Datasheet

Freescale Semiconductor, Inc.
Data Sheet: Technical Data
Document Number: KL26P64M48SF5
Rev 5 08/2014
Kinetis KL26 Sub-Family
MKL26ZxxxVFM4
MKL26ZxxxVFT4
MKL26ZxxxVLH4
48 MHz Cortex-M0+ Based Microcontroller
Designed with efficiency in mind. Compatible with all other
Kinetis L families as well as Kinetis K2x family. General purpose
MCU with USB 2.0, featuring market leading ultra low-power to
provide developers an appropriate entry-level 32-bit solution.
32-pin QFN (FM)
48-pin QFN (FT)
5 x 5 x 1 Pitch 0.5 mm 7 x 7 x 1 Pitch 0.5 mm
This product offers:
• Run power consumption down to 40 μA/MHz in very low
power run mode
• Static power consumption down to 2 μA with full state
retention and 4.5 μs wakeup
• Ultra-efficient Cortex-M0+ processor running up to 48 MHz
64-pin LQFP (LH)
10 x 10 x 1.4 Pitch 0.5 mm
with industry leading throughput
• Memory option is up to 128 KB flash and 16 KB RAM
• Energy-saving architecture is optimized for low power with
90nm TFS technology, clock and power gating techniques, and zero wait state flash memory controller
Performance
• 48 MHz ARM® Cortex®-M0+ core
Memories and memory interfaces
• Up to 128 KB program flash memory
• Up to 16 KB SRAM
Human-machine interface
• Low-power hardware touch sensor interface (TSI)
• Up to 50 general-purpose input/output (GPIO)
Communication interfaces
• USB full-/low-speed On-the-Go controller with onchip transceiver and 5 V to 3.3 V regulator
System peripherals
• Two 16-bit SPI modules
• Nine low-power modes to provide power optimization
• I2S (SAI) module
based on application requirements
• One low power UART module
• COP Software watchdog
• Two UART modules
• 4-channel DMA controller, supporting up to 63 request
• Two I2C module
sources
Analog Modules
• Low-leakage wakeup unit
• SWD debug interface and Micro Trace Buffer
• 16-bit SAR ADC
• Bit Manipulation Engine
• 12-bit DAC
• Analog comparator (CMP) containing a 6-bit DAC
Clocks
and programmable reference input
• 32 kHz to 40 kHz or 3 MHz to 32 MHz crystal oscillator
• Multi-purpose clock source
Timers
• Six channel Timer/PWM (TPM)
Operating Characteristics
• Two 2-channel Timer/PWM modules
• Voltage range: 1.71 to 3.6 V
• Periodic interrupt timers
• Flash write voltage range: 1.71 to 3.6 V
• 16-bit low-power timer (LPTMR)
• Temperature range (ambient): -40 to 105°C
• Real time clock
Freescale reserves the right to change the detail specifications as may be required to
permit improvements in the design of its products. © 2013–2014 Freescale
Semiconductor, Inc. All rights reserved.
Security and integrity modules
• 80-bit unique identification number per chip
Ordering Information
Part Number
Memory
Maximum number of I\O's
Flash (KB)
SRAM (KB)
MKL26Z32VFM4
32
4
23
MKL26Z64VFM4
64
8
23
MKL26Z128VFM4
128
16
23
MKL26Z32VFT4
32
4
36
MKL26Z64VFT4
64
8
36
MKL26Z128VFT4
128
16
36
MKL26Z32VLH4
32
4
50
MKL26Z64VLH4
64
8
50
MKL26Z128VLH4
128
16
50
Related Resources
Type
Description
Resource
Selector Guide
The Freescale Solution Advisor is a web-based tool that features
interactive application wizards and a dynamic product selector.
Solution Advisor
Reference
Manual
The Reference Manual contains a comprehensive description of the
structure and function (operation) of a device.
KL26P64M48SF5RM1
Data Sheet
The Data Sheet includes electrical characteristics and signal
connections.
KL26P64M48SF51
Chip Errata
The chip mask set Errata provides additional or corrective
information for a particular device mask set.
KINETIS_L_xN15J 2
Package
drawing
Package dimensions are provided in package drawings.
QFN 32-pin: 98ASA00473D1
QFN 48-pin: 98ASA00466D1
LQFP 64-pin: 98ASS23234W1
1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.
2. To find the associated resource, go to http://www.freescale.com and perform a search using this term with the “x”
replaced by the revision of the device you are using.
2
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Table of Contents
1 Ratings.................................................................................. 4
1.1 Thermal handling ratings............................................... 4
1.2 Moisture handling ratings...............................................4
1.3 ESD handling ratings..................................................... 4
1.4 Voltage and current operating ratings............................4
2 General................................................................................. 5
2.1 AC electrical characteristics...........................................5
2.2 Nonswitching electrical specifications............................6
2.2.1 Voltage and current operating requirements......6
2.2.2 LVD and POR operating requirements.............. 6
2.2.3 Voltage and current operating behaviors........... 7
2.2.4 Power mode transition operating behaviors.......8
2.2.5 Power consumption operating behaviors...........9
2.2.6 EMC radiated emissions operating behaviors... 15
2.2.7 Designing with radiated emissions in mind........ 16
2.2.8 Capacitance attributes....................................... 16
2.3 Switching specifications................................................. 16
2.3.1 Device clock specifications................................ 16
2.3.2 General switching specifications........................17
2.4 Thermal specifications................................................... 17
2.4.1 Thermal operating requirements........................17
2.4.2 Thermal attributes.............................................. 18
3 Peripheral operating requirements and behaviors................ 18
3.1 Core modules................................................................ 18
3.1.1 SWD electricals .................................................18
3.2 System modules............................................................ 20
3.3 Clock modules............................................................... 20
3.3.1 MCG specifications............................................ 20
3.3.2 Oscillator electrical specifications...................... 22
3.4 Memories and memory interfaces................................. 24
3.4.1 Flash electrical specifications............................ 24
3.5 Security and integrity modules.......................................26
3.6 Analog............................................................................26
3.6.1
3.6.2
ADC electrical specifications..............................26
CMP and 6-bit DAC electrical specifications......31
Kinetis KL26 Sub-Family, Rev5 08/2014.
4
5
6
7
8
3.6.3 12-bit DAC electrical characteristics.................. 33
3.7 Timers............................................................................ 36
3.8 Communication interfaces............................................. 36
3.8.1 USB electrical specifications..............................36
3.8.2 USB VREG electrical specifications...................37
3.8.3 SPI switching specifications...............................37
3.8.4 Inter-Integrated Circuit Interface (I2C) timing.....42
3.8.5 UART................................................................. 43
3.8.6 I2S/SAI switching specifications........................ 43
3.9 Human-machine interfaces (HMI).................................. 47
3.9.1 TSI electrical specifications................................47
Dimensions........................................................................... 48
4.1 Obtaining package dimensions......................................48
Pinout.................................................................................... 48
5.1 KL26 Signal Multiplexing and Pin Assignments.............48
5.2 KL26 pinouts.................................................................. 51
Ordering parts....................................................................... 54
6.1 Determining valid orderable parts.................................. 54
Part identification...................................................................54
7.1 Description..................................................................... 55
7.2 Format........................................................................... 55
7.3 Fields............................................................................. 55
7.4 Example......................................................................... 55
Terminology and guidelines.................................................. 56
8.1 Definition: Operating requirement.................................. 56
8.2 Definition: Operating behavior....................................... 56
8.3 Definition: Attribute........................................................ 56
8.4 Definition: Rating........................................................... 57
8.5 Result of exceeding a rating.......................................... 57
8.6 Relationship between ratings and operating
requirements.................................................................. 57
8.7 Guidelines for ratings and operating requirements........ 58
8.8 Definition: Typical value................................................. 58
8.9 Typical value conditions.................................................59
9 Revision history.....................................................................60
3
Freescale Semiconductor, Inc.
Ratings
1 Ratings
1.1 Thermal handling ratings
Table 1. Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.2 Moisture handling ratings
Table 2. Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
Max.
Unit
Notes
—
3
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.3 ESD handling ratings
Table 3. ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human body model
–2000
+2000
V
1
VCDM
Electrostatic discharge voltage, charged-device
model
–500
+500
V
2
Latch-up current at ambient temperature of 105 °C
–100
+100
mA
3
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human
Body Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.
4
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
General
1.4 Voltage and current operating ratings
Table 4. Voltage and current operating ratings
Symbol
Description
Min.
Max.
Unit
VDD
Digital supply voltage
–0.3
3.8
V
IDD
Digital supply current
—
120
mA
VIO
IO pin input voltage
–0.3
VDD + 0.3
V
Instantaneous maximum current single pin limit (applies to
all port pins)
–25
25
mA
ID
VDDA
Analog supply voltage
VDD – 0.3
VDD + 0.3
V
VUSB_DP
USB_DP input voltage
–0.3
3.63
V
VUSB_DM
USB_DM input voltage
–0.3
3.63
V
USB regulator input
–0.3
6.0
V
VREGIN
2 General
2.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
Low
VIH
Input Signal
High
80%
50%
20%
Midpoint1
VIL
Fall Time
Rise Time
The midpoint is VIL + (VIH - VIL) / 2
Figure 1. Input signal measurement reference
All digital I/O switching characteristics, unless otherwise specified, assume the output
pins have the following characteristics.
• CL=30 pF loads
• Slew rate disabled
• Normal drive strength
Kinetis KL26 Sub-Family, Rev5 08/2014.
5
Freescale Semiconductor, Inc.
General
2.2 Nonswitching electrical specifications
2.2.1 Voltage and current operating requirements
Table 5. Voltage and current operating requirements
Symbol
Description
Min.
Max.
Unit
VDD
Supply voltage
1.71
3.6
V
VDDA
Analog supply voltage
1.71
3.6
V
VDD – VDDA VDD-to-VDDA differential voltage
–0.1
0.1
V
VSS – VSSA VSS-to-VSSA differential voltage
–0.1
0.1
V
• 2.7 V ≤ VDD ≤ 3.6 V
0.7 × VDD
—
V
• 1.7 V ≤ VDD ≤ 2.7 V
0.75 × VDD
—
V
• 2.7 V ≤ VDD ≤ 3.6 V
—
0.35 × VDD
V
• 1.7 V ≤ VDD ≤ 2.7 V
—
0.3 × VDD
V
0.06 × VDD
—
V
-3
—
mA
-25
—
mA
VIH
VIL
Input high voltage
Input low voltage
VHYS
Input hysteresis
IICIO
IO pin negative DC injection current — single pin
1
• VIN < VSS-0.3V
IICcont
Notes
Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents of 16
contiguous pins
• Negative current injection
VODPU
Open drain pullup voltage level
VDD
VDD
V
VRAM
VDD voltage required to retain RAM
1.2
—
V
2
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting
resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|.
