View

APTC60AM24T1G
Phase leg
Super Junction MOSFET
Power Module
5
6
Application
 Welding converters
 Switched Mode Power Supplies
 Uninterruptible Power Supplies
 Motor control
11
Q1
7
8
3
4
Q2
VDSS = 600V
RDSon = 24m max @ Tj = 25°C
ID = 95A @ Tc = 25°C
Features

NTC
9
10

1
2
12


- Ultra low RDSon
- Low Miller capacitance
- Ultra low gate charge
- Avalanche energy rated
- Very rugged
Very low stray inductance
- Symmetrical design
Internal thermistor for temperature monitoring
High level of integration
Benefits
 Outstanding performance at high frequency operation
 Direct mounting to heatsink (isolated package)
 Low junction to case thermal resistance
 Solderable terminals both for power and signal for
easy PCB mounting
 Low profile
 RoHS Compliant
Pins 1/2 ; 3/4 ; 5/6 must be shorted together
Absolute maximum ratings
ID
IDM
VGS
RDSon
PD
IAR
EAR
EAS
Parameter
Drain - Source Breakdown Voltage
Tc = 25°C
Tc = 80°C
Continuous Drain Current
Pulsed Drain current
Gate - Source Voltage
Drain - Source ON Resistance
Maximum Power Dissipation
Avalanche current (repetitive and non repetitive)
Repetitive Avalanche Energy
Single Pulse Avalanche Energy
Tc = 25°C
Max ratings
600
95
70
260
±20
24
462
15
3
1900
Unit
V
A
V
m
W
A
mJ
These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. See application note
APT0502 on www.microsemi.com
www.microsemi.com
1–7
APTC60AM24T1G – Rev1 October, 2012
Symbol
VDSS
APTC60AM24T1G
All ratings @ Tj = 25°C unless otherwise specified
Electrical Characteristics
Symbol Characteristic
IDSS
RDS(on)
VGS(th)
IGSS
Zero Gate Voltage Drain Current
Drain – Source on Resistance
Gate Threshold Voltage
Gate – Source Leakage Current
Test Conditions
Min
Typ
Tj = 25°C
Tj = 125°C
VGS = 0V,VDS = 600V
VGS = 0V,VDS = 600V
VGS = 10V, ID = 47.5A
VGS = VDS, ID = 5mA
VGS = ±20 V, VDS = 0V
2.1
3
Min
Typ
14.4
17
Max
350
600
24
3.9
200
Unit
Max
Unit
µA
m
V
nA
Dynamic Characteristics
Symbol Characteristic
Ciss
Input Capacitance
Coss
Output Capacitance
Qg
Total gate Charge
Qgs
Gate – Source Charge
Qgd
Gate – Drain Charge
Td(on)
Turn-on Delay Time
Tr
Td(off)
Rise Time
Turn-off Delay Time
Tf
Fall Time
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
Test Conditions
VGS = 0V ; VDS = 25V
f = 1MHz
nF
300
VGS = 10V
VBus = 300V
ID = 95A
nC
68
102
21
Inductive Switching (125°C)
VGS = 10V
VBus = 400V
ID = 95A
RG = 2.5
30
ns
100
45
Inductive switching @ 25°C
VGS = 10V ; VBus = 400V
ID = 95A ; RG = 2.5
Inductive switching @ 125°C
VGS = 10V ; VBus = 400V
ID = 95A ; RG = 2.5
1350
µJ
1040
2200
µJ
1270
Source - Drain diode ratings and characteristics
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Test Conditions
Min
Tc = 25°C
Tc = 80°C
Typ
95
70
VGS = 0V, IS = - 95A
IS = - 95A
VR = 350V
diS/dt = 200A/µs
Max
Unit
A
1.2
4
V
V/ns
Tj = 25°C
600
ns
Tj = 25°C
34
µC
 dv/dt numbers reflect the limitations of the circuit rather than the device itself.
IS  - 95A
di/dt  200A/µs
VR  VDSS
Tj  150°C
www.microsemi.com
2–7
APTC60AM24T1G – Rev1 October, 2012
Symbol Characteristic
IS
Continuous Source current
(Body diode)
VSD
Diode Forward Voltage
dv/dt Peak Diode Recovery 
APTC60AM24T1G
Thermal and package characteristics
Symbol
RthJC
VISOL
TJ
TSTG
TC
Torque
Wt
Characteristic
Junction to Case Thermal Resistance
Min
RMS Isolation Voltage, any terminal to case t =1 min, 50/60Hz
4000
-40
-40
-40
2
Operating junction temperature range
Storage Temperature Range
Operating Case Temperature
Mounting torque
Package Weight
To heatsink
M4
Typ
Max
0.27
150
125
100
3
80
Unit
°C/W
V
°C
N.m
g
Temperature sensor NTC (see application note APT0406 on www.microsemi.com for more information).
Symbol Characteristic
R25
Resistance @ 25°C
B 25/85 T25 = 298.15 K
RT 
Min
Typ
50
3952
Max
Unit
k
K
R25
T: Thermistor temperature

