ATMEL TS68EN360MR25L

Features
• CPU32+ Processor (4.5 MIPS at 25 MHz)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
– 32-bit Version of the CPU32 Core (Fully Compatible with the CPU32)
– Background Debug Mode
– Byte-misaligned Addressing
Up to 32-bit Data Bus (Dynamic Bus Sizing for 8 and 16 Bits)
Up to 32 Address Lines (At Least 28 Always Available)
Complete Static Design (0 - 25 MHz Operation)
Slave Mode to Disable CPU32+ (Allows Use with External Processors)
– Multiple QUICCs Can Share One System Bus (One Master)
– TS68040 Companion Mode Allows QUICC to be a TS68040 Companion Chip and
Intelligent Peripheral (22 MIPS at 25 MHz)
– Peripheral Device of TSPC603e (see DC415/D note)
Four General-purpose Timers
– Superset of MC68302 Timers
– Four 16-bit Timers or Two 32-bit Timers
– Gate Mode Can Enable/Disable Counting
Two Independent DMAs (IDMAs)
System Integration Module (SIM60)
Communications Processor Module (CPM)
Four Baud Rate Generators
Four SCCs (Ethernet/IEEE 802.3 Optional on SCC1-Full 10 Mbps Support)
Two SMC
VCC = +5V ± 5%
fmax = 25 MHz and 33 MHz
Military Temperature Range: -55°C < TC < +125°C
PD = 1.4 W at 25 MHz; 5.25V
2 W at 33 MHz; 5.25V
32-bit Quad
Integrated
Communication
Controller
TS68EN360
Description
The TS68EN360 QUad Integrated Communication Controller (QUICC™) is a versatile
one-chip integrated microprocessor and peripheral combination that can be used in a
variety of controller applications. It particularly excels in communications activities.
The QUICC (pronounced “quick”) can be described as a next-generation TS68302
with higher performance in all areas of device operation, increased flexibility, major
extensions in capability, and higher integration. The term “quad” comes from the fact
that there are four serial communications controllers (SCCs) on the device; however,
there are actually seven serial channels: four SCCs, two serial management controllers (SMCs), and one serial peripheral interface (SPI).
Screening/Quality
This product is manufactured in full compliance with:
•
MIL-STD-883 (class B)
•
QML (class Q)
•
or according to Atmel standards
Rev. 2113A–HIREL–03/02
1
R suffix
PGA 241
Ceramic Pin Grid Array Cavity Up
A suffix
CERQUAD 240
Ceramic Leaded Chip Carrier Cavity Down
Introduction
QUICC Architecture
Overview
The QUICC is 32-bit controller that is an extension of other members of the TS68300
family. Like other members of the TS68300 family, the QUICC incorporates the intermodule bus (IMB). The TS68302 is an exception, having an 68000 bus on chip. The IMB
provides a common interface for all modules of the TS68300 family, which allows the
development of new devices more quickly by using the library of existing modules.
Although the IMB definition always included an option for an on-chip 32-bit bus, the
QUICC is the first device to implement this option.
The QUICC is comprised of three modules: the CPU32+ core, the SIM60, and the CPM.
Each module utilizes the 32-bit IMB.
The TS68EN360 QUICC block diagram is shown in Figure 1.
Figure 1. QUICC Block Diagram
SIM 60
CPU32+
CORE
SYSTEM
PROTECTION
JTAG
PERIODIC
TIMER
BREAKPOINT
LOGIC
CLOCK
GENERATION
DRAM
CONTROLLER
OTHER
FEATURES
AND
CHIP SELECTS
EXTERNAL
BUS
INTERFACE
IMB (32 BIT)
SYSTEM
I/F
CPM
COMMUNICATIONS PROCESSOR
2.5-KBYTE
DUAL-PORT
RAM
RISC
CONTROLLER
TWO
IDMAs
FOURTEEN SERIAL
DMAs
SEVEN
SERIAL
CHANNELS
2
INTERRUPT
CONTROLLER
TIMER SLOT
ASSIGNER
FOUR
GENERALPURPOSE
TIMERS
OTHER
FEATURES
TS68EN360
2113A–HIREL–03/02
TS68EN360
Pin Assignments
Figure 2. 241-lead Pin Grid Array (PGA)
T
PA15 PA12
PA9
PA6
PA3
PA2
PB17 PB15 PB12 PB11
PA13 PA10
PA7
PA5
PA1
PB8
PB5
PB2
PC11
PC9
PC6
PC5
PC2
PB7
PB4
PB1
PC10
PC7
PC3
PC1
IRQ2
IRQ3 IRQ1
S
D2
D0
PB16 PB13 PB10
D4
D3
D1
PA14 PA11
PA8
PA4
PA0
PB14
PB9
PB6
PB3
PB0
PC8
PC4
PC0
D7
D6
D5
GND
GND
GND
Vcc
Vcc
GND
GND
Vcc
Vcc
GND
GND
GND
IRQ5 BERR RESETS
D10
D9
D8
GND
Vcc
GND
Vcc
GND
GND HALT RMC PERR
D13
D12
D11
GND
GND
GND
GND AVEC TDO
D16
D15
D14
GND
Vcc
D19
D18
D17
Vcc
GND TRST BKPT IRQ6
R
Q
P
NC
N
TMS
M
TD1
TCK RESETH
L
K
CLKO2 Vcc
GND Vccclk
TS68EN360
GNDclk
Vcc
Vcc
IRQ4 BGACK BG
GND
GND IFETCH NC1
(BOTTOM VIEW)
J
CLKO1 D20
D22
GND
Vcc
BR
H
D21
D23
D25
GND
GNDs2 NC2 BCLRO OE
D24
D26
D28
Vcc
D27
D29
D31
GND
D30
FC3
FC0
A31 Vccsyn GNDsyn
FC2
FC1
A30
XFC
Vcc
GND
GND
Vcc
Vcc
GND
GND
GND
GND
Vcc
GND CAS0
SIZ1
A29 EXTAL MODCK1 A27
A23
A20
A17
A14
A8
A4
A0
CS7
CS4
CS1 CAS3 FREEZE DS
SIZ0
A28 MODCK0 GND
A25
A22
A19
A16
A13
A10
A7
A5
A1
IRQ7
CS5
CS2
G
Vcc IPIPE0
AS
IPIPE1
F
GND
Vcc
GND PRTY2 PRTY1 PRTY0
E
GND
Vcc GNDs1 Vcc
NC3 DSACK1 PRTY3
D
R/W DSACK0
C
B
CAS2 CAS1
A
1
Note:
XTAL
NC4
A26
A24
A21
A18
A15
A12
A11
A9
A6
A3
A2
TRIS
CS6
CS3
CS0
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Pin P9 “NC” is for guide purposes only.
