

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 PWMDB8_001-13583.pdf

		
				 8-Bit PWM Dead Band Generator Datasheet PWMDB8 V 2.5
001-13583 Rev. *K
8-Bit PWM Dead Band Generator
Copyright © 2002-2015 Cypress Semiconductor Corporation. All Rights Reserved.
PSoC® Blocks
Resources
Digital
Analog CT
API Memory (Bytes)
Analog SC
Flash
RAM
Pins (per
External I/O)
CY8C29/27/24/22/21xxx, CY8C23x33, CYWUSB6953, CY8CLED02/04/08/16, CY8CLED0xD, CY8CLED0xG,
CY8CTST110, CY8CTMG110, CY8CTST120, CY8CTMG120, CY8CTMA120, CY8CTMA140, CY8C28x45,
CY8CTMA30xx, CY8C28x45, CY8CPLC20, CY8CLED16P01, CY8C28xxx
8-bit
2
0
0
35
0
1
16-bit
3
0
0
44
0
1
For one or more fully configured, functional example projects that use this user module go to
www.cypress.com/psocexampleprojects.
Features and Overview
„ 8-bit general purpose pulse width modulator (PWM) with an 8-bit dead band generator consumes two
„
„
„
„
„
„
PSoC blocks
Phase1 and Phase2 underlapped outputs track the frequency of the generated PWM signal
Programmable duty cycle
Programmable dead time
Dead Band Kill input drives Phase1 and Phase2 outputs low
Counter clocking up to 48 MHz
Interrupt option triggered on rising edge of the PWM generated signal or counter terminal count
The 8-bit PWMDB User Module is a pulse width modulator combined with an 8-bit dead band generator.
The pulse width modulator provides a programmable period and pulse width input signal to the dead band
generator. The dead band generator outputs two under-lapped signals, with programmable dead time at
the same frequency as the input signal. When asserted, the Dead Band Kill input drives the Phase1 and
Phase2 output signals low. The clock and enable signals can be selected from several sources. The
Phase1 and Phase2 output signals can be routed to the external pin ports or to the global output buses for
Cypress Semiconductor Corporation
Document Number: 001-13583 Rev. *K
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised March 23, 2015
8-Bit PWM Dead Band Generator
internal use by other user modules. An interrupt can be programmed to effectively trigger on both edges of
the pulse width modulator output.
Figure 1.
PWMDB Block Diagram, Data Path width n = 8
Functional Description
The PWMDB User Module employs two digital PSoC blocks. The first block, PWM8, implements a pulse
width modulator with programmable period and pulse width. The pulse width modulated output signal is
fed into the second PSoC block, DB8. DB8 implements a dead band generator with programmable dead
time. The two output signals, Phase1 and Phase2, provide the PWMDB8 outputs.
The Control registers start and stop both the PWM and the DB8 components of the PWMDB. Writing the
Period register while stopped, causes the new Period register value to be copied to the Counter register.
Writing the DeadTime register while stopped, causes the new DeadTime register value to be loaded into
the DeadTimeCounter register. While the PWMDB is stopped, the PWM output and the DB8 Phase1 and
Phase2 outputs are asserted low.
The PWMDB is gated by an active high enable signal. While asserted low, the PWM and the DB8 PSoC
blocks are effectively disabled from operating. The PWM output is held constant at its current state, thus
preventing the DB8 from modifying its outputs. Asserting the enable signal continues operation without
modifying current register contents.
The same input clock is used by both the 8-bit PWM and the DB8 components of the PWMDB.
Pulse Width Modulator
When started and enabled, PWM decrements the Counter register on each rising edge of the clock. On
the clock edge that follows the Counter register’s terminal count, the Counter register is reloaded from the
Period register. The Period register can be modified with a new period value at anytime. The Period
register value is a parameter that may be assigned using the Device Editor or at run time using the API.
The output period of PWM is effectively the period value programmed in the Period register, plus one.
Equation 1
Document Number: 001-13583 Rev. *K
Page 2 of 19
8-Bit PWM Dead Band Generator
The duty cycle of the generated waveform is defined by the relationship of the period and the pulse width