 1
1  RT: Thermistor value at T
exp  B25 / 85 
 
 T25 T 

See application note 1904 - Mounting Instructions for SP1 Power Modules on www.microsemi.com
www.microsemi.com
3–7
APTC60AM24T1G – Rev1 October, 2012
SP1 Package outline (dimensions in mm)
APTC60AM24T1G
Typical Performance Curve
Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration
Thermal Impedance (°C/W)
0.3
0.9
0.25
0.7
0.2
0.5
0.15
0.3
0.1
0.1
0.05
Single Pulse
0.05
0
0.00001
0.0001
0.001
0.01
0.1
1
10
rectangular Pulse Duration (Seconds)
Transfert Characteristics
Low Voltage Output Characteristics
280
720
VGS=15&10V
6.5V
560
ID, Drain Current (A)
6V
480
400
5.5V
320
240
5V
160
4.5V
80
4V
0
200
160
120
80
TJ=125°C
40
TJ=25°C
0
0
5
10
15
20
VDS, Drain to Source Voltage (V)
25
0
Normalized to
VGS=10V @ 95A
1.25
1.2
VGS=10V
1.15
1.1
1
2
3
4
5
6
VGS, Gate to Source Voltage (V)
7
DC Drain Current vs Case Temperature
100
RDS(on) vs Drain Current
1.3
VGS=20V
1.05
1
0.95
ID, DC Drain Current (A)
RDS(on) Drain to Source ON Resistance
VDS > ID(on)xRDS(on)MAX
250µs pulse test @ < 0.5 duty cycle
240
0.9
80
60
40
20
0
0
40
80
120 160 200 240 280
ID, Drain Current (A)
www.microsemi.com
25
50
75
100
125
TC, Case Temperature (°C)
150
4–7
APTC60AM24T1G – Rev1 October, 2012
ID, Drain Current (A)
640
1.1
1.0
0.9
0.8
25
50
75
100
125
150
ON resistance vs Temperature
3.0
2.0
1.5
1.0
0.5
0.0
25
TJ, Junction Temperature (°C)
1000
1.0
ID, Drain Current (A)
VGS(TH), Threshold Voltage
(Normalized)
50
75
100
125
150
TJ, Junction Temperature (°C)
Maximum Safe Operating Area
Threshold Voltage vs Temperature
1.1
0.9
0.8
0.7
limited by RDSon
100
100 µs
1 ms
Single pulse
TJ=150°C
TC=25°C
10
0.6
10 ms
1
25
50
75
100
125
150
1
Coss
Ciss
10000
1000
Crss
100
10
0
100
1000
Gate Charge vs Gate to Source Voltage
VGS, Gate to Source Voltage (V)
Capacitance vs Drain to Source Voltage
1000000
100000
10
VDS, Drain to Source Voltage (V)
TC, Case Temperature (°C)
C, Capacitance (pF)
VGS=10V
ID= 95A
2.5
10
20
30
40
50
VDS, Drain to Source Voltage (V)
www.microsemi.com
12
ID=95A
TJ=25°C
10
VDS=120V
VDS=300V
8
VDS=480V
6
4
2
0
0
40
80 120 160 200 240 280 320
Gate Charge (nC)
5–7
APTC60AM24T1G – Rev1 October, 2012
BVDSS, Drain to Source Breakdown
Voltage (Normalized)
Breakdown Voltage vs Temperature
1.2
RDS(on), Drain to Source ON resistance
(Normalized)
APTC60AM24T1G
APTC60AM24T1G
Delay Times vs Current
140
Rise and Fall times vs Current
70
td(off)
100
VDS=400V
RG=2.5Ω
TJ=125°C
L=100µH
80
60
40
VDS=400V
RG=2.5Ω
TJ=125°C
L=100µH
60
50
tr and tf (ns)
40
30
tr
20
td(on)
20
10
0
0
0
20 40 60 80 100 120 140 160
0
20
40
ID, Drain Current (A)
Switching Energy vs Gate Resistance
Switching Energy (mJ)
Switching Energy (mJ)
Eon
Eoff
2
1
VDS=400V
ID=95A
TJ=125°C
L=100µH
4
3
Eoff
Eon
2
1
0
0
0
20
40 60 80 100 120 140 160
ID, Drain Current (A)
0
ZVS
200
ZCS
150
VDS=400V
D=50%
RG=2.5Ω
TJ=125°C
TC=75°C
100
hard
switching
50
0
10
20
30 40 50 60 70
ID, Drain Current (A)
80
10
15
20
25
Source to Drain Diode Forward Voltage
1000
IDR, Reverse Drain Current (A)
250
5
Gate Resistance (Ohms)
Operating Frequency vs Drain Current
300
Frequency (kHz)
80 100 120 140 160
5
VDS=400V
RG=2.5Ω
TJ=125°C
L=100µH
3
60
ID, Drain Current (A)
Switching Energy vs Current
4
tf
90
TJ=150°C
100
TJ=25°C
10
1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
VSD, Source to Drain Voltage (V)