3
2113A–HIREL–03/02
CS0
CS1
CS2
CS3
Vcc
GND
CS4
CS5
CS6
CS7
IRQ7
TRIS
A0
A1
GND
A2
A3
Vcc
A4
A5
GND
A6
A7
Vcc
GND
A8
A9
GND
A10
A11
Vcc
A12
A13
GND
A14
A15
A16
A17
A18
GND
A19
A20
A21
Vcc
A22
A23
A24
GND
A25
A26
A27
NC4
GND
MODCK1
MODCK0
XTAL
EXTAL
GNDsyn
XFC
Vccsyn
Figure 3. 240-lead Cerquad
GNDs1
CAS3
CAS2
Vcc
CAS1
GND
CAS0
FREEZE
DS
GND
R/W
NC3
Vcc
DSACK0
GND
DSACK1
GND
PRTY3
PRTY2
GND
Vcc
PRTY1
PRTY0
IPIPE0
AS
GNDs2
IPIPE1
Vcc
NC2
BCLRO
GND
OE
IFETCH
NC1
BR
Vcc
GND
BG
BGACK
Vcc
IRQ4
IRQ6
GND
BKPT
RESETH
TRST
TCK
TMS
TDI
TDO
PERR
GND
AVEC
RMC
Vcc
RESETS
HALT
GND
BERR
IRQ1
180
181
170
160
150
140
130
121
120
190
110
200
100
TS68EN360
(TOP VIEW)
210
90
220
80
230
70
PIN ONE INDICATOR
240
61
10
20
30
40
50
60
IRQ5
IRQ3
IRQ2
PC0
PC1
PC2
GND
PC3
PC4
PC5
PC6
Vcc
PC7
PC8
PC9
PC10
GND
PC11
PB0
PB1
PB2
PB3
PB4
PB5
PB6
GND
PB7
PB8
PB9
PB10
Vcc
PB11
PB12
PB13
PB14
GND
PB15
PB16
PB17
PA0
GND
Vcc
PA1
PA2
PA3
PA4
GND
PA5
PA6
PA7
PA8
Vcc
PA9
PA10
PA11
PA12
GND
PA13
PA14
PA15
1
A28
A29
GND
A30
A31
Vcc
SIZ0
SIZ1
FC0
GND
FC1
FC2
FC3
Vcc
GND
D31
D30
D29
GND
D28
D27
D26
Vcc
D25
D24
D23
GND
D22
D21
D20
CLKO1
Vccclk
GNDclk
CLKO2
D19
D18
D17
GND
D16
D15
Vcc
D14
D13
D12
GND
D11
D10
D9
D8
D7
GND
D6
D5
Vcc
D4
D3
D2
GND
D1
D0
4
TS68EN360
2113A–HIREL–03/02
TS68EN360
Signal Description
Functional Signal Group
Figure 4. QUICC Functional Signal Groups
ADDRESS BUS
A27±A0
A31±A28/WE0±WE3
FC2±FC0/TM2±TM0
FC3/TT0
PORT A
DATA BUS
RXD1/PA0
TXD1/PA1
D31±D16
RXD2/PA2
TXD2/PA3
D15±D0
PRTY1±PRTY2/IOUT1±IOUT2
PRTY2/IOUT0/RQOUT
L1TXDB/RXD3/PA4
L1RXDB/TXD3/PA5
PRTY3/16BM
BUS CONTROL
SIZ0
SIZ1
DSACK0/TBI
DSACK1/TA
L1TXDA/RXD4/PA6
L1RXDA/TXD4/PA7
TIMERs/SCCs/SIs/CLOCKs/BRG
TIN1/L1RCLKA/BRGO1/CLK1/PA8
BRGCLK1/TOUT1/CLK2/PA9
R/W
AS
DS/TT1
OE/AMUX
TIN2/L1TCLKA/BRGO2/CLK3/PA10
TOUT2/CLK4/PA11
TIN3/BRGO3/CLK5/PA12
BRGCLK2/L1RCLKB/TOUT3/CLK6/PA13
TIN4/BRGO4/CLK7/PA14
L1TCLKB/TOUT4/CLK8/PA15
PORT B (PIP)
RRJCT1/SPISEL/PB0
RSTRT2/SPICLK/PB1
RRJCT2/SPIMOSI(SPITXD)/PB2
BRGO4/SPIMISO(SPIRXD)/PB3
DREQ1/BRGO1/PB4
DACK1/BRGO2/PB5
DONE1/SMTXD1/PB6
DONE2/SMRXD1/PB7
DREQ2/SMSYN1/PB8
DACK2/SMSYN2/PB9
L1CLKOB/SMTXD2/PB10
L1CLKOA/SMRXD2/PB11
L1ST1/RTS1/PB12
L1ST2/RTS2/PB13
L1ST3/L1RQB/RTS3/PB14
L1ST4/L1RQA/RTS4/PB15
STRBO/BRGO3/PB16
STRBI/RSTRT1/PB17
PORT C (INTERRUPT PARALLEL I/O)
L1ST1/RTS1/PC0
L1ST2/RTS2/PC1
L1ST3/L1RQB/RTS3/PC2
L1ST4/L1RQA/RTS4/PC3
CTS1/PC4
TGATE1/CD1/PC5
CTS2/PC6
TGATE2/CD2/PC7
SDACK2/L1TSYNCB/CTS3/PC8
L1RSYNCB/CD3/PC9
SDACK1/L1TSYNCA/CTS4/PC10
L1RSYNCA/CD4/PC11
BUS ARBITRATION
RMC/CONFIG0/LOCK
BR
BG
BGACK/BB
BCLRO/CONFIG1/RAS2DD
SYSTEM CONTROL
RESETH
RESETS
HALT
BERR/TEA
QUICC
TS68360
240 PINS
PERR
INTERRUPT CONTROL
IRQ1/OUT0/RQOUT
IRQ4/OUT1
IRQ6/OUT2
IRQ2,3,5,7
AVEC/IACK5/AVECO
MEMORY CONTROLLER
CS6±CS0/RAS6±RAS0
CS/RAS7/IACK7
CAS3±CAS0/IACK6,3,2,1
TEST
TRIS/TS
BKPT/BKPT0/DSCLK
FREEZE/CONFIG2/MBARE
IPIPE1/RAS1DD/BCLRI
IPIPE0/BADD2/DSO
IFETCH/BADD3/DSI
TCK
TMS
TDI
TDO
TRST
CLOCK
XTAL
EXTAL
XFC
MODCK1±MODCK0
CLKO2±CLKO1
5
2113A–HIREL–03/02
Signal Index
Table 1. System Bus Signal Index (Normal Operation)
Group
Signal Name
Mnemonic
Address
Address Bus
A27-A0
Data
Parity
A31-A28
WE3-WE0
Upper four bits of address bus (I/O), or byte write enable
signals (O) for accesses to external memory or peripherals.
Function Codes
FC3-FC0
Identifies the processor state and the address space of the
current bus cycle. (I/O)
Data Bus 31 - 16
D31-D16
Upper 16-bit data bus used to transfer byte or word data.
Used in 16-bit bus mode. (I/O)
Data Bus 15 - 0
D15-D0
Lower 16-bit data bus used to transfer 3-byte or long-word
data. (I/O)
Not used in 16-bit bus mode.
Parity 3/16BM
Bus Arbitration
PRTY2-PRTY0
Parity signals for byte writes/reads from/to external memory
module. (I/O)
PRTY3/16BM
Parity signals for byte writes/reads from/to external memory
module or defines 16-bit bus mode. (I/O)
Parity Error
PERR
Indicates a parity error during a read cycle. (O)
Chip Select
Row Address Select 7
Interrupt Acknowledge 7
CS
RAS7
IACK7
Enables peripherals or DRAMs at programmed addresses
(O) or interrupt level 7 acknowledge line. (O)
Chip Select 6-0
Row Address Select 6-0
CS6-CS0
RAS6-RAS0
Enables peripherals or DRAMs at programmed addresses.