values. The value in the PulseWidth register defines at what count, within the period, the output is set high.
On every clock, PWM compares the values in the Counter and PulseWidth registers. When the count
value is “Equal To or Less Than” the period value, the output is set high on the following clock. When the
automatic reload of the period occurs, the Counter and PulseWidth-register comparison fails and the
output is set low on the following clock.
The duty cycle can be computed as follows.
Equation 2
If the period and the pulse width values are set equal, the output remains high, indefinitely. The pulse
width value may have the value from zero to the period value loaded in the Period register. The
PulseWidth register value is a parameter that may be set using the Device Editor or at run time using the
API.
An interrupt can be programmed to occur on the rising edge of the PWM output or on the Counter
register’s terminal count condition. The terminal count condition is one-half clock period before the falling
edge of the output signal. The interrupt option can be set using the Device Editor. Enabling or disabling the
interrupt is done at run time using the API.
Dead Band Generator
For each edge of the input signal (PWM8 output), the following is repeated:
Rising Edge
„ Phase2 signal is reset low on the rising edge of the next clock cycle.
„ DeadTimeCounter register is loaded with the DeadTime register value.
„ DeadTimeCounter register is decremented on each rising edge of the input clock until it reaches the
terminal count. Phase1 is then set high on the next falling edge of the clock.
Falling Edge
„ Phase1 signal is reset low on the rising edge of the following clock cycle.
„ DeadTimeCounter register is loaded with the DeadTime register value.
„ DeadTimeCounter register is decremented on each rising edge of the input clock until it reaches the
terminal count. Phase 2 is then set high on the next falling edge of the clock.
Phase1 and Phase2 track the frequency of the input signal received from PWM. Phase1 tracks the duty
cycle of the input signal, minus the dead time. Phase2 tracks the inverted cycle of the input signal, minus
the dead time.
The effective dead time for each phase of the input signal is as follows.
Equation 3
The DeadTime register must be loaded with an 8-bit value. It must range from zero to the minimum of the
PWM Period register value minus two and PWM PulseWidth register value minus two, or 255.
The DeadTime register value is a parameter that may be assigned using the Device Editor or at run time
using the API.
Document Number: 001-13583 Rev. *K
Page 3 of 19
8-Bit PWM Dead Band Generator
When asserted high, the Dead Band Kill input drives the Phase1 and Phase2 outputs low. This signal only
affects the output gating of Phase1 and Phase2 signals and not the DeadTimeCounter register. When the
Dead Band Kill input is released (asserted low), the first applicable phase output may incur a jitter less
than the DeadTime clock counts, but at least one. At this time, the dead band generator is synced with the
pulse width modulated input. This means that the first output pulse is lengthened.
If it is required that the PWMDB output always be synchronized to the generated PWM input, upon the deassertion of the Dead Band Kill input, then upon the detection of the Dead Band Kill high assertion:
1. Stop the PWMDB by calling the Stop() API function.
2. Call the WriteDeadTime() API function to rewrite the Dead Time period.
3. Start the PWMDB upon the detection of the Dead Band de-assertion.
The CY8C29/27/24/22/21xxx, CY8C23x33, CYWUSB6953, CY8CLED02/04/08/16, CY8CLED03D/04D,
CY8CTST110, CY8CTMG110, CY8CTST120, CY8CTMG120, CY8CTMA120, CY8C28x45,
CY8CTMG300, CY8CTST300, CY8CTMA300, CY8CTMA301, CY8CTMA301D, CY8C28x45,
CY8CPLC20, CY8CLED16P01, CY8C28xxxfamilies support three KILL modes. In all cases, The KILL
signal asynchronously forces the outputs to logic '0'. The differences in the modes come from how dead
band processing is restarted.
1. Synchronous Restart Mode: When KILL is asserted high internal state is held in reset and the initial dead band period is reloaded into the counter. While KILL is held high, incoming PWM reference