“COOLMOS™ comprise a new family of transistors developed by Infineon Technologies AG. “COOLMOS” is a trademark of Infineon
Technologies AG”.
www.microsemi.com
6–7
APTC60AM24T1G – Rev1 October, 2012
td(on) and td(off) (ns)
120
APTC60AM24T1G
DISCLAIMER
The information contained in the document (unless it is publicly available on the Web without access restrictions) is
PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted,
transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the
recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement
will also apply. This document and the information contained herein may not be modified, by any person other than
authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property
right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication,
inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by
Microsemi in writing signed by an officer of Microsemi.
Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime
without any notice. This product has been subject to limited testing and should not be used in conjunction with lifesupport or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi
disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other
intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or
user must conduct and complete all performance and other testing of this product as well as any user or customers final
application. User or customer shall not rely on any data and performance specifications or parameters provided by
Microsemi. It is the customer’s and user’s responsibility to independently determine suitability of any Microsemi
product and to test and verify the same. The information contained herein is provided “AS IS, WHERE IS” and with all
faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims
any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product
is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp
Life Support Application
Seller's Products are not designed, intended, or authorized for use as components in systems intended for space,
aviation, surgical implant into the body, in other applications intended to support or sustain life, or for any other
application in which the failure of the Seller's Product could create a situation where personal injury, death or property
damage or loss may occur (collectively "Life Support Applications").
Buyer agrees not to use Products in any Life Support Applications and to the extent it does it shall conduct extensive
testing of the Product in such applications and further agrees to indemnify and hold Seller, and its officers, employees,
subsidiaries, affiliates, agents, sales representatives and distributors harmless against all claims, costs, damages and
expenses, and attorneys' fees and costs arising, directly or directly, out of any claims of personal injury, death, damage
or otherwise associated with the use of the goods in Life Support Applications, even if such claim includes allegations
that Seller was negligent regarding the design or manufacture of the goods.
www.microsemi.com
7–7
APTC60AM24T1G – Rev1 October, 2012
Buyer must notify Seller in writing before using Seller’s Products in Life Support Applications. Seller will study with
Buyer alternative solutions to meet Buyer application specification based on Sellers sales conditions applicable for the
new proposed specific part.