(O)
Column Address Select
3 - 0/Interrupt
Acknowledge 1, 2, 3, 6
CAS3-CAS0/
IACK6,3,2,1
DRAM column address select or interrupt level acknowledge
lines. (O)
Bus Request
BR
Indicates that an external device requires bus mastership. (I)
Bus Grant
BG
Indicates that the current bus cycle is complete and the
QUICC has relinquished the bus. (O)
Bus Grand Acknowledge
BGACK
Read-Modify-Write Cycle
Initial Configuration 0
RMC
CONFIG0
Bus Clear Out/Initial
Configuration 1/Row
Address Select 2
Double-Drive
6
Lower 27 bits of address bus. (I/O)
Address Bus/Byte Write
Enables
Parity 2 - 0
Memory
Controller
Function
BCLRO/CONFIG1/
RAS2DD
Indicates that an external device has assumed bus
mastership. (I)
Identifies the bus cycle as part of an indivisible
read-modify-write operation (I/O) or initial QUICC
configuration select. (I)
Indicates that an internal device requires the external bus
(Open-Drain O) or initial QUICC configuration select (I) or
row address select 2 double-drive output. (O)
TS68EN360
2113A–HIREL–03/02
TS68EN360
Table 1. System Bus Signal Index (Normal Operation) (Continued)
Group
Signal Name
Mnemonic
Bus Control
Data and Size
Acknowledge
DSACK1 - DSACK0
Address Strobe
AS
Indicates that a valid address is on the address bus. (I/O)
Data Strobe
DS
During a read cycle, DS indicates that an external device
should place valid data on the data bus. During a write cycle,
DS indicates that valid data is on the data bus. (I/O)
SIZ1-SIZ0
Indicates the number of bytes remaining to be transferred for
this cycle. (I/O)
Size
Read/Write
Interrupt
Control
Clock and Test
Provides asynchronous data transfer acknowledgement and
dynamic bus sizing (open-drain I/O but driven high before
three-stated).
Indicates the direction of data transfer on the bus. (I/O)
Output Enable Address
Multiplex
OE/AMUX
Active during a read cycle indicates that an external device
should place valid data on the data bus (O) or provides a
strobe for external address multiplexing in DRAM accesses
if internal multiplexing is not used. (O)
Interrupt Request
Level 7-1
IRQ7-IRQ1
Provides external interrupt requests to the CPU32+ at
priority levels 7-1. (I)
Autovector/Interrupt
Acknowledge 5
System
Control
R/W
Function
AVEC/IACK5
Autovector request during an interrupt acknowledge cycle
(open-drain I/O) or interrupt level 5 acknowledge line. (O)
Soft Reset
RESETS
Soft system reset. (open-drain I/O)
Hard Reset
RESETH
Hard system reset. (open-drain I/O)
Halt
HALT
Suspends external bus activity. (open-drain I/O)
Bus Error
BERR
Indicates an erroneous bus operation is being attempted.
(open-drain I/O)
System Clock Out 1
CLKO1
Internal system clock output 1. (O)
System Clock Out 2
CLKO2
Internal system clock output 2 - normally 2x CLKO1. (O)
Crystal Oscillator
External Filter Capacitor
Clock Mode Select 1-0
EXTAL, XTAL
Connections for an external crystal to the internal oscillator
circuit. EXTAL (I), XTAL (O).
XFC
Connection pin for an external capacitor to filter the circuit of
the PLL. (I)
MODCK1-MODCK0
Selects the source of the internal system clock. (I) THESE
PINS SHOULD NOT BE SET TO 00
Instruction Fetch/
Development Serial Input
IFETCH/DSI
Indicates when the CPU32+ is performing an instruction
word prefetch (O) or input to the CPU32+ background debug
mode. (I)
Instruction Pipe 0/
Development Serial
Output
IPIPE0/DSO
Used to track movement of words through the instruction
pipeline (O) or output from the CPU32+ background debug
mode. (O)
IPIPE1/RAS1DD
Used to track movement of words through the instruction
pipeline (O), or a row address select 1 “double-drive” output
(O).
BKPT/DSCLK
Signals a hardware breakpoint to the QUICC (open-drain
I/O), or clock signal for CPU32+ background debug mode (I).
FREEZE/CONFIG2
Indicates that the CPU32+ has acknowledged a breakpoint
(O), or initial QUICC configuration select (I).
Instruction Pipe 1/Row
Address Select 1
Double-Drive
Breakpoint/Development
Serial Clock
Freeze/Initial
Configuration 2
7
2113A–HIREL–03/02
Table 1. System Bus Signal Index (Normal Operation) (Continued)
Group
Signal Name
Clock and Test
(Cont’d)
Three-State
TRIS
Used to three-state all pins if QUICC is configured as a
master. Always Sampled except during system reset. (I)
Test Clock
TCK
Provides a clock for Scan test logic. (I)
Test Mode Select
TMS
Controls test mode operations. (I)
Test Data In
TDI
Serial test instructions and test data signal. (I)
Test Data Out
TDO
Serial test instructions and test data signal. (O)
Test Reset
TRST
Provides an asynchronous reset to the test controller. (I)
Power
-Note:
8
Mnemonic
Function
Clock Synthesizer Power
VCCSYN
Power supply to the PLL of the clock synthesizer.
Clock Synthesizer Ground
GNDSYN
Ground supply to the PLL of the clock synthesizer.
Clock Out Power
VCCCLK
Power supply to clock out pins.
Clock Out Ground
GNDCLK
Ground supply to clock out pins.
Special Ground 1
GNDS1
Special ground for fast AC timing on certain system bus
signals.
Special Ground 2
GNDS2
Special ground for fast AC timing on certain system bus
signals.
System Power Supply and
Return
VCC, GND
Power supply and return to the QUICC.
No Connect
NC4-NC1
Four no-connect pins.
1. I denotes input, O denotes output and I/O is input/output.
TS68EN360
2113A–HIREL–03/02
TS68EN360
Table 2. Peripherals Signal Index
Group
Signal Name
Mnemonic
SCC
Receive Data
RXD4-RXD1
Serial receive data input to the SCCs. (I)
Transmit Data
TXD4-TXD1
Serial transmit data output from the SCCs. (O)
Request to Send
RTS4-RTS1
Request to send outputs indicate that the SCC is ready to
transmit data. (O)
Clear to Send
CTS4-CTS1
Clear to send inputs indicate to the SCC that data
transmission may begin. (I)
Carrier Detect
CD4-CD1
Carrier detect inputs indicate that the SCC should begin
reception of data. (I)
Receive Start
RSTRT1
This output from SCC1 identifies the start of a receive frame.
Can be used by an Ethernet CAM to perform address
matching. (O)
Receive Reject
RRJCT1
This input to SCC1 allows a CAM to reject the current
Ethernet frame after it determines the frame address did not
match. (I)
Clocks
IDMA
TIMER
CLK8-CLK1
Input clocks to the SCCs, SCMs, SI, and the baud rate
generators. (I)
DMA Request
DREQ2-DREQ1
A request (input) to an IDMA channel to start an IDMA
transfer. (I)
DMA Acknowledge
DACK2-DACK1
An acknowledgement (output) by the IDMA that an IDMA
transfer is
in progress. (O)
DMA Done
DONE2-DONE1
A bidirectional signal that indicates the last IDMA transfer in
a block of data. (I/O)
Timer Gate
TGATE2-TGATE1
Timer Input
TIN4-TIN1
Time reference input to the timer that allows it to function as
a counter. (I)
TOUT4-TOUT1
Output waveform (pulse or toggle) from the timer as a result
of a reference value being reached. (O)
SPI Master In Slave Out
SPIMISO
Serial data input to the SPI master (I); serial data output from
an SPI slave. (O)
SPI Master Out Slave In
SPIMOSI
Serial data output from the SPI master (O); serial data input
to an SPI slave. (I)
SPI Clock
SPICLK
Output clock from the SPI master (O); input clock to the SPI
slave. (I)
SPI Select
SPISEL
SPI slave select input. (I)
Timer Output
SPI
SMC
Function
An input to a timer that enables/disables the counting
function. (I)
SMC Receive Data
SMRXD2-SMRXD1
Serial data input to the SMCs. (I)
SMC Transmit Data
SMTXD2-SMTXD1
Serial data output from the SMCs. (O)
SMC Sync
SMSYN2-SMSYN1
SMC synchronization signal. (I)
9
2113A–HIREL–03/02
Table 2. Peripherals Signal Index (Continued)
Group
Signal Name
Mnemonic
SI
SI Receive Data
L1RXDA, L1RXDB
Serial input to the time division multiplexed (TDM) channel A
or channel B.