edges are ignored. When KILL is negated, the next incoming PWM reference edge restarts dead band
processing. When using a PWM with 100% duty cycle, there is no incoming reference edge, and the
dead band processing does not restart when KILL is negated. Refer Synchronous Restart Kill Mode
Figure on page 5.
2. Asynchronous Restart Mode: When KILL is asserted high, internal state is not affected. When
KILL is negated, outputs are restored, subject to a minimum disable time between one-half and one
and one-half clock cycle. Refer Asynchronous Restart Kill Mode Figure on page 5.
Document Number: 001-13583 Rev. *K
Page 4 of 19
8-Bit PWM Dead Band Generator
3. Disable Mode: There is no specific timing associated with Disable Mode. The block is disabled and
the user must re-enable the function in firmware to continue processing.
Figure 2.
Synchronous Restart KILL Mode
Figure 3.
Asynchronous Restart Kill Mode
Document Number: 001-13583 Rev. *K
Page 5 of 19
8-Bit PWM Dead Band Generator
Timing
PWMDB operation may be gated On and Off or clocked by external pins routed to the PWMDB by the
global bus feature of the device. The global buses have a frequency limitation of 12 MHz.
Figure 4.
PWMDB Timing Diagram
DC and AC Electrical Characteristics
Table 1.
PWMDB DC and AC Electrical Characteristics
Parameter
FOutputmax
Conditions and Notes
Typical
Limit
Units
5.0V and 48 MHz input clock
--
241
MHz
3.3V and 24 MHz input clock
--
122
MHz
Electrical Characteristics Notes
1. If the output is routed via the global buses, then the frequency is constrained to a maximum of 12 MHz.
2. Fastest clock available to PSoC blocks is 24 MHz at 3.3V operation.
Document Number: 001-13583 Rev. *K
Page 6 of 19
8-Bit PWM Dead Band Generator
Placement
The 8-bit PWMDB consumes two digital PSoC blocks. Each block is given a symbolic name displayed by
the Device Editor during and after placement. The API qualifies all register names with user assigned
instance name and block name to provide direct access to the PWMDB registers through the API include
files. The block names used by the various widths are given in the following table.
Table 2.
Symbolic Names of the Mapped PSoC Blocks
PSoC Block Number
8-bit PWMDB
1
PWM8
2
DB8
Parameters and Resources
Clock
The Clock parameter is selected from one of a number of sources. These sources include the 48 MHz
oscillator (5.0V operation only), lower frequencies (24V1 and 24V2) divided down from the 24 MHz
system clock, other PSoC blocks, and external inputs routed through global inputs and outputs. Both
the pulse width modulator and the dead band generator use the same clock source. When using an
external digital clock for the block, the row input synchronization should be turned off for best accuracy, and sleep operation.
Enable
The Enable parameter is selected from one of a number of sources. External inputs, from global
inputs and outputs, are automatically synchronized to the internal 24 MHz oscillator of the device.
Period
This parameter sets the period of the PWM counter. Allowed values are between 0 and 255 for an 8bit PWM and between 0 and 216-1 for 16 bits. The period is loaded into the Period register. The effective output waveform period of the PWM is the period count + 1. The value may be modified using the
API.
PulseWidth
This parameter sets the pulse width of the PWM output. Allowed values are between zero and the
period value. The value may be modified using the API.
InterruptType
This parameter sets the interrupt trigger type. The interrupt can be set up so that it triggers on the
rising edge of the PWM signal or on the terminal count of the PWM Counter register. A separate
register independently enables the interrupt.
PWMOutput
This output parameter may be routed to one of four global output buses. If it is not required, you are
advised to avoid routing this signal (to save the global resources for other outputs).
DeadTime
This parameter sets the dead time count of the DB8 output. An 8-bit value in the range of zero to the
minimum of the following: The PWM Period parameter minus two, PWM Pulse Width parameter value
minus two, or 255.