2. Open drain outputs must be pulled to VDD.
2.2.2 LVD and POR operating requirements
Table 6. VDD supply LVD and POR operating requirements
Symbol
VPOR
Description
Min.
Typ.
Max.
Unit
Notes
Falling VDD POR detect voltage
0.8
1.1
1.5
V
—
Table continues on the next page...
6
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
General
Table 6. VDD supply LVD and POR operating requirements (continued)
Symbol
VLVDH
Description
Min.
Typ.
Max.
Unit
Notes
Falling low-voltage detect threshold — high
range (LVDV = 01)
2.48
2.56
2.64
V
—
Low-voltage warning thresholds — high range
VLVW1H
• Level 1 falling (LVWV = 00)
VLVW2H
• Level 2 falling (LVWV = 01)
VLVW3H
• Level 3 falling (LVWV = 10)
VLVW4H
• Level 4 falling (LVWV = 11)
VHYSH
Low-voltage inhibit reset/recover hysteresis —
high range
VLVDL
Falling low-voltage detect threshold — low
range (LVDV=00)
1
2.62
2.70
2.78
V
2.72
2.80
2.88
V
2.82
2.90
2.98
V
2.92
3.00
3.08
V
—
±60
—
mV
—
1.54
1.60
1.66
V
—
Low-voltage warning thresholds — low range
VLVW1L
• Level 1 falling (LVWV = 00)
VLVW2L
• Level 2 falling (LVWV = 01)
VLVW3L
• Level 3 falling (LVWV = 10)
VLVW4L
• Level 4 falling (LVWV = 11)
VHYSL
Low-voltage inhibit reset/recover hysteresis —
low range
1
1.74
1.80
1.86
V
1.84
1.90
1.96
V
1.94
2.00
2.06
V
2.04
2.10
2.16
V
—
±40
—
mV
—
VBG
Bandgap voltage reference
0.97
1.00
1.03
V
—
tLPO
Internal low power oscillator period — factory
trimmed
900
1000
1100
μs
—
1. Rising thresholds are falling threshold + hysteresis voltage
2.2.3 Voltage and current operating behaviors
Table 7. Voltage and current operating behaviors
Symbol
VOH
Description
Min.
Output high voltage — Normal drive pad (except
RESET_b)
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -5 mA
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -2.5 mA
VOH
Output high voltage — High drive pad (except
RESET_b)
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -20 mA
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -10 mA
IOHT
Output high current total for all ports
Max.
Unit
Notes
1, 2
VDD – 0.5
—
V
VDD – 0.5
—
V
1, 2
VDD – 0.5
—
V
VDD – 0.5
—
V
—
100
mA
Table continues on the next page...
Kinetis KL26 Sub-Family, Rev5 08/2014.
7
Freescale Semiconductor, Inc.
General
Table 7. Voltage and current operating behaviors (continued)
Symbol
VOL
VOL
Description
Min.
Max.
Unit
Notes
Output low voltage — Normal drive pad
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA
—
0.5
V
Output low voltage — High drive pad
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA
—
0.5
V
Output low current total for all ports
—
100
mA
IIN
Input leakage current (per pin) for full temperature
range
—
1
μA
3
IIN
Input leakage current (per pin) at 25 °C
—
0.025
μA
3
IIN
Input leakage current (total all pins) for full
temperature range
—
65
μA
3
IOZ
Hi-Z (off-state) leakage current (per pin)
—
1
μA
RPU
Internal pullup resistors
20
50
kΩ
IOLT
4
1. PTB0, PTB1, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated
PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.
2. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When
configured as a GPIO output, it acts as a pseudo open drain output.
3. Measured at VDD = 3.6 V
4. Measured at VDD supply voltage = VDD min and Vinput = VSS
2.2.4 Power mode transition operating behaviors
All specifications except tPOR and VLLSx→RUN recovery times in the following table
assume this clock configuration:
• CPU and system clocks = 48 MHz
• Bus and flash clock = 24 MHz
• FEI clock mode
POR and VLLSx→RUN recovery use FEI clock mode at the default CPU and system
frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.
Table 8. Power mode transition operating behaviors
Symbol
tPOR
Description
After a POR event, amount of time from the
point VDD reaches 1.8 V to execution of the first
instruction across the operating temperature
range of the chip.
Min.
Typ.
Max.
Unit
Notes
—
—
300
μs
1
Table continues on the next page...
8
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
General
Table 8. Power mode transition operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
—
106
120
μs
—
105
117
μs
—
47
54
μs
—
4.5
5.0
μs
—
4.5
5.0
μs
—
4.5
5.0
μs
Notes
• VLLS0 → RUN
• VLLS1 → RUN
• VLLS3 → RUN
• LLS → RUN
• VLPS → RUN
• STOP → RUN
1. Normal boot (FTFA_FOPT[LPBOOT]=11).
2.2.5 Power consumption operating behaviors
The maximum values stated in the following table represent characterized results
equivalent to the mean plus three times the standard deviation (mean + 3 sigma).
Table 9. Power consumption operating behaviors
Symbol
Description
Temp.
Typ.
Max
Unit
Note
Analog supply current
—
—
See note
mA
1
IDD_RUNCO_ CM
Run mode current in compute
operation - 48 MHz core / 24 MHz
flash/ bus disabled, LPTMR running
using 4 MHz internal reference clock,
CoreMark® benchmark code
executing from flash, at 3.0 V
—
6.1
—
mA
2
IDD_RUNCO
Run mode current in compute
operation - 48 MHz core / 24 MHz
flash / bus clock disabled, code of
while(1) loop executing from flash, at
3.0 V
—
3.8
4.4
mA
3
IDD_RUN
Run mode current - 48 MHz core / 24
MHz bus and flash, all peripheral
clocks disabled, code executing from
flash, at 3.0 V
—
4.6
5.2
mA
3
IDDA
Table continues on the next page...
Kinetis KL26 Sub-Family, Rev5 08/2014.
9
Freescale Semiconductor, Inc.
General
Table 9. Power consumption operating behaviors (continued)
Symbol
Description
Temp.
Typ.
Max
Unit
Note
IDD_RUN
Run mode current - 48 MHz core / 24
MHz bus and flash, all peripheral
clocks enabled, code executing from
flash, at 3.0 V
at 25 °C
6.0
6.2
mA
3, 4
at 70 °C
6.2
6.4
mA
at 125 °C
6.2
6.5
mA
IDD_WAIT
Wait mode current - core disabled / 48 —
MHz system / 24 MHz bus / flash
disabled (flash doze enabled), all
peripheral clocks disabled, at 3.0 V
2.7
3.2
mA
3
IDD_WAIT
Wait mode current - core disabled / 24 —
MHz system / 24 MHz bus / flash
disabled (flash doze enabled), all
peripheral clocks disabled, at 3.0 V
2.1
2.6
mA
3
Stop mode current with partial stop 2
clocking option - core and system
disabled / 10.5 MHz bus, at 3.0 V
—
1.5
2.0
mA
3
Very-low-power run mode current in
—
compute operation - 4 MHz core / 0.8
MHz flash / bus clock disabled,
LPTMR running with 4 MHz internal
reference clock, CoreMark benchmark
code executing from flash, at 3.0 V
732
—
µA
5
IDD_VLPRCO
Very low power run mode current in
compute operation - 4 MHz core / 0.8
MHz flash / bus clock disabled, code
executing from flash, at 3.0 V
—
161
329
µA
6
IDD_VLPR
Very low power run mode current - 4
MHz core / 0.8 MHz bus and flash, all
peripheral clocks disabled, code
executing from flash, at 3.0 V
—
185
352
µA
6
IDD_VLPR
Very low power run mode current - 4
MHz core / 0.8 MHz bus and flash, all
peripheral clocks enabled, code
executing from flash, at 3.0 V
—
255
421
µA
4, 6
IDD_VLPW
Very low power wait mode current core disabled / 4 MHz system / 0.8
MHz bus / flash disabled (flash doze
enabled), all peripheral clocks
disabled, at 3.0 V
—
110
281
µA
6
IDD_STOP
Stop mode current at 3.0 V
at 25 °C
305
326
µA
—
at 50 °C
317
344
µA
at 70 °C
337
380
µA
at 85 °C
364
428
µA
at 105 °C
429
553
µA
at 25 °C
2.69
4.14
µA
at 50 °C
5.54
9.80
µA
at 70 °C
11.80
21.94
µA
IDD_PSTOP2
IDD_VLPRCO _CM
IDD_VLPS
Very-low-power stop mode current at
3.0 V
—
Table continues on the next page...
10
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
General
Table 9. Power consumption operating behaviors (continued)
Symbol
IDD_LLS
IDD_VLLS3
IDD_VLLS1
IDD_VLLS0
IDD_VLLS0
Description
Temp.
Typ.
Max
Unit
at 85 °C
21.13
39.13
µA
at 105 °C
45.85
85.45
µA
at 25 °C
1.98
2.65
µA
at 50 °C
3.13
4.35
µA
at 70 °C
5.65
8.34
µA
at 85 °C
9.58
14.29
µA
at 105 °C
20.52
31.74
µA
Very low-leakage stop mode 3 current at 25 °C
at 3.0 V
at 50 °C
1.46
2.06
µA
2.29
3.22
µA
at 70 °C
4.10
5.90
µA
at 85 °C
6.93
10.02
µA
at 105 °C
Low leakage stop mode current at 3.0
V
14.80
22.12
µA
Very low-leakage stop mode 1 current at 25 °C
at 3.0V
at 50 °C
0.71
1.20
µA
1.10
1.71
µA
at 70 °C
2.09
3.03
µA
at 85 °C
3.80
5.42
µA
at 105 °C
8.84
12.98
µA
Very low-leakage stop mode 0 current at 25 °C
(SMC_STOPCTRL[PORPO] = 0) at
at 50 °C
3.0 V
at 70 °C
0.40
0.88
µA
0.80
1.40
µA
1.79
2.72
µA
at 85 °C
3.50
5.10
µA
at 105 °C
8.54
12.63
µA
Very low-leakage stop mode 0 current at 25 °C
(SMC_STOPCTRL[PORPO] = 1) at
at 50 °C
3.0 V
at 70 °C
0.23
0.69
µA
0.61
1.19
µA
1.59
2.50
µA
at 85 °C
3.30
4.89
µA
at 105 °C
8.36
12.41
µA
Note
—
—
—
—
7
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.
See each module's specification for its supply current.
2. MCG configured for PEE mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized
for balanced.
3. MCG configured for FEI mode.
4. Incremental current consumption from peripheral activity is not included.
5. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized
for balanced.
6. MCG configured for BLPI mode.
7. No brownout.
Kinetis KL26 Sub-Family, Rev5 08/2014.