SI Transmit Data
L1TXDA, L1TXDB
Serial output from the TDM channel A or channel B.
SI Receive Clock
L1RCLKA, L1RCLKB
Input receive clock to TDM channel A or channel B.
SI Transmit Clock
L1TCLKA, L1TCLKB
Input transmit clock to TDM channel A or channel B.
SI Transmit Sync Signals
L1TSYNCA,
L1TSYNCB
Input transmit data sync signal to TDM channel A or
channel B.
SI Receive Sync Signals
L1RSYNCA,
L1RSYNCB
Input receive data sync signal to TDM channel A or
channel B.
IDL Interface Request
BRG
L1RQA, L1RQB
IDL interface request to transmit on the D channel. Output
from the SI.
SI Output Clock
L1CLKOA, L1CLKOB
Output serial data rate clock. Can output a data rate clock
when the input clock is 2x the data rate.
SI Data Strobes
L1ST4-L1ST1
Serial data strobe outputs can be used to gate clocks to
external devices that do not have a built-in time slot assigner
(TSA).
BRGO4-BRGO1
Baud rate generator output clock allows baud rate generator
to be used externally.
CLK2, CLK6
Baud rate generator input clock from which BRG will derive
the baud rates.
Baud Rate Generator
Out 4-1
BRG Input Clock
PIP
SDMA
Function
Port B 15-0
PB15-BP0
Strobe Out
STRBO
This input causes the PIP output data to be placed on the
PIP data pins.
Strobe In
STRBI
This input causes data on the PIP data pins to be latched by
the PIP as input data.
SDACK2-SDACK1
SDMA output signals used in RISC receiver to mark fields in
the Ethernet receive frame.
SDMA Acknowledge 2-1
Scope
PIP Data I/O Pins.
This drawing describes the specific requirements for the microcontroller TS68EN360 25 MHz and 33 MHz in compliance with MIL-STD-883 class B or Atmel standard
screening.
Applicable
Documents
MIL-STD-883
1. MIL-STD-883: test methods and procedures for electronics.
2. MIL-PRF-38535: general specifications for microcircuits.
3. DESC 5962-SMD-97607
10
TS68EN360
2113A–HIREL–03/02
TS68EN360
Requirements
General
This microcircuits are in accordance with the applicable document and as specified
herein.
Design and Construction
Terminal Connections
Depending on the package, the terminal connections shall be as shown in Figure 2 and
Figure 3.
Lead Material and Finish
Lead material and finish shall be as specified in MIL-STD-883 (see enclosed “Ordering
Information” on page 79).
Package
The macrocircuits are packaged in hermetically sealed ceramic packages which are
conform to case outlines of MIL-STD-1835 or as follow:
•
PGA but see “241-pin – PGA” on page 77
•
CERQUAD
The precise case outlines are described at the end of the specification (“Package
Mechanical Data” on page 77) and into MIL-STD-1835.
Electrical
Characteristics
Table 3. Absolute Maximum Ratings
Rating
Symbol
Value
Unit
VCC
-0.3 to +6.5
V
Input Voltage
VIN
-0.3 to +6.5
V
Storage Temperature Range
TSTG
-55 to +150
°C
Supply Voltage
(1)(2)
(1)(2)
Note:
This device contains protective circuitry against damage due to high static voltages or electrical fields; however, it is advised
that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND
or VDD).
Notes:
1. Permanent damage can occur if maximum ratings are exceeded. Exposure to voltages or currents in excess of recommended values affects device reliability. Device modules may not operate normally while being exposed to electrical
extremes.
2. Although sections of the device contain circuitry to protect against damage from high static voltages or electrical fields, take
normal precautions to avoid exposure to voltages higher than maximum-rated voltages.
3. The supply voltage VCC must start and restart from 0.0V; otherwise, the 360 will not come out of reset properly.Unless otherwise stated, all voltages are referenced to the reference terminal.
11
2113A–HIREL–03/02
Table 4. Recommended Conditions Of Use
Unless otherwise stated, all voltages are referenced to the reference terminal.
Symbol
Parameter
Min.
VCC
Supply Voltage Range
VIL
Typ.
Max.
Unit
+4.75
+5.25
V
Logic Low Level Input Voltage Range
GND
+0.8
V
VIH
Logic High Level Input Voltage Range
+2.0
VCC
V
Tcase
Operating Temperature
-55
+125
°C
VOH
High Level Output Voltage
+2.4
fsys
System Frequency
V
(For 25 MHz version)
25
MHz
(For 33 MHz version)
33
MHz
Value
Unit
Table 5. Thermal Characteristics
Symbol
Parameter
θJC
Thermal Resistance - Junction to Case
θJA
Thermal Resistance - Junction to Ambient
240-pin Cerquad
2
241-pin PGA
7
240-pin Cerquad
27.4
241-pin PGA
22.8
°C/W
°C/W
TJ = TA + (PD · θJA)
PD = (VDD · IDD) + PI/O
Where PI/O is the power dissipation on pins.
Power Considerations
The average chip-junction temperature, TJ, in °C can be obtained from:
TJ = TA ÷ (PD · ΘJA)
(1)
where:
TA = Ambient Temperature, °C
ΘJA = Package Thermal Resistance,
Junction-to-Ambient, C/W
PD = PINT + P I/O
PINT = ICC · VCC, Watts-chip Internal Power
PI/O = Power Dissipation on Input and Output Pins-User Determined
For most applications, PI/O < 0.3 · PINT and can be neglected.
An approximate relationship between PD and TJ (if PI/O is neglected) is:
PD = K ÷ (TJ + 273°C)
(2)
Solving Equations (1) and (2) for K gives:
K = PD · (TA + 273°C) + ΘJA · PD2
(3)
where K is a constant pertaining to the particular part. K can be determined from Equation (3) by measuring PD (at thermal equilibrium) for a know TA. Using this value of K,
the values of PD and TJ can be obtained by solving Equations (1) and (2) iteratively for
any value of TA.
12
TS68EN360
2113A–HIREL–03/02
TS68EN360
Mechanical and
Environment
The microcircuits shall meet all mechanical environmental requirements of either
MIL-STD-883 for class B devices or for Atmel standard screening.
Marking
The document where are defined the marking are identified in the related reference documents. Each microcircuit are legible and permanently marked with the following
information as minimum:
•
Atmel logo
•
Manufacturer’s part number
•
Class B identification
•
Date-code of inspection lot
•
ESD identifier if available
•
Country of manufacturing
Quality Conformance
Inspection
DESC/MIL-STD-883
Is in accordance with MIL-M-38535 and method 5005 of MIL-STD-883. Group A and B
inspections are performed on each production lot. Group C and D inspections are performed on a periodical basis.
Electrical
Characteristics
General Requirements
All static and dynamic electrical characteristics specified for inspection purposes and the
relevant measurement conditions are given below:
•
Static electrical characteristics for the electrical variants
•
Dynamic electrical characteristics for TS68EN360
(25 MHz, 33 MHz)
For static characteristics, test methods refer to IEC 748-2 method number, where
existing.
For dynamic characteristics, test methods refer to clause “Static Characteristics” on
page 14 of this specification.
13
2113A–HIREL–03/02
Static Characteristics
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary. (See numbered notes).
Characteristic
Symbol
Min.
Max.