Document Number: 001-13583 Rev. *K
Page 7 of 19
8-Bit PWM Dead Band Generator
Phase1
This output parameter may be routed to one of four global output buses.
Phase2
This output parameter may be routed to one of four global output buses.
DeadBandKill
This parameter is selected from one of a number of sources. When it is asserted high, Phase1 and
Phase2 outputs are driven low.
ClockSync
In the PSoC devices, digital blocks may provide clock sources in addition to the system clocks. Digital
clock sources may even be chained in ripple fashion. This introduces skew with respect to the system
clocks. These skews are more critical in the CY8C29/27/24/22/21xxx and CY8CLED04/08/16 PSoC
device families because of various data-path optimizations, particularly those applied to the system
busses. This parameter may be used to control clock skew and ensure proper operation when reading
and writing PSoC block register values. Appropriate values for this parameter should be determined
from the following table.
ClockSync Value
Use
Sync to SysClk
Use this setting for any 24 MHz (SysClk) derived clock source that is divided by two or more.
Examples include VC1, VC2, VC3 (when VC3 is driven by SysClk), 32KHz, and digital PSoC
blocks with SysClk-based sources. Externally generated clock sources should also use this
value to ensure that proper synchronization occurs.
Sync to SysClk*2
Use this setting for any 48 MHz (SysClk*2) based clock unless the resulting frequency is 48
MHz (in other words, when the product of all divisors is 1).
Use SysClk Direct
Use when a 24 MHz (SysClk/1) clock is desired. This does not actually perform
synchronization but provides low-skew access to the system clock itself. If selected, this
option overrides the setting of the Clock parameter. It should always be used instead of VC1,
VC2, VC3 or digital blocks where the net result of all dividers in combination produces a 24
MHz output.
Unsynchronized
Use when the 48 MHz (SysClk*2) input is selected.
Use when unsynchronized inputs are desired. In general this use is advisable only when
interrupt generation is the sole application of the Counter. This setting is required for blocks
that remain active during sleep.
DeadBandKill Mode
This parameter is selected from one of three Kill modes, SyncRestartKill, DisableKill, or AsyncKill.
Section on Dead Band Generator for more information.
Invert DeadBandKill
This parameter allows the user to invert the incoming DeadBand Kill signal.
Invert Enable
This parameter allows the user to invert the incoming Enable signal.
Document Number: 001-13583 Rev. *K
Page 8 of 19
8-Bit PWM Dead Band Generator
Interrupt Generation Control
There are two additional parameters that become available when the Enable interrupt generation
control check box in PSoC Designer is checked. This is available under Project > Settings > Chip
Editor. Interrupt Generation Control is important when multiple overlays are used with interrupts shared
by multiple user modules across overlays:
„ Interrupt API
„ IntDispatchMode
InterruptAPI
The InterruptAPI parameter allows conditional generation of a user module’s interrupt handler and
interrupt vector table entry. Select “Enable” to generate the interrupt handler and interrupt vector table
entry. Select “Disable” to bypass the generation of the interrupt handler and interrupt vector table
entry. Properly selecting whether an Interrupt API is to be generated is recommended particularly with
projects that have multiple overlays where a single block resource is used by the different overlays.
By selecting only Interrupt API generation when it is necessary the need to generate an interrupt
dispatch code might be eliminated, thereby reducing overhead.
IntDispatchMode
The IntDispatchMode parameter is used to specify how an interrupt request is handled for interrupts
shared by multiple user modules existing in the same block but in different overlays. Selecting
“ActiveStatus” causes firmware to test which overlay is active before servicing the shared interrupt
request. This test occurs every time the shared interrupt is requested. This adds latency and also
produces a nondeterministic procedure of servicing shared interrupt requests, but does not require