11
Freescale Semiconductor, Inc.
General
Table 10. Low power mode peripheral adders — typical value
Symbol
Description
Temperature (°C)
Unit
-40
25
50
70
85
105
IIREFSTEN4MHz
4 MHz internal reference clock (IRC) adder.
Measured by entering STOP or VLPS mode
with 4 MHz IRC enabled.
56
56
56
56
56
56
µA
IIREFSTEN32KHz
32 kHz internal reference clock (IRC) adder.
Measured by entering STOP mode with the
32 kHz IRC enabled.
52
52
52
52
52
52
µA
IEREFSTEN4MHz
External 4 MHz crystal clock adder.
Measured by entering STOP or VLPS mode
with the crystal enabled.
206
228
237
245
251
258
µA
IEREFSTEN32KHz
External 32 kHz crystal clock
adder by means of the
OSC0_CR[EREFSTEN and
EREFSTEN] bits. Measured
by entering all modes with the
crystal enabled.
VLLS1
440
490
540
560
570
580
nA
VLLS3
440
490
540
560
570
580
LLS
490
490
540
560
570
680
VLPS
510
560
560
560
610
680
STOP
510
560
560
560
610
680
ICMP
CMP peripheral adder measured by placing
the device in VLLS1 mode with CMP enabled
using the 6-bit DAC and a single external
input for compare. Includes 6-bit DAC power
consumption.
22
22
22
22
22
22
µA
IRTC
RTC peripheral adder measured by placing
the device in VLLS1 mode with external 32
kHz crystal enabled by means of the
RTC_CR[OSCE] bit and the RTC ALARM set
for 1 minute. Includes ERCLK32K (32 kHz
external crystal) power consumption.
432
357
388
475
532
810
nA
IUART
UART peripheral adder
measured by placing the
device in STOP or VLPS
mode with selected clock
source waiting for RX data at
115200 baud rate. Includes
selected clock source power
consumption.
MCGIRCLK
(4 MHz
internal
reference
clock)
66
66
66
66
66
66
µA
OSCERCLK
(4 MHz
external
crystal)
214
237
246
254
260
268
MCGIRCLK
(4 MHz
internal
reference
clock)
86
86
86
86
86
86
OSCERCLK
(4 MHz
external
crystal)
235
256
265
274
280
287
ITPM
TPM peripheral adder
measured by placing the
device in STOP or VLPS
mode with selected clock
source configured for output
compare generating 100 Hz
clock signal. No load is
placed on the I/O generating
the clock signal. Includes
selected clock source and I/O
switching currents.
µA
Table continues on the next page...
12
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
General
Table 10. Low power mode peripheral adders — typical value (continued)
Symbol
Description
Temperature (°C)
Unit
-40
25
50
70
85
105
IBG
Bandgap adder when BGEN bit is set and
device is placed in VLPx, LLS, or VLLSx
mode.
45
45
45
45
45
45
µA
IADC
ADC peripheral adder combining the
measured values at VDD and VDDA by placing
the device in STOP or VLPS mode. ADC is
configured for low power mode using the
internal clock and continuous conversions.
366
366
366
366
366
366
µA
2.2.5.1
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
•
•
•
•
•
MCG in FBE for run mode, and BLPE for VLPR mode
USB regulator disabled
No GPIOs toggled
Code execution from flash with cache enabled
For the ALLOFF curve, all peripheral clocks are disabled except FTFA
Kinetis KL26 Sub-Family, Rev5 08/2014.
13
Freescale Semiconductor, Inc.
General
Run Mode Current VS Core Frequency
Temperature = 25, VDD = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = FBE
7.00E-03
6.00E-03
Current Consumption on VDD (A)
5.00E-03
4.00E-03
All Peripheral CLK Gates
All Off
All On
3.00E-03
2.00E-03
1.00E-03
000.00E+00
'1-1
'1-1
1
2
'1-1
'1-1
'1-1
'1-1
'1-1
'1-2
3
4
6
12
24
48
CLK Ratio
Flash-Core
Core Freq (MHz)
Figure 2. Run mode supply current vs. core frequency
14
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
General
VLPR Mode Current Vs Core Frequency
Temperature = 25, V DD = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = BLPE
400.00E-06
Current Consumption on VDD (A)
350.00E-06
300.00E-06
250.00E-06
All Peripheral CLK Gates
200.00E-06
All Off
All On
150.00E-06
100.00E-06
50.00E-06
000.00E+00
'1-1
'1-2
1
'1-2
'1-4
2
4
CLK Ratio
Flash-Core
Core Freq (MHz)
Figure 3. VLPR mode current vs. core frequency
2.2.6 EMC radiated emissions operating behaviors
Table 11. EMC radiated emissions operating behaviors
Symbol
Description
Frequency
band
(MHz)
Typ.
Unit
Notes
0.15–50
16
dBμV
1, 2
VRE1
Radiated emissions voltage, band 1
VRE2
Radiated emissions voltage, band 2
50–150
18
dBμV
VRE3
Radiated emissions voltage, band 3
150–500
11
dBμV
VRE4
Radiated emissions voltage, band 4
500–1000
13
dBμV
IEC level
0.15–1000
M
—
VRE_IEC
2, 3
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions,
150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM
Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic
Kinetis KL26 Sub-Family, Rev5 08/2014.
15
Freescale Semiconductor, Inc.
General
application code. The reported emission level is the value of the maximum measured emission, rounded up to the next
whole number, from among the measured orientations in each frequency range.
2. VDD = 3.3 V, TA = 25 °C, fOSC = 8 MHz (crystal), fSYS = 48 MHz, fBUS = 24 MHz
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and
Wideband TEM Cell Method
2.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to www.freescale.com.
2. Perform a keyword search for “EMC design.”
2.2.8 Capacitance attributes
Table 12. Capacitance attributes
Symbol
CIN
Description
Input capacitance
Min.
Max.
Unit
—
7
pF
Min.
Max.
Unit
2.3 Switching specifications
2.3.1 Device clock specifications
Table 13. Device clock specifications
Symbol
Description
Normal run mode
fSYS
System and core clock
—
48
MHz
fBUS
Bus clock
—
24
MHz
Flash clock
—
24
MHz
System and core clock when Full Speed USB in operation
20
—
MHz
LPTMR clock
—
24
MHz
fFLASH
fSYS_USB
fLPTMR
VLPR and VLPS modes1
fSYS
System and core clock
—
4
MHz
fBUS
Bus clock
—
1
MHz
Flash clock
—
1
MHz
—
24
MHz
fFLASH
fLPTMR
LPTMR
clock2
Table continues on the next page...
16
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
General
Table 13. Device clock specifications (continued)
Symbol
fERCLK
Description
Min.
Max.
Unit
—
16
MHz
—
16
MHz
Oscillator crystal or resonator frequency — high frequency
mode (high range) (MCG_C2[RANGE]=1x)
—
16
MHz
TPM asynchronous clock
—
8
MHz
UART0 asynchronous clock
—
8
MHz
External reference clock
fLPTMR_ERCLK LPTMR external reference clock
fosc_hi_2
fTPM
fUART0
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing
specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN
or from VLPR.
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.
2.3.2 General switching specifications
These general-purpose specifications apply to all signals configured for GPIO and
UART signals.
Table 14. General switching specifications
Description
Min.
Max.
Unit
Notes
GPIO pin interrupt pulse width (digital glitch filter disabled)
— Synchronous path
1.5
—
Bus clock
cycles
1
External RESET and NMI pin interrupt pulse width —
Asynchronous path
100
—
ns
2
GPIO pin interrupt pulse width — Asynchronous path
16
—
ns
2
Port rise and fall time
—
36
ns
3
1. The greater synchronous and asynchronous timing must be met.
2. This is the shortest pulse that is guaranteed to be recognized.
3. 75 pF load
2.4 Thermal specifications
2.4.1 Thermal operating requirements
Table 15. Thermal operating requirements
Symbol
Description
Min.
Max.
Unit
TJ
Die junction temperature
–40
125
°C
TA
Ambient temperature
–40
105
°C
Kinetis KL26 Sub-Family, Rev5 08/2014.
17
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
2.4.2 Thermal attributes
Table 16. Thermal attributes
Board type
Symbol
Single-layer (1S)
RθJA
Four-layer (2s2p)
Description
64 LQFP
48 QFN
32 QFN
Unit
Notes
Thermal resistance, junction to
ambient (natural convection)
71
83
98
°C/W
1
RθJA
Thermal resistance, junction to
ambient (natural convection)
53
30
34
°C/W
Single-layer (1S)
RθJMA
Thermal resistance, junction to
ambient (200 ft./min. air speed)
59
68
82
°C/W
Four-layer (2s2p)
RθJMA
Thermal resistance, junction to
ambient (200 ft./min. air speed)
46
24
28
°C/W
—
RθJB
Thermal resistance, junction to
board
35
12
13
°C/W
2
—
RθJC
Thermal resistance, junction to
case
21
2.3
2.3
°C/W
3
—
ΨJT
Thermal characterization
parameter, junction to package
top outside center (natural
convection)
6
5
8
°C/W
4
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method
Environmental Conditions—Forced Convection (Moving Air).
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental
Conditions—Junction-to-Board.
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material between
the top of the package and the cold plate.
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
3 Peripheral operating requirements and behaviors
3.1 Core modules
18
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Peripheral operating requirements and behaviors
3.1.1 SWD electricals
Table 17. SWD full voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
0
25
MHz
1/J1
—
ns
20
—
ns
SWD_CLK frequency of operation
• Serial wire debug
J2
SWD_CLK cycle period
J3
SWD_CLK clock pulse width
• Serial wire debug
J4
SWD_CLK rise and fall times
—
3
ns
J9
SWD_DIO input data setup time to SWD_CLK rise
10
—
ns
J10
SWD_DIO input data hold time after SWD_CLK rise
0
—
ns
J11
SWD_CLK high to SWD_DIO data valid
—
32
ns
J12
SWD_CLK high to SWD_DIO high-Z
5
—
ns
J2
J3
J3
SWD_CLK (input)
J4
J4
Figure 4. Serial wire clock input timing
Kinetis KL26 Sub-Family, Rev5 08/2014.
19
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
SWD_CLK
J9
SWD_DIO
J10
Input data valid
J11
SWD_DIO
Output data valid
J12
SWD_DIO
J11
SWD_DIO
Output data valid
Figure 5. Serial wire data timing
3.2 System modules
There are no specifications necessary for the device's system modules.
3.3 Clock modules
3.3.1 MCG specifications
Table 18. MCG specifications
Symbol
Description
Min.
Typ.
Max.
