IRF 208CNQ060

Bulletin PD-20743 rev. A 07/01
208CNQ060
SCHOTTKY RECTIFIER
200 Amp
TO-244AB
Major Ratings and Characteristics
Characteristics
Description/Features
208CNQ... Units
IF(AV) Rectangular
200
A
VRRM range
60
V
16,000
A
0.59
V
- 55 to 150
°C
waveform
IFSM @ tp = 5 µs sine
VF
@ 100Apk, TJ=125°C
TJ
range
(per leg)
80.01 [3.150]
40.26 [1.585]
39.75 [1.565]
COMMON
CATHODE
2X Ø
7.49 [.295]
6.99 [.275]
150 °C TJ operation
Center tap module
High purity, high temperature epoxy encapsulation for
enhanced mechanical strength and moisture resistance
Low forward voltage drop
High frequency operation
Guard ring for enhanced ruggedness and long term
reliability
Ø
10.41 [.410]
9.65 [.380]
20.32 [.800]
17.78 [.700]
34.925 [1.375]
REF.
63.50 [2.500]
60.96 [2.400]
23.55 [.927]
20.42 [.804]
Ø
LUG
TERMINAL
ANODE 1
LUG
TERMINAL
ANODE 2
4.95 [.195]
4.70 [.185]
1/4-20 SLOTTED HEX
BASE
COMMON CATHODE
15.75 [.620]
14.99 [.590]
92.71 [3.650]
90.17 [3.550]
NOTES:
1. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
2. CONTROLLING DIMENSION: MILLIMETER
www.irf.com
The 208CNQ center tap Schottky rectifier module series has
been optimized for low reverse leakage at high temperature.
The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications
are in high current switching power supplies, plating power
supplies, UPS systems, converters, free-wheeling diodes,
welding, and reverse battery protection.
3.35 [.132]
3.02 [.119]
Modified JEDEC
Outline TO-244AB
Dimensions in millimeters and (inches)
1
208CNQ060
Bulletin PD-20743 rev. A 07/01
Voltage Ratings
Part number
208CNQ060
VR
Max. DC Reverse Voltage (V)
VRWM
Max. Working Peak Reverse Voltage (V)
60
Absolute Maximum Ratings
Parameters
IF(AV) Max. Average Forward
Current
IFSM
EAS
IAR
* See Fig. 5
208CNQ Units Conditions
(Per Leg)
100
(Per Device)
200
Max. Peak One Cycle Non-Repetitive
16,000
Surge Current (Per Leg) * See Fig. 7
2,100
Non-Repetitive Avalanche Energy
(Per Leg)
Repetitive Avalanche Current
(Per Leg)
A
50% duty cycle @ TC = 115 °C, rectangular wave form
A
Following any rated
load condition and with
10ms Sine or 6ms Rect. pulse rated VRRM applied
15
mJ
1
A
5µs Sine or 3µs Rect. pulse
TJ = 25 °C, IAS = 1 Amps, L = 30 mH
Current decaying linearly to zero in 1 µsec
Frequency limited by TJ max. VA = 1.5 x VR typical
Electrical Specifications
Parameters
VFM
IRM
208CNQ Units Conditions
Max. Forward Voltage Drop
(Per Leg) * See Fig. 1
(1)
0.68
0.83
0.59
V
V
V
@ 100A
@ 200A
@ 100A
0.75
V
@ 200A
Max. Reverse Leakage Current
1.1
mA
TJ = 25 °C
(Per Leg) * See Fig. 2
300
mA
TJ = 125 °C
0.32
V
TJ = TJ max.
2.1
mΩ
(1)
VF(TO) Threshold Voltage
TJ = 25 °C
TJ = 125 °C
VR = rated VR
rt
Forward Slope Resistance
CT
Max. Junction Capacitance (Per Leg)
6000
pF
VR = 5VDC, (test signal range 100Khz to 1Mhz) 25°C
LS
Typical Series Inductance (Per Leg)
7.0
nH
From top of terminal hole to mounting plane
10000
V/ µs
dv/dt Max. Voltage Rate of Change
(Rated VR)
(1) Pulse Width < 300µs, Duty Cycle <2%
Thermal-Mechanical Specifications
Parameters
208CNQ Units Conditions
TJ
Max. Junction Temperature Range
-55 to 150
Tstg
Max. Storage Temperature Range
-55 to 150
RthJC Max. Thermal Resistance Junction
to Case (Per Leg)
RthJC Max. Thermal Resistance Junction
to Case (Per Package)
RthCS Typical Thermal Resistance, Case
to Heatsink
wt
Approximate Weight
T
Mounting Torque
Min.