Unit
Input High Voltage (except EXTAL)
VIH
2.0
VCC
V
Input Low Voltage (5V Part)
VIL
GND
0.8
V
Input Low Voltage (Part Only; PA8-15, PB1, PC5, PC7, TCK)
VIL
GND
0.5
V
Input Low Voltage (Part Only; All Other Pins)
VIL
GND
0.8
V
VIHC
0.8*(VCC)
VCC + 0.3
V
-
-
-0.8
V
Input Leakage Current (All Input Only Pins except for TMS, TDI and TRST)
Vin = 0/5V
Iin
-2.5
2.5
µA
Hi-Z (Off-State) Leakage Current (All Noncrystal Outputs and I/O Pins except
TMS,TDI and TRST) Vin = 0/5V
IOZ
-2.5
-2.5
µA
Signal Low Input Current VIL = 0.8V (TMS, TDI and TRST Pins Only)
Signal High Input Current VIH = 2.0V (TMS, TDI and TRST Pins Only)
IL
IH
-0.5
-0.5
0.5
0.5
mA
mA
VOH
2.4
-
V
EXTAL Input High Voltage
Undershoot
Output High Voltage
IOH = -0.8 mA, VCC = 4.75V
AII Noncrystal Outputs Except Open Drain Pins
Output Low Voltage
IOL = 2.0 mA, CLKO1-2, FREEZE, IPIPE0-1, IFETCH, BKPTO
IOL = 3.2 mA, A31-A0, D31-D0, FC3-0, SIZ0-1, PA0, 2, 4, 6, 8-15, PB0-5,
PB8-17, PC0-11, TDO, PERR, PRTY0-3, IOUT0-2, AVECO, AS, CAS3-0,
BLCRO, RAS0-7
IOL = 5.3 mA, DSACK0-1, R/W, DS, OE, RMC, BG, BGACK, BERR
IOL = 7 mA, TXD1-4
IOL = 8.9 mA, PB6, PB7, HALT, RESET, BR (Output)
VOL
Input Capacitance
AII I/O Pins
Cin
-
20
pF
Load Capacitance (except CLKO1-2)
CL
-
100
pF
Load Capacitance (CLKO1-2)
CLc
50
pF
Power
VCC
5.25
V
Dynamic Characteristics
0.5
0.5
V
0.5
0.5
0.5
4.75
The AC specifications presented consist of output delays, input setup and hold times,
and signal skew times. All signals are specified relative to an appropriate edge of the
clock and possibly to one or more other signals.
The measurement of the AC specifications is defined by the waveforms shown in Figure
5. To test the parameters guaranteed by Atmel inputs must be driven to the voltage levels specified in the figure. Outputs are specified with minimum and/or maximum limits,
as appropriate, and are measured as shown. Inputs are specified with minimum setup
and hold times and are measured as shown. Finally, the measurement for signal-to-signal specifications are shown.
Note that the testing levels used to verify conformance to the AC specifications do not
affect the guaranteed DC operation of the device as specified in the DC electrical
characteristics.
14
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 5. Drive Levels and Test Points For AC Specifications
2.0V
2.0V
CLKOUT
0.8V
0.8V
A
B
OUTPUTS(1)
VALID
OUTPUT n
2.0V
2.0V
0.8V
0.8V
VALID
OUTPUT
A
n+1
B
VALID
OUTPUT n
OUTPUTS(2)
C
INPUTS(3)
2.0V
2.0V
0.8V
0.8V
2.0V
0.8V
C
2.0V
INPUTS(4)
0.8V
ALL SIGNALS(5)
VALID
OUTPUT n+1
D
VALID
INPUT
0.8V
2.0V
D
VALID
INPUT
2.0V
0.8V
DRIVE
TO 2.4V
DRIVE
TO 0.5V
2.0V
0.8V
E
F
2.0V
0.8V
Notes:
1.
2.
3.
4.
5.
This output timing is applicable to all parameters specified relative to the rising edge of the clock.
This output timing is applicable to all parameters specified relative to the falling edge of the clock.
This input timing is applicable to all parameters specified relative to the rising edge of the clock.
This input timing is applicable to all parameters specified relative to the falling edge of the clock.
This timing is applicable to all parameters specified relative to the assertion/negation of another signal.
Legend:
a) Maximum output delay specification.
b) Minimum output hold time.
c) Minimum input setup time specification.
d) Minimum input hold time specification.
e) Signal valid to signal valid specification (maximum or minimum).
f) Signal valid to signal invalid specification (maximum or minimum).
15
2113A–HIREL–03/02
AC Power Dissipation
Table 6. Typical Current Drain
Mode of Operation
System Clock
Frequency
BRGCLK Clock
Frequency
SyncCLK Clock
Frequency
Typ
Unit
(1)
and Rev B )
IDD
25 MHz
25 MHz
25 MHz
250
mA
(3)
and Newer)
IDD
25 MHz
25 MHz
25 MHz
237
mA
IDD
33 MHz
33 MHz
33 MHz
327
mA
Low Power Mode
IDDSB
Divide by 2
12.5 MHz
Divide by 16
1.56 MHz
Divide by 2
12.5 MHz
150
mA
Low Power Mode
IDDSB
Divide by 4
6.25 MHz
Divide by 16
1.56 MHz
Divide by 4
6.25 MHz
85
mA
Low Power Mode
IDDSB
Divide by 16
1.56 MHz
Divide by 16
1.56 MHz
Divide by 4
6.25 MHz
35
mA
Low Power Mode
IDDSB
Divide by 256
97.6 kHz
Divide by 16
1.56 MHz
Divide by 4
6.25 MHz
20
mA
Low Power Mode
IDDSB
Divide by 256
97.6 kHz
Divide by 64
390 kHz
Divide by 64
390 kHz
13
mA
Low Power Stop VCO Off(4)
IDDSP
0.5
mA
PLL Supply Current
PLL Disabled
PLL Enabled
IDDPD
IDDPE
TBD
TBD
Normal mode (Rev A
Normal Mode (Rev C
(2)
Symbol
Normal Mode
Notes:
1.
2.
3.
4.
Rev A mask is C63T
Rev B masks are C69T and F35G
Current Rev C masks are E63C, E68C and F15W
EXTAL frequency is 32 kHz
All measurements were taken with only CLKO1 enabled, VCC = 5.0V, VIL = 0V and VIH = VCC
Table 7. Maximum Power Dissipation
Notes:
16
System Frequency
VCC
Max PD
Unit
Mask
25 MHz
5.25V
1.80
W
REV A(1) and REV B(2)
25 MHz
5.25V
1.45
W
REV C(3) and Newer
25 MHz
3.6V
0.65
W
REV C(3) and Newer
33 MHz
5.25V
2.00
W
REV C(3) and Newer
1. Rev A mask is C63T
2. Rev B masks are C69T and F35G
3. Current Rev C masks are E63C, E68C and F15W
TS68EN360
2113A–HIREL–03/02
TS68EN360
AC Electrical Specifications Control Timing
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary (See Figure 6).
25 MHz
Number
Characteristic
33.34 MHz
Symbol
Min
Max
System Frequency
fsys
dc(1)
25.00
Crystal Frequency
fXTAL
25
6000
On-Chip VCO System Frequency
fsys
20
50
Start-up Time
With external clock (oscillator disabled) or after
changing the multiplication factor MF
tpll
Min
Max
Unit
33.34
MHz
25
6000
kHz
20
67
MHz
2500
clks
%
∆CLK
TBD
TBD
CLKO1 Period
tcyc
40
-
30
-
ns
1A
EXTAL Duty Cycle, MF
tdcyc
40
60
40
60
%
1C
External Clock Input Period
tEXTcyc
40
-
30
-
ns
2, 3
CLKO1 Pulse Width (Measured at 1.5V)
tCW1
19
-
14
-
ns
2A, 3A
CLKO2 Pulse Width (Measured at 1.5V)
tCW2
9.5
-
7
-
ns
4, 5
CLKO1 Rise and Fall Times (Full drive)
tCrf1
-
2
-
2
ns
4A, 5A
CLKO2 Rise and Fall Times (Full drive)
tCrf2
-
2
-
1.6
ns
CLKO1-2 stability
1
5B
EXTAL to CLKO1 Skew-PLL enabled (MF< 5)
tEXTP1
a
a
ns
5C
EXTAL to CLKO2 Skew-PLL enabled (MF< 5)
tEXTP2
a
a
ns
5D
CLKO1 to CLKO2 Skew
AtmelKW
a
a
ns
Note:
1. Note that the minimum VCO frequency and the PLL default values put some restrictions on the minimum system frequency.
The following calculation should be used to determine the actual value for specifications 5B, 5C and 5D.