Unit
fints_ft
Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
—
32.768
—
kHz
fints_t
Internal reference frequency (slow clock) —
user trimmed
31.25
—
39.0625
kHz
—
± 0.3
± 0.6
%fdco
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using C3[SCTRIM] and C4[SCFTRIM]
Notes
1
Table continues on the next page...
20
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Peripheral operating requirements and behaviors
Table 18. MCG specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
Δfdco_t
Total deviation of trimmed average DCO output
frequency over voltage and temperature
—
+0.5/-0.7
±3
%fdco
1, 2
Δfdco_t
Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70 °C
—
± 0.4
± 1.5
%fdco
1, 2
Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25 °C
—
4
—
MHz
Δfintf_ft
Frequency deviation of internal reference clock
(fast clock) over temperature and voltage —
factory trimmed at nominal VDD and 25 °C
—
+1/-2
±3
%fintf_ft
fintf_t
Internal reference frequency (fast clock) — user
trimmed at nominal VDD and 25 °C
3
—
5
MHz
fintf_ft
2
floc_low
Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
—
—
kHz
floc_high
Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
—
—
kHz
31.25
—
39.0625
kHz
20
20.97
25
MHz
40
41.94
48
MHz
—
23.99
—
MHz
—
47.97
—
MHz
—
180
—
ps
7
—
—
1
ms
8
48.0
—
100
MHz
—
1060
—
µA
—
600
—
µA
2.0
—
4.0
MHz
FLL
ffll_ref
fdco
FLL reference frequency range
DCO output
frequency range
Low range (DRS = 00)
3, 4
640 × ffll_ref
Mid range (DRS = 01)
1280 × ffll_ref
fdco_t_DMX3 DCO output
frequency
2
Low range (DRS = 00)
5, 6
732 × ffll_ref
Mid range (DRS = 01)
1464 × ffll_ref
Jcyc_fll
FLL period jitter
• fVCO = 48 MHz
tfll_acquire
FLL target frequency acquisition time
PLL
fvco
VCO operating frequency
Ipll
PLL operating current
• PLL at 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 48)
Ipll
PLL operating current
• PLL at 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 24)
fpll_ref
PLL reference frequency range
Jcyc_pll
PLL period jitter (RMS)
9
9
10
• fvco = 48 MHz
—
120
—
ps
• fvco = 100 MHz
—
50
—
ps
Table continues on the next page...
Kinetis KL26 Sub-Family, Rev5 08/2014.
21
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 18. MCG specifications (continued)
Symbol
Description
Min.
Jacc_pll
PLL accumulated jitter over 1µs (RMS)
Typ.
Max.
Unit
10
• fvco = 48 MHz
—
1350
—
ps
• fvco = 100 MHz
—
600
—
ps
Dlock
Lock entry frequency tolerance
± 1.49
—
± 2.98
%
Dunl
Lock exit frequency tolerance
± 4.47
—
± 5.97
%
tpll_lock
Lock detector detection time
Notes
—
—
10-6
150 ×
+ 1075(1/
fpll_ref)
s
11
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. The deviation is relative to the factory trimmed frequency at nominal VDD and 25 °C, fints_ft.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation
(Δfdco_t) over voltage and temperature must be considered.
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
7. This specification is based on standard deviation (RMS) of period or frequency.
8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics
of each PCB and results will vary.
11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL
disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this
specification assumes it is already running.
3.3.2 Oscillator electrical specifications
3.3.2.1
Oscillator DC electrical specifications
Table 19. Oscillator DC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDOSC
Supply current — low-power mode (HGO=0)
Notes
1
• 32 kHz
—
500
—
nA
• 4 MHz
—
200
—
μA
• 8 MHz (RANGE=01)
—
300
—
μA
• 16 MHz
—
950
—
μA
—
1.2
—
mA
Table continues on the next page...
22
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Peripheral operating requirements and behaviors
Table 19. Oscillator DC electrical specifications (continued)
Symbol
Description
• 24 MHz
Min.
Typ.
Max.
Unit
—
1.5
—
mA
Notes
• 32 MHz
IDDOSC
Supply current — high gain mode (HGO=1)
1
• 32 kHz
—
25
—
μA
• 4 MHz
—
400
—
μA
• 8 MHz (RANGE=01)
—
500
—
μA
• 16 MHz
—
2.5
—
mA
• 24 MHz
—
3
—
mA
• 32 MHz
—
4
—
mA
Cx
EXTAL load capacitance
—
—
—
Cy
XTAL load capacitance
—
—
—
RF
Feedback resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
—
10
—
MΩ
Feedback resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
—
1
—
MΩ
Series resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
Series resistor — low-frequency, high-gain
mode (HGO=1)
—
200
—
kΩ
Series resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
—
0
—
kΩ
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
RS
2, 3
2, 3
2, 4
Series resistor — high-frequency, high-gain
mode (HGO=1)
5
Vpp
1. VDD=3.3 V, Temperature =25 °C
2. See crystal or resonator manufacturer's recommendation
Kinetis KL26 Sub-Family, Rev5 08/2014.
23
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For
all other cases external capacitors must be used.
4. When low power mode is selected, RF is integrated and must not be attached externally.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to
any other devices.
3.3.2.2
Symbol
Oscillator frequency specifications
Table 20. Oscillator frequency specifications
Description
Min.
Typ.
Max.
Unit
fosc_lo
Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00)
32
—
40
kHz
fosc_hi_1
Oscillator crystal or resonator frequency — highfrequency mode (low range)
(MCG_C2[RANGE]=01)
3
—
8
MHz
fosc_hi_2
Oscillator crystal or resonator frequency — high
frequency mode (high range)
(MCG_C2[RANGE]=1x)
8
—
32
MHz
fec_extal
Input clock frequency (external clock mode)
—
—
48
MHz
tdc_extal
Input clock duty cycle (external clock mode)
40
50
60
%
Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
—
750
—
ms
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
—
250
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
—
0.6
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
—
1
—
ms
tcst
Notes
1, 2
3, 4
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by
FRDIV, it remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S
register being set.
3.4 Memories and memory interfaces
3.4.1 Flash electrical specifications
This section describes the electrical characteristics of the flash memory module.
24
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Peripheral operating requirements and behaviors
3.4.1.1
Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps
are active and do not include command overhead.
Table 21. NVM program/erase timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
thvpgm4
Longword Program high-voltage time
—
7.5
18
μs
—
thversscr
Sector Erase high-voltage time
—
13
113
ms
1
thversall
Erase All high-voltage time
—
52
452
ms
1
1. Maximum time based on expectations at cycling end-of-life.
3.4.1.2
Flash timing specifications — commands
Table 22. Flash command timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
trd1sec1k
tpgmchk
Read 1s Section execution time (flash sector)
—
—
60
μs
1
Program Check execution time
—
—
45
μs
1
trdrsrc
Read Resource execution time
—
—
30
μs
1
tpgm4
Program Longword execution time
—
65
145
μs
—
tersscr
Erase Flash Sector execution time
—
14
114
ms
2
trd1all
Read 1s All Blocks execution time
—
—
1.8
ms
—
trdonce
Read Once execution time
—
—
25
μs
1
Program Once execution time
—
65
—
μs
—
tersall
Erase All Blocks execution time
—
88
650
ms
2
tvfykey
Verify Backdoor Access Key execution time
—
—
30
μs
1
tpgmonce
1. Assumes 25 MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3.4.1.3
Flash high voltage current behaviors
Table 23. Flash high voltage current behaviors
Symbol
Description
Min.
Typ.
Max.
Unit
IDD_PGM
Average current adder during high voltage
flash programming operation
—
2.5
6.0
mA
IDD_ERS
Average current adder during high voltage
flash erase operation
—
1.5
4.0
mA
Kinetis KL26 Sub-Family, Rev5 08/2014.
25
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3.4.1.4
Symbol
Reliability specifications
Table 24. NVM reliability specifications
Description
Min.
Typ.1
Max.
Unit
Notes
Program Flash
tnvmretp10k Data retention after up to 10 K cycles
5
50
—
years
—
tnvmretp1k
Data retention after up to 1 K cycles
20
100
—
years
—
nnvmcycp
Cycling endurance
10 K
50 K
—
cycles
2
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
Engineering Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at -40 °C ≤ Tj ≤ 125 °C.
3.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
3.6 Analog
3.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 25 and Table 26 are achievable on the
differential pins ADCx_DP0, ADCx_DM0.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
3.6.1.1
16-bit ADC operating conditions
Table 25. 16-bit ADC operating conditions
Symbol
Description
Conditions
Min.
Typ.1
Max.
Unit
Notes
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
—
ΔVDDA
Supply voltage
Delta to VDD (VDD – VDDA)
-100
0
+100
mV
2
ΔVSSA
Ground voltage
Delta to VSS (VSS – VSSA)
-100
0
+100
mV
2
VREFH
ADC reference
voltage high
1.13
VDDA
VDDA
V
3
VREFL
ADC reference
voltage low
VSSA
VSSA
VSSA
V
3
Table continues on the next page...
26
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Peripheral operating requirements and behaviors
Table 25. 16-bit ADC operating conditions (continued)
Symbol
Description
VADIN
Input voltage
CADIN
RADIN
RAS
Input
capacitance
Min.
Typ.1
Max.
Unit
Notes
• 16-bit differential mode
VREFL
—
31/32 *
VREFH
V
—
• All other modes
VREFL
—
• 16-bit mode
—
8
10
pF
—
• 8-bit / 10-bit / 12-bit
modes
—
4
5
—
2
5
kΩ
—
Conditions
Input series
resistance
VREFH
Analog source
resistance
(external)
13-bit / 12-bit modes
fADCK < 4 MHz
—
—
5
kΩ
fADCK
ADC conversion
clock frequency
≤ 13-bit mode
1.0
—
18.0
MHz
5
fADCK
ADC conversion
clock frequency
16-bit mode
2.0
—
12.0
MHz
5
Crate
ADC conversion
rate
≤ 13-bit modes
No ADC hardware averaging
4
6
20.000
—
818.330
Ksps
Continuous conversions
enabled, subsequent
conversion time
Crate
ADC conversion
rate
16-bit mode
No ADC hardware averaging
6
37.037
—
461.467
Ksps
Continuous conversions
enabled, subsequent
conversion time
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for
reference only, and are not tested in production.
2. DC potential difference.
3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied
to VSSA.
4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The
RAS/CAS time constant should be kept to < 1 ns.
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
Kinetis KL26 Sub-Family, Rev5 08/2014.
27
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
ZADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
Pad
leakage
due to
input
protection
ZAS
RAS
ADC SAR
ENGINE
RADIN
VADIN
CAS
VAS
RADIN
INPUT PIN
RADIN
INPUT PIN
RADIN
INPUT PIN
CADIN
Figure 6. ADC input impedance equivalency diagram
3.6.1.2
16-bit ADC electrical characteristics
Table 26. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol
Description
IDDA_ADC
Supply current
ADC
asynchronous
clock source
fADACK
Conditions1
• ADLPC = 1, ADHSC =
0
• ADLPC = 1, ADHSC =
1
• ADLPC = 0, ADHSC =
0
Min.
