−120
20
−120
40
20
40
20
40
V+ = 15V, VO = 2V, TA = 25˚C
Sink
−
mA
+
VIN = 1V, VIN = 0V,
10
20
10
20
10
20
12
50
12
50
12
50
V+ = 15V, VO = 2V, TA = 25˚C
VIN− = 1V, VIN+ = 0V,
µA
V+ = 15V, VO = 200 mV, TA = 25˚C
Short Circuit to Ground
(Note 5) V+ = 15V, TA = 25˚C
Input Offset Voltage
(Note 8)
VOS Drift
RS = 0Ω
40
IIN(+) − IIN(−), VCM = 0V
RS = 0Ω
10
Input Bias Current
IIN(+) or IIN(−)
40
Input Common-Mode
V = +30V
Voltage Range (Note
10)
(LM2902, V+ = 26V)
Large Signal
V+ = +15V (VOSwing = 1V to 11V)
Voltage Gain
RL ≥ 2 kΩ
VOH
Swing
VOL
Output
Current
Source
V −2
40
45
500
V −2
40
200
0
nA
pA/˚C
500
+
V −2
nA
V
15
15
V/mV
26
22
V
RL = 2 kΩ
26
(LM2902, V+ = 26V)
RL = 10 kΩ
27
V+ = 5V, RL = 10 kΩ
28
5
27
20
28
5
23
20
24
5
100
mV
+
VIN = +1V,
10
20
10
20
10
20
VIN− = 0V,
V+ = 15V
Sink
µV/˚C
10
+
0
mA
mV
25
V = 30V
VO = 2V
150
300
60
10
7
10
+
0
40
7
100
+
60
9
7
Input Offset Current
Output
Voltage
40
7
IOS Drift
+
60
mA
VIN− = +1V,
5
8
5
8
5
8
VIN+ = 0V,
V+ = 15V
Note 4: For operating at high temperatures, the LM324/LM324A/LM2902 must be derated based on a +125˚C maximum junction temperature and a thermal
resistance of 88˚C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM224/LM224A and LM124/LM124A can
be derated based on a +150˚C maximum junction temperature. The dissipation is the total of all four amplifiers — use external resistors, where possible, to allow the
amplifier to saturate of to reduce the power which is dissipated in the integrated circuit.
Note 5: Short circuits from the output to V+ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output
current is approximately 40 mA independent of the magnitude of V+. At values of supply voltage in excess of +15V, continuous short-circuits can exceed the power
dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
Note 6: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP
transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action
5
www.national.com
LM124/LM224/LM324/LM2902
Electrical Characteristics
LM124/LM224/LM324/LM2902
Electrical Characteristics
(Continued)
on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V+voltage level (or to ground for a large overdrive) for the time duration
that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value
greater than −0.3V (at 25˚C).
Note 7: These specifications are limited to −55˚C ≤ TA ≤ +125˚C for the LM124/LM124A. With the LM224/LM224A, all temperature specifications are limited to
−25˚C ≤ TA ≤ +85˚C, the LM324/LM324A temperature specifications are limited to 0˚C ≤ TA ≤ +70˚C, and the LM2902 specifications are limited to −40˚C ≤ TA ≤
+85˚C.
Note 8: VO . 1.4V, RS = 0Ω with V+ from 5V to 30V; and over the full input common-mode range (0V to V+ − 1.5V) for LM2902, V+ from 5V to 26V.
Note 9: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so
no loading change exists on the input lines.
Note 10: The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (at 25˚C). The upper end of the
common-mode voltage range is V+ − 1.5V (at 25˚C), but either or both inputs can go to +32V without damage (+26V for LM2902), independent of the magnitude
of V+.
Note 11: Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be
detected as this type of capacitance increases at higher frequencies.
Note 12: Refer to RETS124AX for LM124A military specifications and refer to RETS124X for LM124 military specifications.
Note 13: Human body model, 1.5 kΩ in series with 100 pF.
Typical Performance Characteristics
Input Voltage Range
Input Current
00929934
00929935
Supply Current
Voltage Gain
00929936
www.national.com
00929937
6
LM124/LM224/LM324/LM2902
Typical Performance Characteristics
(Continued)
Open Loop Frequency
Response
Common Mode Rejection
Ratio
00929938
00929939
Voltage Follower Pulse
Response
Voltage Follower Pulse
Response (Small Signal)
00929941
00929940
Large Signal Frequency
Response
Output Characteristics
Current Sourcing
00929942
00929943
7
www.national.com
LM124/LM224/LM324/LM2902
Typical Performance Characteristics
(Continued)
Output Characteristics
Current Sinking
Current Limiting
00929944
00929945
Input Current (LM2902 only)
Voltage Gain (LM2902 only)
00929946
00929947
should be provided to prevent the input voltages from going
negative more than −0.3 VDC (at 25˚C). An input clamp diode
with a resistor to the IC input terminal can be used.