any RAM. Selecting “OffsetPreCalc” causes firmware to calculate the source of a shared interrupt
request only when an overlay is initially loaded. This calculation decreases interrupt latency and
produces a deterministic procedure for servicing shared interrupt requests, but at the expense of a
byte of RAM.
Application Programming Interface
The Application Programming Interface (API) routines are provided as part of the user module to allow the
designer to deal with the module at a higher level. This section specifies the interface to each function
together with related constants provided by the "include" files.
Note
In this, as in all user module APIs, the values of the A and X register may be altered by calling an API
function. It is the responsibility of the calling function to preserve the values of A and X before the call if
those values are required after the call. This "registers are volatile" policy was selected for efficiency
reasons and has been in force since version 1.0 of PSoC Designer. The C compiler automatically takes
care of this requirement. Assembly language programmers must ensure their code observes the policy,
too. Though some user module API function may leave A and X unchanged, there is no guarantee they
may do so in the future.
For Large Memory Model devices, it is also the caller's responsibility to preserve any value in the
CUR_PP, IDX_PP, MVR_PP, and MVW_PP registers. Even though some of these registers may not be
modified now, there is no guarantee that will remain the case in future releases.
Document Number: 001-13583 Rev. *K
Page 9 of 19
8-Bit PWM Dead Band Generator
PWMDB8_PERIOD
Description:
Represents the value chosen for the Period field of the PWMDB8 in the Device Editor. The value can
have a range between 0 and 255.
PWMDB8_PULSE_WIDTH
Description:
Represents the value chose for the PulseWidth field of the PWMDB8 in the Device Editor. The value
can have a range between 0 and 255.
PWMDB8_EnableInt
Description:
Enables the interrupt mode operation.
C Prototype:
void
PWMDB8_EnableInt(void);
Assembly:
lcall
PWMDB8_EnableInt
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
PWMDB8_DisableInt
Description:
Disables the interrupt mode operation.
C Prototype:
void
PWMDB8_DisableInt(void);
Assembly:
lcall
PWMDB8_DisableInt
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
Document Number: 001-13583 Rev. *K
Page 10 of 19
8-Bit PWM Dead Band Generator
PWMDB8_Start
Description:
Starts both the pulse width modulator and the dead band generator PSoC blocks. The PWM Period
register is loaded into the Counter register and the PWM8 clock is started. If the input enable is high,
the counter begins to down count.
C Prototype:
void
PWMDB8_Start(void);
Assembly:
lcall
PWMDB8_Start
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
PWMDB8_Stop
Description:
Disables the PWM8 and DB8 PSoC blocks.
C Prototype:
void
PWMDB8_Stop(void);
Assembly:
lcall
PWMDB8_Stop
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
PWMDB8_WritePeriod
Description:
Writes the PWM Period register with the period value.
C Prototype:
void
PWMDB8_WritePeriod(BYTE bPeriod);
Assembly:
mov
A, [bPeriod]
lcall PWMDB8_WritePeriod
Document Number: 001-13583 Rev. *K
Page 11 of 19
8-Bit PWM Dead Band Generator
Parameters:
Period value is a value from 0 to 255 and is passed in the Accumulator.
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
PWMDB8_WritePulseWidth
Description:
Writes the PWM PulseWidth register with the pulse width value.
C Prototype:
void
PWMDB8_WritePulseWidth(BYTE bPulseWidth);
Assembly:
mov
A, [bPulseWidth]
lcall PWMDB8_WritePulseWidth
Parameters:
Pulse width value is the value from zero to the period value and is passed in the Accumulator.
Return Value:
None
Side Effects:
Writing the PulseWidth register, while the counter is active, changes the duty cycle of the output. This
may cause the output to glitch or change inadvertently. The A and X registers may be altered by this
function.
PWMDB8_WriteDeadTime
Description:
Writes the DB8 DeadTime register with the dead time count value.
C Prototype:
void
PWMDB8_WriteDeadTime(BYTE bDeadTime);
Assembly:
mov