Typ.2
Max.
Unit
Notes
0.215
—
1.7
mA
3
1.2
2.4
3.9
MHz
2.4
4.0
6.1
MHz
tADACK =
1/fADACK
3.0
5.2
7.3
MHz
4.4
6.2
9.5
MHz
LSB4
5
LSB4
5
• ADLPC = 0, ADHSC =
1
Sample Time
TUE
DNL
See Reference Manual chapter for sample times
Total unadjusted
error
• 12-bit modes
—
±4
±6.8
• <12-bit modes
—
±1.4
±2.1
Differential nonlinearity
• 12-bit modes
—
±0.7
–1.1 to
+1.9
• <12-bit modes
—
±0.2
–0.3 to 0.5
Table continues on the next page...
28
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Peripheral operating requirements and behaviors
Table 26. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol
INL
Description
Integral nonlinearity
EFS
Full-scale error
EQ
Quantization
error
ENOB
Conditions1
Min.
Typ.2
Max.
Unit
Notes
–2.7 to
+1.9
LSB4
5
LSB4
VADIN =
VDDA5
• 12-bit modes
—
±1.0
• <12-bit modes
—
±0.5
• 12-bit modes
—
–4
–5.4
• <12-bit modes
—
–1.4
–1.8
• 16-bit modes
—
–1 to 0
—
• ≤13-bit modes
—
—
±0.5
12.8
14.5
—
bits
11.9
13.8
—
bits
12.2
13.9
—
bits
11.4
13.1
—
bits
Effective number 16-bit differential mode
of bits
• Avg = 32
–0.7 to
+0.5
LSB4
6
• Avg = 4
16-bit single-ended mode
• Avg = 32
• Avg = 4
SINAD
THD
Signal-to-noise
plus distortion
See ENOB
Total harmonic
distortion
16-bit differential mode
6.02 × ENOB + 1.76
dB
—
-94
—
dB
—
-85
—
dB
82
95
—
dB
78
90
—
dB
7
• Avg = 32
16-bit single-ended mode
• Avg = 32
SFDR
Spurious free
dynamic range
16-bit differential mode
7
• Avg = 32
16-bit single-ended mode
• Avg = 32
EIL
Input leakage
error
IIn × RAS
mV
IIn =
leakage
current
(refer to
the MCU's
voltage
and
current
operating
ratings)
VTEMP25
Temp sensor
slope
Across the full temperature
range of the device
1.55
1.62
1.69
mV/°C
8
Temp sensor
voltage
25 °C
706
716
726
mV
8
Kinetis KL26 Sub-Family, Rev5 08/2014.
29
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1
MHz ADC conversion clock speed.
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
8. ADC conversion clock < 3 MHz
Typical ADC 16-bit Differential ENOB vs ADC Clock
100Hz, 90% FS Sine Input
15.00
14.70
14.40
14.10
ENOB
13.80
13.50
13.20
12.90
12.60
Hardware Averaging Disabled
Averaging of 4 samples
Averaging of 8 samples
Averaging of 32 samples
12.30
12.00
1
2
3
4
5
6
7
8
9
10
11
12
ADC Clock Frequency (MHz)
Figure 7. Typical ENOB vs. ADC_CLK for 16-bit differential mode
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock
100Hz, 90% FS Sine Input
14.00
13.75
13.50
13.25
13.00
ENOB
12.75
12.50
12.25
12.00
11.75
11.50
11.25
11.00
Averaging of 4 samples
Averaging of 32 samples
1
2
3
4
5
6
7
8
9
10
11
12
ADC Clock Frequency (MHz)
Figure 8. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
30
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Peripheral operating requirements and behaviors
3.6.2 CMP and 6-bit DAC electrical specifications
Table 27. Comparator and 6-bit DAC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDHS
Supply current, High-speed mode (EN=1,
PMODE=1)
—
—
200
μA
IDDLS
Supply current, low-speed mode (EN=1, PMODE=0)
—
—
20
μA
VAIN
Analog input voltage
VSS – 0.3
—
VDD
V
VAIO
Analog input offset voltage
—
—
20
mV
• CR0[HYSTCTR] = 00
—
5
—
mV
• CR0[HYSTCTR] = 01
—
10
—
mV
• CR0[HYSTCTR] = 10
—
20
—
mV
• CR0[HYSTCTR] = 11
—
30
—
mV
VH
Analog comparator
hysteresis1
VCMPOh
Output high
VDD – 0.5
—
—
V
VCMPOl
Output low
—
—
0.5
V
tDHS
Propagation delay, high-speed mode (EN=1,
PMODE=1)
20
50
200
ns
tDLS
Propagation delay, low-speed mode (EN=1,
PMODE=0)
80
250
600
ns
Analog comparator initialization delay2
—
—
40
μs
6-bit DAC current adder (enabled)
—
7
—
μA
IDAC6b
INL
6-bit DAC integral non-linearity
–0.5
—
0.5
LSB3
DNL
6-bit DAC differential non-linearity
–0.3
—
0.3
LSB
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
Kinetis KL26 Sub-Family, Rev5 08/2014.
31
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
0.08
0.07
CMP Hystereris (V)
0.06
HYSTCTR
Setting
0.05
00
0.04
01
10
11
0.03
0.02
0.01
0
0.1
0.4
0.7
1
1.3
1.6
1.9
2.2
2.5
2.8
3.1
Vin level (V)
Figure 9. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)
32
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Peripheral operating requirements and behaviors
0.18
0.16
0.14
CMP Hysteresis (V)
0.12
HYSTCTR
Setting
0.1
00
01
10
11
0.08
0.06
0.04
0.02
0
0.1
0.4
0.7
1
1.3
1.6
1.9
Vin level (V)
2.2
2.5
2.8
3.1
Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)
3.6.3 12-bit DAC electrical characteristics
3.6.3.1
Symbol
12-bit DAC operating requirements
Table 28. 12-bit DAC operating requirements
Desciption
Min.
Max.
Unit
VDDA
Supply voltage
1.71
3.6
V
VDACR
Reference voltage
1.13
3.6
V
1
2
CL
Output load capacitance
—
100
pF
IL
Output load current
—
1
mA
Notes
1. The DAC reference can be selected to be VDDA or VREFH.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC
Kinetis KL26 Sub-Family, Rev5 08/2014.
33
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3.6.3.2
Symbol
12-bit DAC operating behaviors
Table 29. 12-bit DAC operating behaviors
Description
IDDA_DACL Supply current — low-power mode
Min.
Typ.
Max.
Unit
—
—
250
μA
—
—
900
μA
Notes
P
IDDA_DACH Supply current — high-speed mode
P
tDACLP
Full-scale settling time (0x080 to 0xF7F) —
low-power mode
—
100
200
μs
1
tDACHP
Full-scale settling time (0x080 to 0xF7F) —
high-power mode
—
15
30
μs
1
tCCDACLP Code-to-code settling time (0xBF8 to
0xC08) — low-power mode and high-speed
mode
—
0.7
1
μs
1
Vdacoutl
DAC output voltage range low — highspeed mode, no load, DAC set to 0x000
—
—
100
mV
Vdacouth
DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF
VDACR
−100
—
VDACR
mV
INL
Integral non-linearity error — high speed
mode
—
—
±8
LSB
2
DNL
Differential non-linearity error — VDACR > 2
V
—
—
±1
LSB
3
DNL
Differential non-linearity error — VDACR =
VREF_OUT
—
—
±1
LSB
4
—
±0.4
±0.8
%FSR
5
Gain error
—
±0.1
±0.6
%FSR
5
Power supply rejection ratio, VDDA ≥ 2.4 V
60
—
90
dB
TCO
Temperature coefficient offset voltage
—
3.7
—
μV/C
TGE
Temperature coefficient gain error
—
0.000421
—
%FSR/C
Rop
Output resistance (load = 3 kΩ)
—
—
250
Ω
SR
Slew rate -80h→ F7Fh→ 80h
VOFFSET Offset error
EG
PSRR
BW
6
V/μs
• High power (SPHP)
1.2
1.7
—
• Low power (SPLP)
0.05
0.12
—
3dB bandwidth
kHz
• High power (SPHP)
550
—
—
• Low power (SPLP)
40
—
—
1.
2.
3.
4.
5.
6.
Settling within ±1 LSB
The INL is measured for 0 + 100 mV to VDACR −100 mV
The DNL is measured for 0 + 100 mV to VDACR −100 mV
The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V
Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV
VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set
to 0x800, temperature range is across the full range of the device
34
Kinetis KL26 Sub-Family, Rev5 08/2014.
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
8
6
4
DAC12 INL (LSB)
2
0
-2
-4
-6
-8
0
500
1000
1500
2000
2500
3000
3500
4000
Digital Code
Figure 11. Typical INL error vs. digital code
Kinetis KL26 Sub-Family, Rev5 08/2014.
35
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
1.499
DAC12 Mid Level Code Voltage
1.4985
1.498
1.4975
1.497
1.4965
1.496
55
25
-40
85
105
125
Temperature °C
Figure 12. Offset at half scale vs. temperature
3.7 Timers
See General switching specifications.
3.8 Communication interfaces
3.8.1 USB electrical specifications
The USB electricals for the USB On-the-Go module conform to the standards
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date
standards, visit usb.org.
36
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Peripheral operating requirements and behaviors
NOTE
The MCGPLLCLK meets the USB jitter specifications for
certification with the use of an external clock/crystal for
both Device and Host modes.
The MCGFLLCLK does not meet the USB jitter
specifications for certification.
3.8.2 USB VREG electrical specifications
Table 30. USB VREG electrical specifications
Symbol
Description
Min.
Typ.1
Max.
Unit
VREGIN
Input supply voltage
2.7
—
5.5
V
IDDon
Quiescent current — Run mode, load current
equal zero, input supply (VREGIN) > 3.6 V
—
125
186
μA
IDDstby
Quiescent current — Standby mode, load
current equal zero
—
1.1
10
μA
IDDoff
Quiescent current — Shutdown mode
—
650
—
nA
—
—
4
μA
• VREGIN = 5.0 V and temperature=25 °C
• Across operating voltage and
temperature
ILOADrun
Maximum load current — Run mode
—
—
120
mA
ILOADstby
Maximum load current — Standby mode
—
—
1
mA
3
3.3
3.6
V
2.1
2.8
3.6
V
2.1
—
3.6
V
1.76
2.2
8.16
μF
Notes
VReg33out Regulator output voltage — Input supply
(VREGIN) > 3.6 V
• Run mode
• Standby mode
VReg33out Regulator output voltage — Input supply
(VREGIN) < 3.6 V, pass-through mode
COUT
External output capacitor
ESR
External output capacitor equivalent series
resistance
1
—
100
mΩ
ILIM
Short circuit current
—
290
—
mA
2
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.