5B:
25 MHz
±(0.9 ns + 0.25 x (rise time)) (1.4 ns @ rise = 2 ns; 1.9 ns @ rise = 4 ns)
33 MHz
±(0.5 ns + 0.25 x (rise time)) (1 ns @ rise = 2 ns; 1.5 ns @ rise = 4 ns)
5C:
25/33 MHz ±(2 ns + 0.25 x (rise time)) (2.5 ns @ rise = 2 ns; 3 ns @ rise = 4 ns)
5D:
25 MHz
±(3 ns + 0.5 x (rise time)) (4 ns @ rise = 2 ns; 5 ns @ rise = 4 ns)
33 MHz
±(2.5 ns + 0.5 x (rise time)) (3.5 ns @ rise = 2 ns; 4.5 ns @ rise = 4 ns)
17
2113A–HIREL–03/02
Figure 6. Clock Timing
1A
1C
EXTAL
(INPUT)
VOLTAGE MIDPOINT
1
5C
5B
CLKO1
(OUTPUT)
2
4
5
3
5D
CLKO2
(OUTPUT)
4A
5A
2A
3A
External Capacitor For PLL
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary.
Characteristic
Symbol
Min
Max
Unit
(1)
MF x 340
MF x 480
pF
(1)
MF x 380
MF x 970
pF
PLL External Capacitor (XFC to VCCSYN)
cXFC
MF< 5 (Recommended value MF x 400 pF)
MF> 4 (Recommended value MF x 540 pF)
Note:
1. MF - multiplication factor.
Examples:
Notes:
18
1. MODCK1 pin = 0, MF = 1 ⇒ CXFC = 400 pF
2. MODCK1 pin = 1, crystal is 32.768 kHz (or 4.192 MHz), initial MF = 401, initial frequency = 13.14 MHz, later on MF is
changed to 762 to support a frequency of 25 MHz. Minimum CXFC is: 762 x 380 = 289 nF, Maximum CXFC is: 401 x 970 = 390
nF. The recommended CXFC for 25 MHz is: 762 x 540 = 414 nF. 289 nF < CXFC < 390 nF and closer to 414 nF. The proper
available value for CXFC is 390 nF.
3. MODCK1 pin = 1, crystal is 32.768 kHz (or 4.192 MHz), initial MF = 401, initial frequency = 13.14 MHz, later on MF is
changed to 1017 to support a frequency of 33.34 MHz. Minimum CXFC is: 1017 x 380 = 386 nF, Maximum CXFC is: 401 x
970 = 390 nF ⇒ 386 nF < CXFC < 390 nF. The proper available value for CXFC is 390 nF.
4. In order to get higher range, higher crystal frequency can be used (i.e. 50 kHz), in this case:
Minimum CXFC is: 667 x 380 = 253 nF, Maximum CXFC is: 401 x 970 = 390 nF ⇒ 386 nF < CXFC < 390 nF.
TS68EN360
2113A–HIREL–03/02
TS68EN360
Bus Operation AC Timing Specifications
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7 to Figure 23).
25 MHz
Number
Symbol
Min
Max
Min
Max
Unit
CLKO1 High to Address, FC, SIZ, RMC Valid
tCHAV
0
15
0
12
ns
CLKO1 High to Address Valid (GAMX = 1)
tCHAV
0
20
0
15
ns
7
CLKO1 High to Address, Data, FC, SIZ, RMC High
Impedance
tCHAZx
0
40
0
30
ns
8
CLKO1 High to Address, Data, FC, SIZ, RMC
Invalid
tCHAZn
-2
-
-2
-
ns
9
CLKO1 Low to AS, DS, OE, WE, IFETCH, IPIPE,
IACKx Asserted
tCLSA
3
20
3
15
ns
CLKO1 Low to CSx/RASx Asserted
tCLSA
4
16
4
12
ns
CLKO1 High to CSx/RASx Asserted
tCHCA
4
16
4
12
ns
9A(2)(10)
AS to DS or CSx/RASx or OE Asserted (Read)
tSTSA
-6
6
-5.625
5.625
ns
9C(2)(11)
AS to CSx/RASx Asserted
tSTCA
14
26
9
21
ns
Address, FC, SIZ, RMC, valid to AS, CSx/RASx,
OE, WE, (and DS Read) Asserted
tAVSA
10
-
8
-
ns
Address, FC, SIZ, RMC, Valid to CSx/RASx
Asserted
tAVCA
30
-
22.5
-
ns
CLKO1 Low to AS, DS, OE, WE, IFETCH, IPIPE,
IACKx Negated
tCLSN
3
20
3
15
ns
CLKO1 Low to CSx/RASx Negated
tCLSN
4
16
4
12
ns
CLKO1 High to CSx/RASx Negated
tCHCN
4
16
4
12
ns
AtmelTW
15
-
12
-
ns
6
6A
9(10)
(11)
9B
11(10)
11A(11)
12
12(16)
(13)(16)
12A
Characteristic
33.34 MHz
12B
CS negate to WE negate (CSNTQ = 1)
13(12)
AS, DS, CSx, OE, WE, IACKx Negated to Address,
FC, SIZ Invalid (Address Hold)
tSNAI
10
-
7.5
-
ns
13A(13)
CSx Negated to Address, FC, SIZ, Invalid (Address
Hold)
tCNAI
30
-
22.5
-
ns
14(10)(12)
AS, CSx, OE, WE (and DS Read) Width Asserted
tSWA
75
-
56.25
-
ns
CSx Width Asserted
tCWA
35
-
26.25
-
ns
(11)(13)
14C
14A
DS Width Asserted (Write)
tSWAW
35
-
26.25
-
ns
14B
AS, CSx, OE, WE, IACKx, (and DS Read) Width
Asserted (Fast Termination Cycle)
tSWDW
35
-
26.25
-
ns
CSx Width Asserted (Fast Termination Cycle)
tCWDW
15
-
10
-
ns
tSN
35
-
26.25
-
ns
CLKO1 High to AS, DS, R/W High Impedance
tCHSZ
-
40
-
30
ns
AS, DS, CSx, WE Negated to R/W High
tSNRN
10
-
7.5
-
ns
17A(13)
CSx Negated to R/W High
tCNRN
30
-
22.5
-
ns
18
CLKO1 High to R/W High
tCHRH
0
20
0
15
ns
14D(13)
(3)(10)(12)
15
16
17
(12)
AS, DS, CSx, OE, WE Width Negated
19
2113A–HIREL–03/02
Bus Operation AC Timing Specifications (Continued)
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7 to Figure 23).