A, [bDeadTime]
lcall PWMDB8_WriteDeadTime
Parameters:
Pulse width value is a value from 0 to the period value and is passed in the Accumulator.
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
Document Number: 001-13583 Rev. *K
Page 12 of 19
8-Bit PWM Dead Band Generator
PWMDB8_bReadPulseWidth
Description:
Reads the PWM PulseWidth register.
C Prototype:
BYTE
PWMDB8_bReadPulseWidth();
Assembly:
lcall PWMDB8_bReadPulseWidth
mov
[bPulseWidth], A
Parameters:
None
Return Value:
The Pulse width value is stored in the PulseWidth register and returned in the Accumulator.
Side Effects:
The A and X registers may be altered by this function.
Sample Firmware Source Code
In the following examples, the correspondence between the C and assembly code is simple and direct.
The values shown for period and compare value are each “off-by-1” from the cardinal values because the
registers are zero-based; that is, zero is the terminal count in their down-count cycle. Passing a simple
one byte parameter in the A register rather than on the stack is a performance optimization used by both
the assembler and C compiler for user module APIs. The C compiler employs this mechanism for “INT”
types instead of pushing the argument on the stack when it sees the #pragma fastcall declarations in the
PWMDB8.h file.
The following is the assembly language source that illustrates the use of the APIs.
;---; FILENAME: main.asm
;
; DESCRIPTION:
;
; This sample shows how to generate 20% under-lapped output signals.
;
; OVERVIEW:
;
; The PWMDB8 output can be routed to any pin.
; In this example the PWMDB8 outputs is routed to P0[4] and P1[3] pins.
; The pin P0[4] has the 40% duty cycle output pulse with frequency = 50 kHz.
; The pin P1[3] has the 40% duty cycle output pulse with frequency = 50 kHz.
; The second output is shifted to 50% (or 10 usec) relative to first one.
;
;The following changes need to be made to the default settings in the Device Editor:
;
;
1. Select PWMDB8 user module.
;
2. The User Module will occupy the space in dedicated system resources.
;
3. Rename User Module's instance name to PWMDB8.
;
4. Set PWMDB8's Clock Parameter to VC1.
;
5. Set PWMDB8's Enable Parameter to High.
Document Number: 001-13583 Rev. *K
Page 13 of 19
8-Bit PWM Dead Band Generator
;
6. Set PWMDB8's Phase1 Parameter to Row_0_Output_0.
;
7. Set PWMDB8's CompareType Parameter to Less Than Or Equal.
;
8. Set PWMDB8's ClockSync Parameter to SyncSysClk.
;
9. Set PWMDB8's Phase2 Parameter to Row_0_Output_3.
;
10. Click on Row_0_Output_0 and connect Row_0_Output_0 to GlobalOutEven_4.
;
11. Select GlobalOutEven_4 for P0[4] in the Pinout.
;
12. Click on Row_0_Output_3 and connect Row_0_Output_3 to GlobalOutOdd_3.
;
13. Select GlobalOutOdd_3 for P1[3] in the Pinout.
;
14. Generate the project (Ctrl + F6).
;
; CONFIGURATION DETAILS:
;
; 1. The clock selected should be 30 times the required period.
; 2. The UM's instance name must be shortened to PWMDB8.
;
; PROJECT SETTINGS:
;
;
IMO setting (SysClk) = 24MHz
System clock is set to 24MHz
;
VC1=SysClk/1 = 16 (default)
;
; USER MODULE PARAMETER SETTINGS:
;
; --; UM
Parameter
Value
Comments
; --; PWMDB8
Name
PWMDB8
UM's instance name
;
Clock
VC1
;
Enable
High
;
Period
0
The Code changes it.
;
PulseWidth
0
The Code changes it.
;
InterruptType
Terminal Count
;
PWMOutput
Row_0_Output_1
;
DeadTime
0
The Code changes it.
;
Phase1
Row_0_Output_0
;
Phase2
Row_0_Output_3
;
DeadBandKill
Low
;
DeadBandKill_Mode SyncRestartKill
;
ClockSync
SyncSysClk
;
InvertDeadBandKill Normal
;
InvertEnable
Normal
;
; --;--; Assembly code begins here
;--include "m8c.inc"
include "memory.inc"
include "PSoCAPI.inc"
; part specific constants and macros
; Constants & macros for SMM/LMM and Compiler
; PSoC API definitions for all User Modules
export _main
PWMDB_PERIOD:
equ 29
PWMDB_PULSEWIDTH: equ 14
Document Number: 001-13583 Rev. *K
Page 14 of 19
8-Bit PWM Dead Band Generator
PWMDB_DEADTIME:
equ 2
_main:
; M8C_EnableGInt
mov
A, PWMDB_PERIOD
lcall PWMDB8_WritePeriod
mov
A, PWMDB_PULSEWIDTH
lcall PWMDB8_WritePulseWidth
mov
A, PWMDB_DEADTIME
lcall PWMDB8_WriteDeadTime
lcall PWMDB8_Start
; Uncomment this line to enable Global Interrupts