Application Hints
The LM124 series are op amps which operate with only a
single power supply voltage, have true-differential inputs,
and remain in the linear mode with an input common-mode
voltage of 0 VDC. These amplifiers operate over a wide range
of power supply voltage with little change in performance
characteristics. At 25˚C amplifier operation is possible down
to a minimum supply voltage of 2.3 VDC.
The pinouts of the package have been designed to simplify
PC board layouts. Inverting inputs are adjacent to outputs for
all of the amplifiers and the outputs have also been placed at
the corners of the package (pins 1, 7, 8, and 14).
Precautions should be taken to insure that the power supply
for the integrated circuit never becomes reversed in polarity
or that the unit is not inadvertently installed backwards in a
test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the
internal conductors and result in a destroyed unit.
Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are
not needed, no large input currents result from large differential input voltages. The differential input voltage may be
larger than V+ without damaging the device. Protection
www.national.com
To reduce the power supply drain, the amplifiers have a
class A output stage for small signal levels which converts to
class B in a large signal mode. This allows the amplifiers to
both source and sink large output currents. Therefore both
NPN and PNP external current boost transistors can be used
to extend the power capability of the basic amplifiers. The
output voltage needs to raise approximately 1 diode drop
above ground to bias the on-chip vertical PNP transistor for
output current sinking applications.
For ac applications, where the load is capacitively coupled to
the output of the amplifier, a resistor should be used, from
the output of the amplifier to ground to increase the class A
bias current and prevent crossover distortion.
Where the load is directly coupled, as in dc applications,
there is no crossover distortion.
Capacitive loads which are applied directly to the output of
the amplifier reduce the loop stability margin. Values of
50 pF can be accommodated using the worst-case noninverting unity gain connection. Large closed loop gains or
resistive isolation should be used if larger load capacitance
must be driven by the amplifier.
8
output source current which is available at 25˚C provides a
larger output current capability at elevated temperatures
(see typical performance characteristics) than a standard IC
op amp.
(Continued)
The bias network of the LM124 establishes a drain current
which is independent of the magnitude of the power supply
voltage over the range of from 3 VDC to 30 VDC.
Output short circuits either to ground or to the positive power
supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing
metal fusing, but rather due to the large increase in IC chip
dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short-circuits on
more than one amplifier at a time will increase the total IC
power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series
with the output leads of the amplifiers. The larger value of
Typical Single-Supply Applications
The circuits presented in the section on typical applications
emphasize operation on only a single power supply voltage.
If complementary power supplies are available, all of the
standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of V+/2) will
allow operation above and below this value in single power
supply systems. Many application circuits are shown which
take advantage of the wide input common-mode voltage
range which includes ground. In most cases, input biasing is
not required and input voltages which range to ground can
easily be accommodated.
(V+ = 5.0 VDC)
Non-Inverting DC Gain (0V Input = 0V Output)
00929905
*R not needed due to temperature independent IIN
DC Summing Amplifier
(VIN’S ≥ 0 VDC and VO ≥ VDC)
Power Amplifier
00929907
00929906
V0 = 0 VDC for VIN = 0 VDC
AV = 10
Where: V0 = V1 + V2 − V3 − V4
(V1 + V2) ≥ (V3 + V4) to keep VO > 0 VDC
9
www.national.com
LM124/LM224/LM324/LM2902
Application Hints
LM124/LM224/LM324/LM2902
Typical Single-Supply Applications (V+ = 5.0 VDC)
LED Driver
(Continued)
“BI-QUAD” RC Active Bandpass Filter
00929908
00929909
fo = 1 kHz
Q = 50
AV = 100 (40 dB)
Fixed Current Sources
Lamp Driver
00929911
00929910
www.national.com