25 MHz
Number
Symbol
Min
Max
Min
Max
Unit
CLKO1 High to R/W Low
tCHRL
3
20
3
15
ns
R/W High to AS, CSx, OE Asserted
tRAAA
10
-
7.5
-
ns
R/W High to CSx Asserted
tRACA
30
-
-
ns
22
R/W Low to DS Asserted (Write)
tRASA
47
-
36
-
ns
23
CLKO1 High to Data-Out
tCHDO
-
23
-
18
ns
23A
CLKO1 High to Parity Valid
tCHPV
-
25
-
20
ns
23B
Parity Valid to CAS Low
tPVCL
3
-
3
-
ns
24(12)
Data-Out, Parity-Out Valid to Negating Edge of AS,
CSx, WE, (Fast Termination Write)
tDVASN
10
-
7.5
-
ns
25(12)
DS, CSX, WE Negated to Data-Out, Parity-Out
Invalid (Data-Out, Parity-Out Hold)
tSNDOI
10
-
7.5
-
ns
CSx Negated to Data-Out, Parity-Out Invalid (DataOut, Parity-Out Hold)
tCNDOI
35
-
25
-
ns
Data-Out, Parity-Out Valid to DS Asserted (Write)
tDVSA
10
-
7.5
-
ns
Data-In, Parity-In to CLKO1 Low (Data-Setup)
tDICL
1
-
1
-
ns
Data-In, Parity-In Valid to CLKO1 Low (Data-Setup)
tDICL
20
-
15
-
ns
27A
Late BERR, HALT, BKPT Asserted to CLKO1 Low
(Setup Time)
tBELCL
10
-
7.5
-
ns
28(18)
AS, DS Negated to DSACKx, BERR, HALT
Negated
tSNDN
0
50
0
37.5
ns
29(4)
DS, CSx, OE, Negated to Data-In Parity-In Invalid
(Data-In, Parity-In Hold)
tSNDI
0
-
0
-
ns
29A(4)
DS, CSx, OE Negated to Data-In High Impedance
tSHDI
-
40
-
30
ns
CLKO1 Low to Data-In, Parity-In Invalid (Fast
Termination Hold)
tCLDI
10
-
7.5
-
ns
30A(4)
CLKO1 Low to Data-In High Impedance
tCLDH
-
60
-
45
ns
31(5)(15)
DSACKx Asserted to Data-in, Parity-In Valid
tDADI
-
32
-
24
ns
31A
DSACKx Asserted to DSACKx Valid (Skew)
tDADV
-
10
-
7.5
ns
DSACKx Asserted to Data-in, Parity-In Valid
tDADI
-
35
-
26
ns
32
HALT an RESET Input Transition Time
tHRrf
-
140
-
33
CLKO1 High to BG Asserted
tCLBA
-
20
-
15
ns
34
CLKO1 High to BG Negated
tCLBN
-
20
22.5
15
ns
BR Asserted to BG Asserted (RMC Not Asserted)
tBRAGA
1
-
1
-
CLKO1
37
BGACK Asserted to BG Negated
tGAGN
1
2.5
1
2.5
CLKO1
39
BG Width Negated
tGH
2
-
2
-
CLKO1
39A
BG Width Asserted
tGA
1
-
1
-
CLKO1
20
21(10)
(11)
21A
25A(13)
26
27(15)
(14)
27B
30(4)
(5)(14)
31B
35
20
(6)
Characteristic
33.34 MHz
ns
TS68EN360
2113A–HIREL–03/02
TS68EN360
Bus Operation AC Timing Specifications (Continued)
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7 to Figure 23).
25 MHz
Number
Symbol
Min
Max
Min
Max
Unit
R/W Width Asserted (Write or Read)
tRWA
100
-
75
-
ns
46A
R/W Width Asserted (Fast Termination Write or
Read)
tRWAS
75
-
56
-
ns
47A
Asynchronous Input Setup Time
tAIST
5
-
4
-
ns
47B
Asynchronous Input Hold Time
tAIHT
10
-
7.5
-
ns
DSACKx Asserted to BERR, HALT Asserted
tDABA
-
30
-
22.5
ns
53
Data-Out, Parity-Out Hold from CLKO1 High
tDOCH
0
-
0
-
ns
54
CLKO1 High to Dat-Out, Parity-Out High
Impedance
tCHDH
-
20
-
15
ns
55
R/W Asserted to Data Bus Impedance Change
tRADC
25
-
19
-
ns
56
RESET Pulse Width (Reset Instruction)
tHRPW
512
-
512
-
CLKO1
RESET Pulse Width (Input from External Device)
tRPWI
20
-
20
-
CLKO1
57
BERR Negated to HALT Negated (Return)
tBNHN
0
-
0
-
ns
58
CLKO1 High to BERR, RESETS, RESETH Driven
Low
tCHBRL
-
30
26
ns
58A
CLKO1 Low RESETS Driven Low (upon Reset
Instruction execution only)
tCLRL
-
30
26
ns
58B
CLKO1 High to BERR, RESETS, RESETH
tri-stated
tCLRL
-
20
-
15
ns
46
48
(5)(7)
56A
Characteristic
33.34 MHz
60
CLKO1 High to BCLRO Asserted
tCHBCA
-
20
-
15
ns
61
CLKO1 High to BCLRO Negated
tCHBCN
-
20
-
15
ns
BR Synchronous Setup Time
tBRSU
5
-
3.75
-
ns
63(9)
BR Synchronous Hold Time
tBRH
10
-
7.5
-
ns
64(9)
BGACK Synchronous Setup Time
tBGSU
5
-
3.75
-
ns
BGACK Synchronous Hold Time
tBGH
10
-
7.5
-
ns
66
BR Low to CLKO1 Rising Edge (040 comp. mode)
tBRCH
5
-
5
-
ns
70
CLKO1 Low to Data Bus Driven (Show Cycle)
tSCLDD
0
30
0
22.5
ns
71
Data Setup Time to CLKO1 Low (Show Cycle)
tSCLDS
10
-
7.5
-
ns
72
Data Hold from CLKO1 Low (Show Cycle)
tSCLDH
6
-
3.75
-
ns
73
BKPT Input Setup Time
tBKST
10
-
7.5
-
ns
74
BKPT Input Hold Time
tBKHT
6
-
3.75
-
ns
75
RESETH Low to Config2-0, MOD1-0, B16M Valid
tMST
-
500
-
500
CLKO1
76
Config2-0
tMSH
0
-
0
-
ns
77
MOD1-0 Hold Time, B16M Hold Time
tMSH
10
-
10
-
CLKO1
80
DSI Input Setup Time
tDSISU
10
-
7.5
-
ns
62
65
(9)
(9)
21
2113A–HIREL–03/02
Bus Operation AC Timing Specifications (Continued)
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 7 to Figure 23).
25 MHz
Number
Symbol
Min
Max
Min
Max
Unit
81
DSI Input Hold Time
tDSIH
6
-
3.75
-
ns
82
DSCLC Setup Time
tDSCSU
10
-
7.5
-
ns
83
DSCLC Hold Time
tDSCH
6
-
3.75
-
ns
84
DSO Delay Time
tDSOD
-
tcyc+2
0
-
tcyc+2
0
ns
85
DSCLK Cycle
tDSCCYC
2
-
2
-
CLKO1
86
CLKO1 High to Freeze Asserted
tFRZA
0
35
0
26.25
ns
87
CLKO1 High to Freeze Negated
tFRZN
0
35
0
26.25
ns
88
CLKO1 High to IFETCH High Impedance
tIFZ
0
35
0
26.25
ns
89
CLKO1 High to IFETCH Valid
tIF
0
35
0
26.25
ns
90
CLKO1 High to PERR Asserted
tCHPA
0
20
0
15
ns
91
CLKO1 High to PERR Negated
tCHPN
0
20
0
15
ns
92
VCC Ramp-Up Time At Power-On Reset
tRMIN
5
-
5
-
ns
Notes:
22
Characteristic
33.34 MHz
1. All AC timing is shown with respect to 0.8V and 2.0V levels unless otherwise noted.
2. This number can be reduced to 5 ns if strobes have equal loads.
3. If multiple chip selects are used, the CSx width negated (#15) applies to the time from the negation of a heavily loaded chip
select to the assertion of a lightly loaded chip select.