; set the period to be 30 counts of the clock
; set the pulse width to create 50% duty cycle
; set the dead time to 20% ->
(15*0.2)-1
; start the PWMDB8 – counter will start to
; count when the enable input is asserted high
; Insert your main assembly code here.
.terminate:
jmp .terminate
The same code in C is:
//---// FILENAME: main.c
//
// DESCRIPTION:
// This sample shows how to generate 20% under-lapped output signals.
//
// OVERVIEW:
//
// The PWMDB8 output can be routed to any pin.
// In this example the PWMDB8 outputs is routed to P0[4] and P1[3] pins.
// The pin P0[4] has the 40% duty cycle output pulse with frequency = 50 kHz.
// The pin P1[3] has the 40% duty cycle output pulse with frequency = 50 kHz.
// The second output is shifted to 50% (or 10 usec) relative to first one.
//
//The following changes need to be made to the default settings in the Device Editor:
//
//
1. Select PWMDB8 user module.
//
2. The User Module will occupy the space in dedicated system resources.
//
3. Rename User Module's instance name to PWMDB8.
//
4. Set PWMDB8's Clock Parameter to VC1.
//
5. Set PWMDB8's Enable Parameter to High.
//
6. Set PWMDB8's Phase1 Parameter to Row_0_Output_0.
//
7. Set PWMDB8's CompareType Parameter to Less Than Or Equal.
//
8. Set PWMDB8's ClockSync Parameter to SyncSysClk.
//
9. Set PWMDB8's Phase2 Parameter to Row_0_Output_3.
//
10. Click on Row_0_Output_0 and connect Row_0_Output_0 to GlobalOutEven_4.
//
11. Select GlobalOutEven_4 for P0[4] in the Pinout.
//
12. Click on Row_0_Output_3 and connect Row_0_Output_3 to GlobalOutOdd_3.
//
13. Select GlobalOutOdd_3 for P1[3] in the Pinout.
//
14. Generate the project (Ctrl + F6).
//
// CONFIGURATION DETAILS:
//
// 1. The clock selected should be 30 times the required period.
// 2. The UM's instance name must be shortened to PWMDB8.
Document Number: 001-13583 Rev. *K
Page 15 of 19
8-Bit PWM Dead Band Generator
//
// PROJECT SETTINGS:
//
//
IMO setting (SysClk) = 24MHz
System clock is set to 24MHz
//
VC1=SysClk/1 = 16 (default)
//
// USER MODULE PARAMETER SETTINGS:
//
// --// UM
Parameter
Value
Comments
// --// PWMDB8
Name
PWMDB8
UM's instance name
//
Clock
VC1
//
Enable
High
//
Period
0
The Code changes it.
//
PulseWidth
0
The Code changes it.
//
InterruptType
Terminal Count
//
PWMOutput
Row_0_Output_1
//
DeadTime
0
The Code changes it.
//
Phase1
Row_0_Output_0
//
Phase2
Row_0_Output_3
//
DeadBandKill
Low
//
DeadBandKill_Mode SyncRestartKill
//
ClockSync
SyncSysClk
//
InvertDeadBandKill Normal
//
InvertEnable
Normal
//
// --/* Code begins here */
#include <m8c.h>
#include "PSoCAPI.h"
// part specific constants and macros
// PSoC API definitions for all User Modules
#define PWM_PERIOD
29
#define PWM_PULSEWIDTH 14
#define PWM_DEATHTIME 2
void main(void)
{
// M8C_EnableGInt ;
// Uncomment this line to enable Global Interrupts
PWMDB8_WritePeriod(PWM_PERIOD); // Set period to 30 clocks
PWMDB8_WritePulseWidth(PWM_PULSEWIDTH);
// Set pulse width to generate a 50%
//duty cycle
PWMDB8_WriteDeadTime(PWM_DEATHTIME);
// Set dead time to 20% -> (15*0.2)-1
PWMDB8_Start();
// Insert your main routine code here.
}
Document Number: 001-13583 Rev. *K
Page 16 of 19
8-Bit PWM Dead Band Generator
Configuration Registers
The 8-bit PWMDB uses two digital PSoC blocks named PWM8 and PWMDB8. Each block is personalized
and parameterized through 7 registers. The following tables give the “personality” values as constants and
the parameters as named bit-fields with brief descriptions. Symbolic names for these registers are defined
in the user module instance’s C and assembly language interface files (the “.h” and “.inc” files).
PWM8 Configuration Registers
Table 3.
Block PWM8: Register Function
Bit
Value
7
0
6
0
5
1
4
0
3
Interrupt
Type
2
0
1
0
0
1
Interrupt Type is a flag that indicates whether to trigger the interrupt on the rising edge of the output signal
or on the terminal count condition. This parameter is set in the Device Editor.
Table 4.
Block PWM8: Register Input
Bit
Value
7
6
5
4
Enable
3
2
1
0
Clock
Enable selects the data input from one of a number of sources. Clock selects the input clock from one of a
number of sources. Both parameters are set in the Device Editor.
Table 5.
Block PWM8: Register Output
Bit
Value
7
0
6
0
5
0
4
0
3
0
2
1
0
Out Enable Output Select
Output Enable is a flag that indicates the output is enabled. Output Select is a flag that indicates where the
output of the PWM is routed. Both parameters are set in the Device Editor.
Table 6.
Bit
Value
Block PWM8: Counter Register DR0
7
6
5
4
3
2
1
0
2
1
0
Count
Count is the PWM8 down counter. It can be read using the PWM8 API.
Table 7.
Bit
Value
Block PWM8: Period Register DR1
7
6
5
4
3
Period
Period holds the period value that is loaded into the Counter register upon start or the terminal count
condition. It can be set in the Device Editor and the PWM8 API.
Table 8.
Bit
Value
Block PWM8: Pulse Width Register DR2
7
6
5
4
3
2
1
0
PulseWidth
PulseWidth holds the pulse width value used to generate the output. It can be set in the Device Editor and
the PWM8 API.
Document Number: 001-13583 Rev. *K
Page 17 of 19
8-Bit PWM Dead Band Generator
Table 9.
Block PWM8: Control Register CR0
Bit
Value
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
Start/Stop
Start/Stop indicates that the PWM8 is enabled when set. It is modified by using the PWM8 API.
DB8 Configuration Registers
Table 10.
Block DB8: Register Function
Bit
Value
Table 11.
7
0
0
5
1
4
0
3
0
2
1
1
0
0
0
Block DB8: Register Input
Bit
Value
6
7
6
5
4
Dead Band Kill
3
2
1
0
Clock
Dead Band Kill selects the data input from one of a number of sources. Clock selects the input clock from
one of a number of sources. Both parameters are set in the Device Editor.
Table 12.
Block DB8: Register Output
Bit
Value
7
0
6
0
5
Phase2
Output
Enable
4
3
Phase2 Output Select
2
Phase1
Output
Enable
1
0
Phase1 Output Select
Phase1 Output Enable is a flag that indicates that Phase 1 output is enabled. Phase1 Output Select
specifies where the Phase 1 output of the DB8 is routed. Phase2 Output Enable is a flag that indicates that
Phase 2 output is enabled. Phase2 Output Select specifies where the Phase 2 output of the DB8 is routed.
All these parameters are set in the Device Editor.
Table 13.
Block DB8: Dead Time Counter Register DR0
Bit
Value
7
6
5
4
3
2
1
0
4
3
2
1
0
1
0
Dead Time Counter
Dead Time Counter is the DB8 down counter.
Table 14.
Block DB8: Dead Time Register DR1
Bit
Value
7
6
5
Dead Time
Dead Time holds the dead time count value. It is modified using the PWMDB8 API.
Table 15.
Block DB8: Register DR2
Bit
Value
7
0
6
0
5
0
4
0
3
0
2
0
0
0
This register is not used.
Document Number: 001-13583 Rev. *K
Page 18 of 19
8-Bit PWM Dead Band Generator
Table 16.
Block DB8: Control Register CR0
Bit
7
Value
0
6
0
5
0
4
0
3
0
2
0
1
0
0
Start/Stop
Start/Stop indicates that the DB8 is enabled when set. It is modified by using the PWMDB8 API.
Version History
Version
2.5
Note
Originator
TDU
Description
Updated Clock description to include: When using an external digital clock for the block,
the row input synchronization should be turned off for best accuracy, and sleep operation.
PSoC Designer 5.1 introduces a Version History in all user module datasheets. This section documents high level descriptions of the differences between the current and previous user module versions.
Document Number: 001-13583 Rev. *K
Revised March 23, 2015
Page 19 of 19
Copyright © 2002-2015 Cypress Semiconductor Corporation. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility
for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products
in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works
of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with
a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is
prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

				

 Open as PDF

 	Similar pages
	

										ADCINC14_V1_4_001-13253.pdf

	

										AN2157 Analog Three-Phase Sine Wave Generator.pdf

	

										PWMDB16_001-13582.pdf

	

										PWMDB8L_001-47657.pdf

	

										PWMDB16L_001-47656.pdf

	

										Download Generation of non-overlapping clocks (PWMs with Dead Band)

	

										001-13583_PWMDB8.pdf

	

										PWM8_001-13581.pdf

	

										001-13583_PWMDB8.pdf

	

										PWMDB16_V2.50_ZH.pdf

	

										DelSig_001-13432.pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