Max.
Mounting Torque Center Hole Typ.
Terminal Torque
Min.
Max.
Case Style
2
°C
°C
0.40
°C/W DC operation
* See Fig. 4
0.20
°C/W DC operation
0.10
°C/W Mounting surface , smooth and greased
79 (2.80) g (oz.)
24 (20)
Kg-cm
(Ibf-in)
35 (30)
13.5 (12)
35 (30)
46 (40)
TO - 244AB
Modified JEDEC
www.irf.com
208CNQ060
Bulletin PD-20743 rev. A 07/01
1000
Reverse Current - I R (mA)
100
TJ = 150˚C
125˚C
100
100˚C
75˚C
10
50˚C
1
25˚C
0.1
0.01
0
10
20
30
40
50
60
Reverse Voltage - V R (V)
Fig. 2 - Typical Values Of Reverse Current
Vs. Reverse Voltage
T J = 150˚C
T = 125˚C
J
100000
T = 25˚C
J
Junction Capacitance - C T (pF)
Instantaneous Forward Current - I F (A)
1000
10
T = 25˚C
J
10000
1000
1
0
0.2
0.4
0.6
0.8
1
Forward Voltage Drop - V FM (V)
0
1.2
10
20
30
40
50
60
Reverse Voltage - V R (V)
Fig. 3 - Typical Junction Capacitance
Vs. Reverse Voltage
Fig. 1 - Max. Forward Voltage Drop Characteristics
Thermal Impedance Z thJC (°C/W)
1
D = 0.75
0.1
D = 0.50
D = 0.33
D = 0.25
D = 0.20
0.01
PDM
t1
Single Pulse
(Thermal Resistance)
t2
Notes:
1. Duty factor D = t1/ t2
2. Peak Tj = Pdm x ZthJC + Tc
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
t1, Rectangular Pulse Duration (Seconds)
Fig. 4 - Max. Thermal Impedance Z thJC Characteristics (Per Leg)
www.irf.com
3
208CNQ060
Bulletin PD-20743 rev. A 07/01
100
Average Power Loss (Watts)
Allowable Case Temperature (°C)
150
140
130
DC
120
Square wave (D = 0.50)
110 80% Rated Vr applied
100
D = 0.75
D = 0.50
D = 0.33
D = 0.25
D = 0.20
80
60
RMS Limit
DC
40
20
see note (2)
0
90
0
0
20 40 60 80 100 120 140 160
Average Forward Current - I F(AV) (A)
Fig. 5 - Max. Allowable Case Temperature
Vs. Average Forward Current
Non-Repetitive Surge Current - I FSM (A)
30
60
90
120
150
Average Forward Current - I F(AV) (A)
Fig. 6 - Forward Power Loss Characteristics
100000
At Any Rated Load Condition
And With Rated Vrrm Applied
Following Surge
10000
1000
10
100
1000
10000
Square Wave Pulse Duration - t p (microsec)
Fig. 7 - Max. Non-Repetitive Surge Current
L
IRFP460
D UT
Rg = 25 ohm
C UR RE N T
M O N ITO R
H IG H -SPE ED
SW ITC H
FREE-W HE EL
D IO D E
+
V d = 25 V olt
40H FL40S02
Fig. 8 - Unclamped Inductive Test Circuit
(2) Formula used: TC = TJ - (Pd + PdREV) x RthJC ;
Pd = Forward Power Loss = IF(AV) x VFM @ (IF(AV) / D) (see Fig. 6);
PdREV = Inverse Power Loss = VR1 x IR (1 - D); IR @ VR1 = 80% rated VR
4
www.irf.com
208CNQ060
Bulletin PD-20743 rev. A 07/01
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial Level.
Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 07/01
www.irf.com
5