10
LM124/LM224/LM324/LM2902
Typical Single-Supply Applications
Pulse Generator
(V+ = 5.0 VDC) (Continued)
Current Monitor
00929915
Squarewave Oscillator
00929912
*(Increase R1 for IL small)
Driving TTL
00929916
Pulse Generator
00929913
Voltage Follower
00929914
00929917
11
www.national.com
LM124/LM224/LM324/LM2902
Typical Single-Supply Applications (V+ = 5.0 VDC)
(Continued)
High Compliance Current Sink
00929918
IO = 1 amp/volt VIN
(Increase RE for Io small)
Low Drift Peak Detector
00929919
www.national.com
12
Comparator with Hysteresis
(Continued)
Ground Referencing a Differential Input Signal
00929920
00929921
VO = VR
Voltage Controlled Oscillator Circuit
00929922
*Wide control voltage range: 0 VDC ≤ VC ≤ 2 (V+ −1.5 VDC)
Photo Voltaic-Cell Amplifier
00929923
13
www.national.com
LM124/LM224/LM324/LM2902
Typical Single-Supply Applications (V+ = 5.0 VDC)
LM124/LM224/LM324/LM2902
Typical Single-Supply Applications (V+ = 5.0 VDC)
(Continued)
AC Coupled Inverting Amplifier
00929924
AC Coupled Non-Inverting Amplifier
00929925
www.national.com
14
LM124/LM224/LM324/LM2902
Typical Single-Supply Applications (V+ = 5.0 VDC)
(Continued)
DC Coupled Low-Pass RC Active Filter
00929926
fO = 1 kHz
Q=1
AV = 2
High Input Z, DC Differential Amplifier
00929927
15
www.national.com
LM124/LM224/LM324/LM2902
Typical Single-Supply Applications (V+ = 5.0 VDC)
(Continued)
High Input Z Adjustable-Gain
DC Instrumentation Amplifier
00929928
Using Symmetrical Amplifiers to
Reduce Input Current (General Concept)
Bridge Current Amplifier
00929930
00929929
www.national.com
16
LM124/LM224/LM324/LM2902
Typical Single-Supply Applications (V+ = 5.0 VDC)
(Continued)
Bandpass Active Filter
00929931
fO = 1 kHz
Q = 25
17
www.national.com
LM124/LM224/LM324/LM2902
Physical Dimensions
inches (millimeters) unless otherwise noted
Ceramic Dual-In-Line Package (J)
Order Number JL124ABCA, JL124BCA, JL124ASCA, JL124SCA, LM124J,
LM124AJ, LM124AJ/883, LM124J/883, LM224J, LM224AJ or LM324J
NS Package Number J14A
MX S.O. Package (M)
Order Number LM324M, LM324MX, LM324AM, LM324AMX, LM2902M or LM2902MX
NS Package Number M14A
www.national.com
18
LM124/LM224/LM324/LM2902
Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
Molded Dual-In-Line Package (N)
Order Number LM324N, LM324AN or LM2902N
NS Package Number N14A
Ceramic Flatpak Package
Order Number JL124ABDA, JL124ABZA, JL124ASDA, JL124BDA, JL124BZA,
JL124SDA, LM124AW/883, LM124AWG/883, LM124W/883 or LM124WG/883
NS Package Number W14B
19
www.national.com
LM124/LM224/LM324/LM2902 Low Power Quad Operational Amplifiers
Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
14-Pin TSSOP
Order NumberLM324MT or LM324MTX
NS Package Number MTC14
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.
2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.
BANNED SUBSTANCE COMPLIANCE
National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products
Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification
(CSP-9-111S2) and contain no ‘‘Banned Substances’’ as defined in CSP-9-111S2.
National Semiconductor
Americas Customer
Support Center
Email: [email protected]
Tel: 1-800-272-9959
www.national.com
National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: [email protected]
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790
National Semiconductor
Asia Pacific Customer
Support Center
Email: [email protected]
National Semiconductor
Japan Customer Support Center
Fax: 81-3-5639-7507
Email: [email protected]
Tel: 81-3-5639-7560
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Communications and Telecom www.ti.com/communications
Amplifiers
amplifier.ti.com
Computers and Peripherals
www.ti.com/computers
Data Converters
dataconverter.ti.com
Consumer Electronics
www.ti.com/consumer-apps
DLP® Products
www.dlp.com
Energy and Lighting
www.ti.com/energy
DSP
dsp.ti.com
Industrial
www.ti.com/industrial
Clocks and Timers
www.ti.com/clocks
Medical
www.ti.com/medical
Interface
interface.ti.com
Security
www.ti.com/security
Logic
logic.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Power Mgmt
power.ti.com
Transportation and Automotive www.ti.com/automotive
Microcontrollers
microcontroller.ti.com
Video and Imaging
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
Wireless Connectivity
www.ti.com/wirelessconnectivity
TI E2E Community Home Page
www.ti.com/video
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated