IRF IRFB4110QPBF

PD - 96138
IRFB4110QPbF
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
l Lead-Free
Benefits
l Improved Gate, Avalanche and Dynamic dv/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l 175°C Operating Temperature
l Automotive [Q101] Qualified
HEXFET® Power MOSFET
VDSS
RDS(on) typ.
max
ID
100V
3.7m:
4.5m:
180A
D
D
G
G
D
S
TO-220AB
S
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
Parameter
d
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
f
dv/dt
TJ
TSTG
Avalanche Characteristics
EAS (Thermally limited)
IAR
EAR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
c
Max.
Units
180
130
670
370
2.5
± 20
5.3
-55 to + 175
A
c
c
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
W
W/°C
V
V/ns
°C
300
x
x
10lb in (1.1N m)
e
mJ
A
mJ
210
75
37
g
Thermal Resistance
Symbol
RθJC
RθCS
RθJA
www.irf.com
Parameter
k
Junction-to-Case
Case-to-Sink, Flat Greased Surface
Junction-to-Ambient
j
Typ.
Max.
Units
–––
0.50
–––
0.402
–––
62
°C/W
1
02/11/08
IRFB4110QPbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min. Typ. Max. Units
100
–––
–––
2.0
–––
–––
–––
–––
––– –––
0.108 –––
3.7
4.5
–––
4.0
–––
20
––– 250
––– 100
––– -100
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 5mA
mΩ VGS = 10V, ID = 75A
V VDS = VGS, ID = 250µA
µA VDS = 100V, VGS = 0V
VDS = 100V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
d
g
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
gfs
Qg
Qgs
Qgd
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
160
–––
–––
–––
–––
150
35
43
–––
210
–––
–––
S
nC
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Gate Resistance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
1.3
25
67
78
88
9620
670
250
820
950
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Ω
i
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
h
–––
–––
–––
–––
–––
–––
–––
–––
–––
ns
pF
Conditions
VDS = 50V, ID = 75A
ID = 75A
VDS = 50V
VGS = 10V
g
VDD = 65V
ID = 75A
RG = 2.6Ω
VGS = 10V
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 80V
VGS = 0V, VDS = 0V to 80V
g
j
h
Diode Characteristics
Symbol
IS
Parameter
Continuous Source Current
VSD
trr
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
ISM
di
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Package limitation current is 75A.
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.074mH
RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use
above this value.
„ ISD ≤ 75A, di/dt ≤ 630A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
… Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
Min. Typ. Max. Units
–––
––– 170
–––
–––
c
670
A
Conditions
MOSFET symbol
showing the
integral reverse
D
G
S
p-n junction diode.
––– –––
1.3
V TJ = 25°C, IS = 75A, VGS = 0V
VR = 85V,
–––
50
75
ns TJ = 25°C
T
=
125°C
I
–––
60
90
J
F = 75A
di/dt
= 100A/µs
–––
94
140
nC TJ = 25°C
TJ = 125°C
––– 140 210
–––
3.5
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
g
g
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C.
www.irf.com
IRFB4110QPbF
1000
1000
BOTTOM
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
TOP
100
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
BOTTOM
100
4.5V
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 25°C
Tj = 175°C
10
10
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
1000
3.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
T J = 25°C
10
T J = 175°C
1
VDS = 25V
≤60µs PULSE WIDTH
0.1
ID = 75A
VGS = 10V
2.5
2.0
1.5
1.0
0.5
1
2
3
4
5
6
7
-60 -40 -20 0 20 40 60 80 100120140160180
VGS, Gate-to-Source Voltage (V)
T J , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
100000
12.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 75A
C oss = C ds + C gd
C, Capacitance (pF)
4.5V
Ciss
10000
Coss
1000
Crss
100
10.0
VDS= 80V
VDS= 50V
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
50
100
150
200
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFB4110QPbF
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 175°C
100
T J = 25°C
10
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100µsec
100
10msec
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
1
0.1
0.0
0.5
1.0
1.5
0
2.0
Limited By Package
ID, Drain Current (A)
140
120
100
80
60
40
20
0
50
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
180
25
100
1000
125
Id = 5mA
120
115
110
105
100
95
90
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 10. Drain-to-Source Breakdown Voltage
Fig 9. Maximum Drain Current vs. Case Temperature
5.0
EAS , Single Pulse Avalanche Energy (mJ)
900
4.5
4.0
3.5
3.0
Energy (µJ)
10
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
160
1
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
2.5
2.0
1.5
1.0
0.5
0.0
ID
17A
26A
BOTTOM 75A
800
TOP
700
600
500
400
300
200
100
0
0
20
40
60
80
100
120
VDS, Drain-to-Source Voltage (V)
4
1msec
DC
10
Fig 11. Typical COSS Stored Energy
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFB4110QPbF
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
0.01
τJ
R1
R1
τJ
τ1
R2
R2
R3
R3
τC
τ2
τ1
τ3
τ2
τ3
Ci= τi/R i
Ci= τi/Ri
0.001
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
τC
Ri (°C/W)
0.09876251
0.2066697
0.09510464
τi (sec)
0.000111
0.001743
0.012269
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆ Tj = 150°C and
Tstart =25°C (Single Pulse)
Avalanche Current (A)
Duty Cycle = Single Pulse
100
0.01
0.05
0.10
10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.1
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
250
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 75A
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFB4110QPbF
25
3.5
IF = 30A
V R = 85V
20
TJ = 25°C
TJ = 125°C
3.0
2.5
IRR (A)
VGS(th), Gate threshold Voltage (V)
4.0
ID = 250µA
ID = 1.0mA
ID = 1.0A
2.0
1.5
15
10
5
1.0
0
0.5
-75 -50 -25 0
0
25 50 75 100 125 150 175 200
200
600
800
1000
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
25
560
IF = 45A
V R = 85V
20
TJ = 25°C
TJ = 125°C
15
QRR (A)
IRR (A)
400
diF /dt (A/µs)
T J , Temperature ( °C )
10
480
IF = 30A
V R = 85V
400
TJ = 25°C
TJ = 125°C
320
240
5
160
80
0
0
200
400
600
800
0
1000
200
diF /dt (A/µs)
400
600
800
1000
diF /dt (A/µs)
Fig. 19 - Typical Stored Charge vs. dif/dt
Fig. 18 - Typical Recovery Current vs. dif/dt
QRR (A)
560
480
IF = 45A
V R = 85V
400
TJ = 25°C
TJ = 125°C
320
240
160
80
0
200
400
600
800
1000
diF /dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB4110QPbF
D.U.T
Driver Gate Drive
ƒ
-
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
D.U.T
RG
VGS
20V
DRIVER
L
VDS
tp
+
V
- DD
IAS
tp
A
0.01Ω
I AS
Fig 21a. Unclamped Inductive Test Circuit
LD
Fig 21b. Unclamped Inductive Waveforms
VDS
VDS
90%
+
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
td(on)
Fig 22a. Switching Time Test Circuit
tr
td(off)
tf
Fig 22b. Switching Time Waveforms
Id
Vds
Vgs
L
DUT
0
VCC
Vgs(th)
1K
Qgs1 Qgs2
Fig 23a. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 23b. Gate Charge Waveform
7
IRFB4110QPbF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
Note: "P" in assembly line
position indicates "Lead-Free"
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
8
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/2008
www.irf.com