Kinetis KL26 Sub-Family, Rev5 08/2014.
37
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3.8.3 SPI switching specifications
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and
slave operations. Many of the transfer attributes are programmable. The following
tables provide timing characteristics for classic SPI timing modes. See the SPI chapter
of the chip's Reference Manual for information about the modified transfer formats used
for communicating with slower peripheral devices.
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as
well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.
Table 31. SPI master mode timing on slew rate disabled pads
Num.
Symbol
1
fop
2
tSPSCK
3
tLead
4
tLag
5
tWSPSCK
6
tSU
7
Description
Min.
Max.
Unit
Note
fperiph/2048
fperiph/2
Hz
1
2 x tperiph
2048 x
tperiph
ns
2
Enable lead time
1/2
—
tSPSCK
—
Enable lag time
1/2
—
tSPSCK
—
tperiph - 30
1024 x
tperiph
ns
—
Data setup time (inputs)
18
—
ns
—
tHI
Data hold time (inputs)
0
—
ns
—
8
tv
Data valid (after SPSCK edge)
—
15
ns
—
9
tHO
Data hold time (outputs)
0
—
ns
—
10
tRI
Rise time input
—
tperiph - 25
ns
—
tFI
Fall time input
11
tRO
Rise time output
—
25
ns
—
tFO
Fall time output
Frequency of operation
SPSCK period
Clock (SPSCK) high or low time
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).
2. tperiph = 1/fperiph
Table 32. SPI master mode timing on slew rate enabled pads
Num.
Symbol
1
fop
2
tSPSCK
3
tLead
4
tLag
5
tWSPSCK
6
tSU
7
tHI
Description
Min.
Max.
Unit
Note
fperiph/2048
fperiph/2
Hz
1
2 x tperiph
2048 x
tperiph
ns
2
Enable lead time
1/2
—
tSPSCK
—
Enable lag time
1/2
—
tSPSCK
—
tperiph - 30
1024 x
tperiph
ns
—
Data setup time (inputs)
96
—
ns
—
Data hold time (inputs)
0
—
ns
—
Frequency of operation
SPSCK period
Clock (SPSCK) high or low time
Table continues on the next page...
38
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Peripheral operating requirements and behaviors
Table 32. SPI master mode timing on slew rate enabled pads (continued)
Num.
Symbol
8
tv
9
Description
Min.
Max.
Unit
Note
Data valid (after SPSCK edge)
—
52
ns
—
tHO
Data hold time (outputs)
0
—
ns
—
10
tRI
Rise time input
—
tperiph - 25
ns
—
tFI
Fall time input
11
tRO
Rise time output
—
36
ns
—
tFO
Fall time output
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).
2. tperiph = 1/fperiph
SS1
(OUTPUT)
3
2
SPSCK
(CPOL=0)
(OUTPUT)
11
10
11
4
5
SPSCK
(CPOL=1)
(OUTPUT)
6
MISO
(INPUT)
10
5
7
MSB IN2
BIT 6 . . . 1
LSB IN
8
MOSI
(OUTPUT)
MSB OUT2
BIT 6 . . . 1
9
LSB OUT
1. If configured as an output.
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 13. SPI master mode timing (CPHA = 0)
Kinetis KL26 Sub-Family, Rev5 08/2014.
39
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
SS1
(OUTPUT)
2
3
SPSCK
(CPOL=0)
(OUTPUT)
5
SPSCK
(CPOL=1)
(OUTPUT)
5
6
MISO
(INPUT)
11
4
10
11
7
MSB IN2
BIT 6 . . . 1
LSB IN
9
8
MOSI
(OUTPUT)
10
PORT DATA MASTER MSB OUT2
BIT 6 . . . 1
PORT DATA
MASTER LSB OUT
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 14. SPI master mode timing (CPHA = 1)
Table 33. SPI slave mode timing on slew rate disabled pads
Num.
Symbol
1
fop
2
tSPSCK
3
tLead
4
tLag
5
tWSPSCK
6
tSU
7
Min.
Max.
Unit
Note
0
fperiph/4
Hz
1
4 x tperiph
—
ns
2
Enable lead time
1
—
tperiph
—
Enable lag time
1
—
tperiph
—
tperiph - 30
—
ns
—
Data setup time (inputs)
2.5
—
ns
—
tHI
Data hold time (inputs)
3.5
—
ns
—
8
ta
Slave access time
—
tperiph
ns
3
9
tdis
Slave MISO disable time
—
tperiph
ns
4
10
tv
Data valid (after SPSCK edge)
—
31
ns
—
11
tHO
Data hold time (outputs)
0
—
ns
—
12
tRI
Rise time input
—
tperiph - 25
ns
—
tFI
Fall time input
tRO
Rise time output
—
25
ns
—
tFO
Fall time output
13
1.
2.
3.
4.
Description
Frequency of operation
SPSCK period
Clock (SPSCK) high or low time
For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).
tperiph = 1/fperiph
Time to data active from high-impedance state
Hold time to high-impedance state
38
40
Freescale Semiconductor, Inc.
<<CLASSIFICATION>>
<<NDA MESSAGE>>
Kinetis KL26 Sub-Family, Rev5 08/2014.
Peripheral operating requirements and behaviors
Table 34. SPI slave mode timing on slew rate enabled pads
Num.
Symbol
1
fop
2
tSPSCK
3
tLead
Enable lead time
4
tLag
Enable lag time
5
tWSPSCK
6
tSU
7
Frequency of operation
SPSCK period
Min.
Max.
Unit
Note
0
fperiph/4
Hz
1
4 x tperiph
—
ns
2
1
—
tperiph
—
1
—
tperiph
—
tperiph - 30
—
ns
—
Data setup time (inputs)
2
—
ns
—
tHI
Data hold time (inputs)
7
—
ns
—
8
ta
Slave access time
—
tperiph
ns
3
9
tdis
Slave MISO disable time
—
tperiph
ns
4
10
tv
Data valid (after SPSCK edge)
—
122
ns
—
11
tHO
Data hold time (outputs)
0
—
ns
—
12
tRI
Rise time input
—
tperiph - 25
ns
—
tFI
Fall time input
tRO
Rise time output
—
36
ns
—
tFO
Fall time output
13
1.
2.
3.
4.
Description
Clock (SPSCK) high or low time
For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).
tperiph = 1/fperiph
Time to data active from high-impedance state
Hold time to high-impedance state
SS
(INPUT)
2
12
13
12
13
4
SPSCK
(CPOL=0)
(INPUT)
5
3
SPSCK
(CPOL=1)
(INPUT)
5
9
8
MISO
(OUTPUT)
see
note
SLAVE MSB
6
MOSI
(INPUT)
10
11
11
BIT 6 . . . 1
SLAVE LSB OUT
SEE
NOTE
7
MSB IN
BIT 6 . . . 1
LSB IN
NOTE: Not defined
Figure 15. SPI slave mode timing (CPHA = 0)
Kinetis KL26 Sub-Family, Rev5 08/2014.
41
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
SS
(INPUT)
4
2
3
SPSCK
(CPOL=0)
(INPUT)
5
SPSCK
(CPOL=1)
(INPUT)
5
see
note
SLAVE
8
MSB OUT
6
MOSI
(INPUT)
13
12
13
11
10
MISO
(OUTPUT)
12
9
BIT 6 . . . 1
SLAVE LSB OUT
BIT 6 . . . 1
LSB IN
7
MSB IN
NOTE: Not defined
Figure 16. SPI slave mode timing (CPHA = 1)
3.8.4 Inter-Integrated Circuit Interface (I2C) timing
Table 35. I2C timing
Characteristic
Symbol
Standard Mode
Fast Mode
Minimum
Maximum
Minimum
Maximum
Unit
SCL Clock Frequency
fSCL
0
100
0
4001
kHz
Hold time (repeated) START condition.
After this period, the first clock pulse is
generated.
tHD; STA
4
—
0.6
—
µs
LOW period of the SCL clock
tLOW
4.7
—
1.3
—
µs
HIGH period of the SCL clock
tHIGH
4
—
0.6
—
µs
Set-up time for a repeated START
condition
tSU; STA
4.7
—
0.6
—
µs
Data hold time for I2C bus devices
tHD; DAT
02
3.453
04
0.92
µs
tSU; DAT
2505
—
1003, 6
Data set-up time
—
ns
7
Rise time of SDA and SCL signals
tr
—
1000
20 +0.1Cb
300
ns
Fall time of SDA and SCL signals
tf
—
300
20 +0.1Cb6
300
ns
Set-up time for STOP condition
tSU; STO
4
—
0.6
—
µs
Bus free time between STOP and
START condition
tBUF
4.7
—
1.3
—
µs
Pulse width of spikes that must be
suppressed by the input filter
tSP
N/A
N/A
0
50
ns
1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High
drive pins (see Voltage and current operating behaviors) or when using the Normal drive pins and VDD ≥ 2.7 V
42
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Peripheral operating requirements and behaviors
2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and
SCL lines.
3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
4. Input signal Slew = 10 ns and Output Load = 50 pF
5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If
such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax
+ tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is
released.
7. Cb = total capacitance of the one bus line in pF.
SDA
tf
tLOW
tSU; DAT
tr
tf
tHD; STA
tSP
tr
tBUF
SCL
S
HD; STA
tHD; DAT
tHIGH
tSU; STA
SR
tSU; STO
P
S
Figure 17. Timing definition for fast and standard mode devices on the I2C bus
3.8.5 UART
See General switching specifications.
3.8.6 I2S/SAI switching specifications
This section provides the AC timing for the I2S/SAI module in master mode (clocks
are driven) and slave mode (clocks are input). All timing is given for noninverted
serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame
sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame
sync have been inverted, all the timing remains valid by inverting the bit clock signal
(BCLK) and/or the frame sync (FS) signal shown in the following figures.
Kinetis KL26 Sub-Family, Rev5 08/2014.
43
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3.8.6.1
Normal Run, Wait and Stop mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in Normal Run, Wait and Stop modes.
Table 36. I2S/SAI master mode timing
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S1
I2S_MCLK cycle time
40
—
ns
S2
I2S_MCLK (as an input) pulse width high/low
45%
55%
MCLK period
S3
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)
80
—
ns
S4
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
—
15.5
ns
S6
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0
—
ns
S7
I2S_TX_BCLK to I2S_TXD valid
—
19
ns
S8
I2S_TX_BCLK to I2S_TXD invalid
0
—
ns
S9
I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
26
—
ns
S10
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0
—
ns
S1
S2
S2
I2S_MCLK (output)
S3
I2S_TX_BCLK/
I2S_RX_BCLK (output)
S4
S4
S6
S5
I2S_TX_FS/
I2S_RX_FS (output)
S10
S9
I2S_TX_FS/
I2S_RX_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 18. I2S/SAI timing — master modes
44
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Peripheral operating requirements and behaviors
Table 37. I2S/SAI slave mode timing
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S11
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)
80
—
ns
S12
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45%
55%
MCLK period
S13
I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
10
—
ns
S14
I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
2
—
ns
S15
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
—
33
ns
S16
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output
invalid
0
—
ns
S17
I2S_RXD setup before I2S_RX_BCLK
10
—
ns
S18
I2S_RXD hold after I2S_RX_BCLK
2
—
ns
—
28
ns
S19
I2S_TX_FS input assertion to I2S_TXD output
valid1
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
S11
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
S12
S15
S16
I2S_TX_FS/
I2S_RX_FS (output)
S13
I2S_TX_FS/
I2S_RX_FS (input)
S19
S14
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 19. I2S/SAI timing — slave modes
3.8.6.2
VLPR, VLPW, and VLPS mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in VLPR, VLPW, and VLPS modes.
Kinetis KL26 Sub-Family, Rev5 08/2014.
45
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 38. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S1
I2S_MCLK cycle time
62.5
—
ns
S2
I2S_MCLK pulse width high/low
45%
55%
MCLK period
S3
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)
250
—
ns
S4
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
—
45
ns
S6
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
—
ns
S7
I2S_TX_BCLK to I2S_TXD valid
45
ns
S8
I2S_TX_BCLK to I2S_TXD invalid
—
ns
S9
I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
—
ns
S10
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0
—
ns
S1
—
S2
S2
I2S_MCLK (output)
S3
I2S_TX_BCLK/
I2S_RX_BCLK (output)
S4
S4
S6
S5
I2S_TX_FS/
I2S_RX_FS (output)
S10
S9
I2S_TX_FS/
I2S_RX_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 20. I2S/SAI timing — master modes
Table 39. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full
voltage range)
Num.
S11
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)
250
—
ns
Table continues on the next page...
46
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Peripheral operating requirements and behaviors
Table 39. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)
(continued)
Num.
Characteristic
Min.
Max.
Unit
S12
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45%
55%
MCLK period
S13
I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
30
—
ns
S14
I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
—
ns
S15
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
S16
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0
—
ns
S17
I2S_RXD setup before I2S_RX_BCLK
—
ns
S18
I2S_RXD hold after I2S_RX_BCLK
—
ns
72
ns
S19
—
ns
30
I2S_TX_FS input assertion to I2S_TXD output
valid1
—
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
S11
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
S12
S15
S16
I2S_TX_FS/
I2S_RX_FS (output)
S13
I2S_TX_FS/
I2S_RX_FS (input)
S19
S14
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 21. I2S/SAI timing — slave modes
3.9 Human-machine interfaces (HMI)
3.9.1 TSI electrical specifications
Table 40. TSI electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
TSI_RUNF
Fixed power consumption in run mode
—
100
—
µA
Table continues on the next page...
Kinetis KL26 Sub-Family, Rev5 08/2014.
47
Freescale Semiconductor, Inc.
Dimensions
Table 40. TSI electrical specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
TSI_RUNV
Variable power consumption in run mode
(depends on oscillator's current selection)
1.0
—
128
µA
TSI_EN
Power consumption in enable mode
—
100
—
µA
TSI_DIS
Power consumption in disable mode
—
1.2
—
µA
TSI_TEN
TSI analog enable time
—
66
—
µs
TSI_CREF
TSI reference capacitor
—
1.0
—
pF
TSI_DVOLT
Voltage variation of VP & VM around nominal
values
0.19
—
1.03
V
4 Dimensions
4.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
To find a package drawing, go to freescale.com and perform a keyword search for the
drawing’s document number:
If you want the drawing for this package
Then use this document number
32-pin QFN
98ASA00473D
48-pin QFN
98ASA00466D
64-pin LQFP
98ASS23234W
5 Pinout
5.1 KL26 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
48
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Pinout
64
48
LQFP QFN
32
QFN
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT6
1
—
1
PTE0
DISABLED
PTE0
SPI1_MISO
UART1_TX
2
—
—
PTE1
DISABLED
PTE1
SPI1_MOSI
UART1_RX
3
1
—
VDD
VDD
VDD
4
2
2
VSS
VSS
VSS
5
3
3
USB0_DP
USB0_DP
USB0_DP
6
4
4
USB0_DM
USB0_DM
USB0_DM
7
5
5
VOUT33
VOUT33
VOUT33
8
6
6
VREGIN
VREGIN
VREGIN
9
7
—
PTE20
ADC0_DP0/
ADC0_SE0
ADC0_DP0/
ADC0_SE0
PTE20
TPM1_CH0
UART0_TX
10
8
—
PTE21
ADC0_DM0/
ADC0_SE4a
ADC0_DM0/
ADC0_SE4a
PTE21
TPM1_CH1
UART0_RX
11
—
—
PTE22
ADC0_DP3/
ADC0_SE3
ADC0_DP3/
ADC0_SE3
PTE22
TPM2_CH0
UART2_TX
12
—
—
PTE23
ADC0_DM3/
ADC0_SE7a
ADC0_DM3/
ADC0_SE7a
PTE23
TPM2_CH1
UART2_RX
13
9
7
VDDA
VDDA
VDDA
14
10
—
VREFH
VREFH
VREFH
15
11
—
VREFL
VREFL
VREFL
16
12
8
VSSA
VSSA
VSSA
17
13
—
PTE29
CMP0_IN5/
ADC0_SE4b
CMP0_IN5/
ADC0_SE4b
PTE29
TPM0_CH2
TPM_CLKIN0
18
14
9
PTE30
DAC0_OUT/ DAC0_OUT/ PTE30
ADC0_SE23/ ADC0_SE23/
CMP0_IN4
CMP0_IN4
TPM0_CH3
TPM_CLKIN1
19
—
—
PTE31
DISABLED
PTE31
TPM0_CH4
20
15
—
PTE24
DISABLED
PTE24
TPM0_CH0
I2C0_SCL
21
16
—
PTE25
DISABLED
PTE25
TPM0_CH1
I2C0_SDA
22
17
10
PTA0
SWD_CLK
TSI0_CH1
PTA0
TPM0_CH5
23
18
11
PTA1
DISABLED
TSI0_CH2
PTA1
UART0_RX
TPM2_CH0
24
19
12
PTA2
DISABLED
TSI0_CH3
PTA2
UART0_TX
TPM2_CH1
25
20
13
PTA3
SWD_DIO
TSI0_CH4
PTA3
I2C1_SCL
TPM0_CH0
26
21
14
PTA4
NMI_b
TSI0_CH5
PTA4
I2C1_SDA
TPM0_CH1
27
—
—
PTA5
DISABLED
PTA5
USB_CLKIN
TPM0_CH2
I2S0_TX_
BCLK
28
—
—
PTA12
DISABLED
PTA12
TPM1_CH0
I2S0_TXD0
29
—
—
PTA13
DISABLED
PTA13
TPM1_CH1
I2S0_TX_FS
30
22
15
VDD
VDD
VDD
31
23
16
VSS
VSS
VSS
32
24
17
PTA18
EXTAL0
EXTAL0
PTA18
UART1_RX
TPM_CLKIN0
33
25
18
PTA19
XTAL0
XTAL0
PTA19
UART1_TX
TPM_CLKIN1
Kinetis KL26 Sub-Family, Rev5 08/2014.
RTC_
CLKOUT
ALT5
CMP0_OUT
I2C1_SDA
SPI1_MISO
I2C1_SCL
ALT7
SWD_CLK
SWD_DIO
NMI_b
LPTMR0_
ALT1
49
Freescale Semiconductor, Inc.
Pinout
64
48
LQFP QFN
32
QFN
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
34
26
19
PTA20
RESET_b
PTA20
35
27
20
PTB0/
LLWU_P5
ADC0_SE8/
TSI0_CH0
ADC0_SE8/
TSI0_CH0
PTB0/
LLWU_P5
I2C0_SCL
TPM1_CH0
36
28
21
PTB1
ADC0_SE9/
TSI0_CH6
ADC0_SE9/
TSI0_CH6
PTB1
I2C0_SDA
TPM1_CH1
37
29
—
PTB2
ADC0_SE12/ ADC0_SE12/ PTB2
TSI0_CH7
TSI0_CH7
I2C0_SCL
TPM2_CH0
38
30
—
PTB3
ADC0_SE13/ ADC0_SE13/ PTB3
TSI0_CH8
TSI0_CH8
I2C0_SDA
TPM2_CH1
39
31
—
PTB16
TSI0_CH9
TSI0_CH9
PTB16
SPI1_MOSI
UART0_RX
TPM_CLKIN0 SPI1_MISO
40
32
—
PTB17
TSI0_CH10
TSI0_CH10
PTB17
SPI1_MISO
UART0_TX
TPM_CLKIN1 SPI1_MOSI
41
—
—
PTB18
TSI0_CH11
TSI0_CH11
PTB18
TPM2_CH0
I2S0_TX_
BCLK
42
—
—
PTB19
TSI0_CH12
TSI0_CH12
PTB19
TPM2_CH1
I2S0_TX_FS
43
33
—
PTC0
ADC0_SE14/ ADC0_SE14/ PTC0
TSI0_CH13 TSI0_CH13
EXTRG_IN
audioUSB_
SOF_OUT
44
34
22
PTC1/
LLWU_P6/
RTC_CLKIN
ADC0_SE15/ ADC0_SE15/ PTC1/
TSI0_CH14 TSI0_CH14 LLWU_P6/
RTC_CLKIN
I2C1_SCL
TPM0_CH0
I2S0_TXD0
45
35
23
PTC2
ADC0_SE11/ ADC0_SE11/ PTC2
TSI0_CH15 TSI0_CH15
I2C1_SDA
TPM0_CH1
I2S0_TX_FS
46
36
24
PTC3/
LLWU_P7
DISABLED
47
—
—
VSS
VSS
VSS
48
—
—
VDD
VDD
VDD
49
37
25
PTC4/
LLWU_P8
DISABLED
PTC4/
LLWU_P8
50
38
26
PTC5/
LLWU_P9
DISABLED
51
39
27
PTC6/
LLWU_P10
CMP0_IN0
52
40
28
PTC7
53
—
—
54
—
55
RESET_b
CMP0_OUT
UART1_RX
TPM0_CH2
CLKOUT
SPI0_PCS0
UART1_TX
TPM0_CH3
I2S0_MCLK
PTC5/
LLWU_P9
SPI0_SCK
LPTMR0_
ALT2
I2S0_RXD0
CMP0_IN0
PTC6/
LLWU_P10
SPI0_MOSI
EXTRG_IN
I2S0_RX_
BCLK
SPI0_MISO
CMP0_IN1
CMP0_IN1
PTC7
SPI0_MISO
audioUSB_
SOF_OUT
I2S0_RX_FS
SPI0_MOSI
PTC8
CMP0_IN2
CMP0_IN2
PTC8
I2C0_SCL
TPM0_CH4
I2S0_MCLK
—
PTC9
CMP0_IN3
CMP0_IN3
PTC9
I2C0_SDA
TPM0_CH5
I2S0_RX_
BCLK
—
—
PTC10
DISABLED
PTC10
I2C1_SCL
I2S0_RX_FS
56
—
—
PTC11
DISABLED
PTC11
I2C1_SDA
I2S0_RXD0
57
41
—
PTD0
DISABLED
PTD0
SPI0_PCS0
TPM0_CH0
58
42
—
PTD1
ADC0_SE5b
PTD1
SPI0_SCK
TPM0_CH1
59
43
—
PTD2
DISABLED
PTD2
SPI0_MOSI
UART2_RX
TPM0_CH2
SPI0_MISO
60
44
—
PTD3
DISABLED
PTD3
SPI0_MISO
UART2_TX
TPM0_CH3
SPI0_MOSI
61
45
29
PTD4/
LLWU_P14
DISABLED
PTD4/
LLWU_P14
SPI1_PCS0
UART2_RX
TPM0_CH4
50
Freescale Semiconductor, Inc.
PTC3/
LLWU_P7
ADC0_SE5b
ALT7
I2S0_TXD0
I2S0_TX_
BCLK
CMP0_OUT
I2S0_MCLK
Kinetis KL26 Sub-Family, Rev5 08/2014.
Pinout
64
48
LQFP QFN
32
QFN
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
62
46
30
PTD5
ADC0_SE6b
ADC0_SE6b
PTD5
SPI1_SCK
UART2_TX
63
47
31
PTD6/
LLWU_P15
ADC0_SE7b
ADC0_SE7b
PTD6/
LLWU_P15
SPI1_MOSI
UART0_RX
SPI1_MISO
64
48
32
PTD7
DISABLED
PTD7
SPI1_MISO
UART0_TX
SPI1_MOSI
ALT6
ALT7
TPM0_CH5
5.2 KL26 pinouts
The following figures show the pinout diagrams for the devices supported by this
document. Many signals may be multiplexed onto a single pin. To determine what
signals can be used on which pin, see KL26 Signal Multiplexing and Pin
Assignments.
Kinetis KL26 Sub-Family, Rev5 08/2014.
51
Freescale Semiconductor, Inc.
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2
PTD1
PTD0
PTC11
PTC10
PTC9
PTC8
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Pinout
PTE20
9
40
PTB17
PTE21
10
39
PTB16
PTE22
11
38
PTB3
PTE23
12
37
PTB2
VDDA
13
36
PTB1
VREFH
14
35
PTB0/LLWU_P5
VREFL
15
34
PTA20
VSSA
16
33
PTA19
32
PTB18
PTA18
41
31
8
VSS
VREGIN
30
PTB19
VDD
42
29
7
PTA13
VOUT33
28
PTC0
PTA12
43
27
6
PTA5
USB0_DM
26
PTC1/LLWU_P6/RTC_CLKIN
PTA4
44
25
5
PTA3
USB0_DP
24
PTC2
PTA2
45
23
4
PTA1
VSS
22
PTC3/LLWU_P7
PTA0
46
21
3
PTE25
VDD
20
VSS
PTE24
47
19
2
PTE31
PTE1
18
VDD
PTE30
48
17
1
PTE29
PTE0
Figure 22. KL26 64-pin LQFP pinout diagram
52
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2
PTD1
PTD0
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
48
47
46
45
44
43
42
41
40
39
38
37
Pinout
VDD
1
36
PTC3/LLWU_P7
VSS
2
35
PTC2
USB0_DP
3
34
PTC1/LLWU_P6/RTC_CLKIN
USB0_DM
4
33
PTC0
VOUT33
5
32
PTB17
VREGIN
6
31
PTB16
PTE20
7
30
PTB3
PTE21
8
29
PTB2
VDDA
18
19
20
21
22
23
24
PTA2
PTA3
PTA4
VDD
VSS
PTA18
PTA19
PTA1
25
17
12
PTA0
VSSA
16
PTA20
PTE25
26
15
PTB0/LLWU_P5
PTE24
27
11
14
10
VREFL
PTE30
PTB1
13
28
PTE29
9
VREFH
Figure 23. KL26 48-pin QFN pinout diagram
Kinetis KL26 Sub-Family, Rev5 08/2014.
53
Freescale Semiconductor, Inc.
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
32
31
30
29
28
27
26
25
Ordering parts
VOUT33
5
20
PTB0/LLWU_P5
VREGIN
6
19
PTA20
VDDA
7
18
PTA19
VSSA
8
17
PTA18
16
PTB1
VSS
21
15
4
VDD
USB0_DM
14
PTC1/LLWU_P6/RTC_CLKIN
PTA4
22
13
3
PTA3
USB0_DP
12
PTC2
PTA2
23
11
2
PTA1
VSS
10
PTC3/LLWU_P7
PTA0
24
9
1
PTE30
PTE0
Figure 24. KL26 32-pin QFN pinout diagram
6 Ordering parts
6.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part
numbers for this device, go to freescale.com and perform a part number search for the
following device numbers: PKL26 and MKL26
7 Part identification
54
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Part identification
7.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
7.2 Format
Part numbers for this device have the following format:
Q KL## A FFF R T PP CC N
7.3 Fields
This table lists the possible values for each field in the part number (not all
combinations are valid):
Field
Description
Values
Q
Qualification status
• M = Fully qualified, general market flow
• P = Prequalification
KL##
Kinetis family
• KL26
A
Key attribute
• Z = Cortex-M0+
FFF
Program flash memory size
• 32 = 32 KB
• 64 = 64 KB
• 128 = 128 KB
R
Silicon revision
• (Blank) = Main
• A = Revision after main
T
Temperature range (°C)
• V = –40 to 105
PP
Package identifier
• FM = 32 QFN (5 mm x 5 mm)
• FT = 48 QFN (7 mm x 7 mm)
• LH = 64 LQFP (10 mm x 10 mm)
CC
Maximum CPU frequency (MHz)
• 4 = 48 MHz
N
Packaging type
• R = Tape and reel
7.4 Example
This is an example part number:
MKL26Z128VFM4
Kinetis KL26 Sub-Family, Rev5 08/2014.
55
Freescale Semiconductor, Inc.
Terminology and guidelines
8 Terminology and guidelines
8.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
8.1.1 Example
This is an example of an operating requirement:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
0.9
Max.
1.1
Unit
V
8.2 Definition: Operating behavior
Unless otherwise specified, an operating behavior is a specified value or range of
values for a technical characteristic that are guaranteed during operation if you meet the
operating requirements and any other specified conditions.
8.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are
guaranteed, regardless of whether you meet the operating requirements.
8.3.1 Example
This is an example of an attribute:
Symbol
CIN_D
Description
Input capacitance:
digital pins
56
Freescale Semiconductor, Inc.
Min.
—
Max.
7
Unit
pF
Kinetis KL26 Sub-Family, Rev5 08/2014.
Terminology and guidelines
8.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if
exceeded, may cause permanent chip failure:
• Operating ratings apply during operation of the chip.
• Handling ratings apply when the chip is not powered.
8.4.1 Example
This is an example of an operating rating:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
–0.3
Max.
1.2
Unit
V
8.5 Result of exceeding a rating
Failures in time (ppm)
40
30
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
20
10
0
Operating rating
Measured characteristic
Kinetis KL26 Sub-Family, Rev5 08/2014.
57
Freescale Semiconductor, Inc.
Terminology and guidelines
8.6 Relationship between ratings and operating requirements
O
a
gr
tin
ra
pe
g
tin
(
)
in.
(m
nt
me
n.)
mi
t
era
Op
ing
e
uir
req
g
tin
era
Op
t
en
em
uir
q
e
r
ax
(m
.)
rat
pe
ing
g
tin
ra
ax
(m
.)
O
Fatal range
Degraded operating range
Normal operating range
Degraded operating range
Fatal range
Expected permanent failure
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Correct operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
Expected permanent failure
–∞
∞
Operating (power on)
dli
n
Ha
ng
ng
i
rat
x.)
)
in.
(m
li
nd
Ha
ng
i
rat
a
(m
ng
Fatal range
Handling range
Fatal range
Expected permanent failure
No permanent failure
Expected permanent failure
–∞
∞
Handling (power off)
8.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
• Never exceed any of the chip’s ratings.
• During normal operation, don’t exceed any of the chip’s operating requirements.
• If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
8.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
• Lies within the range of values specified by the operating behavior
• Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
58
Freescale Semiconductor, Inc.
Kinetis KL26 Sub-Family, Rev5 08/2014.
Terminology and guidelines
8.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Symbol
Description
IWP
Digital I/O weak
pullup/pulldown
current
Min.
10
Typ.
Max.
70
130
Unit
µA
8.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
5000
4500
4000
TJ
IDD_STOP (μA)
3500
150 °C
3000
105 °C
2500
25 °C
2000
–40 °C
1500
1000
500
0
0.90
0.95
1.00
1.05
1.10
VDD (V)
8.9 Typical value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Kinetis KL26 Sub-Family, Rev5 08/2014.
59
Freescale Semiconductor, Inc.
Revision history
Table 41. Typical value conditions
Symbol
Description
Value
Unit
TA
Ambient temperature
25
°C
VDD
3.3 V supply voltage
3.3
V
9 Revision history
The following table provides a revision history for this document.
Table 42. Revision history
Rev. No.
Date
3
3/2014
• Updated the front page and restructured the chapters
4
5/2014
• Updated Power consumption operating behaviors
• Updated USB electrical specifications
• Updated Definition: Operating behavior
5
08/2014
• Updated related source in the front page
• Updated Power consumption operating behaviors
• Updated the note in USB electrical specifications
60
Freescale Semiconductor, Inc.
Substantial Changes
Kinetis KL26 Sub-Family, Rev5 08/2014.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.
Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.
Freescale, Freescale logo, Energy Efficient Solutions logo, and Kinetis
are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm.
Off. All other product or service names are the property of their
respective owners. ARM and Cortex are registered trademarks of ARM
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights
reserved.
© 2012-2014 Freescale Semiconductor, Inc.
Document Number KL26P64M48SF5
Revision 5 08/2014