4. Hold times are specified with respect to DS or CSx on asynchronous reads and with respect to CLKO1 on fast termination
reads. The user is free to use either hold time for fast termination reads.
5. If the asynchronous setup (#17) requirements are satisfied, the DSACKx low to data setup time (#31) and DSACKx low to
BERR low setup time (#48) can be ignored. The data must only satisfy the data-in to CLKO1 low setup time (#27) for the following clock cycle: BERR must only satisfy the late BERR low to CLKO1 low setup time (#27A) for the following clock cycle.
6. To ensure coherency during every operand transfer, BG will not be asserted in response to BR until after cycles of the current operand transfer are complete and RMC is negated.
7. In the absence of DSACKx, BERR is an asynchronous input using the asynchronous setup time (#47).
8. During interrupt acknowledge cycles, the processor may insert up to two wait states between states S0 and S1.
9. Specs are for Synchronous Arbitration only. ASTM = 1.
10. CSx specs are for TRLX = 0.
11. CSx specs are for TRLX = 1.
12. CSx specs are for CSNTQ = 0.
13. CSx specs are for CSNTQ = 1; or RASx specs for DRAM accesses.
14. Specs are read cycles with parity check and PBEE = 1.
15. Specs are read cycles with parity check and PBEE = 0, PAREN = 1.
16. RASx specs are for page miss case.
17. Specifications only apply to CSx/RASx pins.
18. Specification applies to non fast termination cycles. In fast termination cycles, the BERR signal must be negated by 20 ns
after negation of AS, DS.
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 7. Read Cycle
S0
S1
S2
S3
S4
S5
CLKO1
(OUTPUT)
6
8
A31-A0
(OUTPUT)
FC3-FC0
(OUTPUT)
SIZ1-SIZ0
(OUTPUT)
RMC
(OUTPUT)
11
16
14
AS
(OUTPUT)
12
9
13
DS
(OUTPUT)
15
9A
CSx
(OUTPUT)
OE
(OUTPUT)
18
20
21
R/W
(OUTPUT)
46
DSACK0
(I/O)
28
47A
DSACK1
(I/O)
31A
29
31
D31-D0
(INPUT)
27
48
BERR,
HALT
(INPUT)
IFETCH
IPIPE1,0
(OUTPUT)
27A
9
47A
29A
12
12
47B
ASYNCHRONOUS
INPUTS
73
74
BKPT
(INPUT)
Note:
All timing is shown with respect to 0.8V and 2.0V levels.
23
2113A–HIREL–03/02
Figure 8. Fast Termination Read Cycle (Parity Check PAREN = 1, PBEE = 0)
CPU CLEARS PERn BIT
S1
S0
S4
S5
S0
S0
CLKO1
(OUTPUT)
8
6
A31-A0
(OUTPUT)
FC3-FC0
(OUTPUT)
SIZ1-SIZ0
(OUTPUT)
9
14B
AS
(OUTPUT)
12
DS
(OUTPUT)
CSx
(OUTPUT)
OE
(OUTPUT)
R/W
(OUTPUT)
18
46A
27
30
D31-D0
(INPUT)
30A
73
74
BKPT
(INPUT)
90
91
PERR
(OUTPUT)
24
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 9. Read Cycle (With Parity Check, PBEE = 1)
S0
S1
S2
S3
S4
S5
CLKO1
(OUTPUT)
6
8
A31-A0, FC3-FC0,
SIZ1-SIZ0 (OUTPUT)
RMC
(OUTPUT)
11
16
14
AS
(OUTPUT)
12
9
13
DS
(OUTPUT)
15
9A
CSx
(OUTPUIT)
OE
(OUTPUT)
18
21
20
R/W
(OUTPUT)
46
31A
DSACK0
(I/O)
47A
28
DSACK1
(I/O)
PRTY0-PRTY3
(INPUT)
29
31B
D31-D0
(INPUT)
29A
27B
BERR
(INPUT)
48
27A
HALT
(INPUT)
9
12
12
IFETCH
(OUTPUT)
47A
47B
IPIPE1,0
(OUTPUT)
ASYNCHRONOUS
INPUTS
73
74
BKPT
(INPUT)
Note:
All timing is shown with respect to 0.8V and 2.0V levels.
25
2113A–HIREL–03/02
Figure 10. SRAM: Read Cycle (TRLX = 1)
S0
S2
S1
S3
S4
S5
CLKO1
(OUTPUT)
6
8
A31-A0
(OUTPUT)
FC3-FC0
(OUTPUT)
SIZ1-SIZ0
(OUTPUT)
RMC
(OUTPUT)
16
9C
AS
(OUTPUT)
13
11A
12
DS
(OUTPUT)
15
9B
CSx
(OUTPUT)
20
21A
OE
(OUTPUT)
18
R/W
(OUTPUT)
46
28
DSACK0
(I/O)
47A
DSACK1
(I/O)
31A
29
31
D31-D0
(INPUT)
29A
27
26
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 11. CPU32+ IACK Cycle
0-2 CLOCKS *
A1
S0
A2
A3
A4
S1
S2
S3
S4
S5
CLKO1
(OUTPUT)
8
6
A31-A0
(OUTPUT)
FC3-FC0
(OUTPUT)
SIZ1-SIZ0
(OUTPUT)
11
16
14
AS
(OUTPUT)
13
9
12
DS
(OUTPUT)
15
9A
IACKx
(OUTPUT)
OE
(OUTPUT)
18
20
21
R/W
(OUTPUT)
46
31A
28
DSACK0
(I/O)
47A
DSACK1
(I/O)
31
29
D31-D0
(INPUT)
29A
27
Note:
Up to two wait states may be inserted by the processor between states S0 and S1.
27
2113A–HIREL–03/02
Figure 12. Write Cycle
S1
S0
S3
S2
S4
S5
CLKO1
(OUTPUT)
6
8
A31-A0
(OUTPUT)
FC3-FC0
(OUTPUT)
SIZ1-SIZ0
(OUTPUT)
11
15
14
AS
(OUTPUT)
9
12
9
13
DS
(OUTPUT)
14A
CSn
(OUTPUT)
22
WEn
(OUTPUT)
17
18
20
R/W
(OUTPUT)
46
DSACK0
(I/O)
31A
28
47A
DSACK1
(I/O)
25
55
53
D31-D0
(OUTPUT)
23
54
26
PRTY3-PRTY0
(OUTPUT)
BERR
(INPUT)
48
HALT
(INPUT)
73
74
BKPT
(INPUT)
Note:
28
All timing is shown with respect to 0.8V and 2.0V levels.
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 13. Fast Termination Write Cycle
S1
S0
CLKO1
(OUTPUT)
S4
S0
S5
8
6
A31-A0
(OUTPUT)
FC3-FC0
(OUTPUT)
SIZ1-SIZ0
(OUTPUT)
12
AS
(OUTPUT)
9
14B
CSx
(OUTPUT)
DS
(OUTPUT)
WEx
(OUTPUT)
20
46A
R/W
(OUTPUT)
23
18
24
D31-D0
(OUTPUT)
25
PRTY3-PRTY0
(OUTPUT)
73
74
BKPT
(INPUT)
Figure 14. SRAM: Fast Termination Write Cycle (CSNTQ = 1)
S4
S1
S0
S5
S0
CLKO1
(OUTPUT)
8
6
A31-A0
(OUTPUT)
FC3-FC0
(OUTPUT)
SIZ1-SIZ0
(OUTPUT)
12A
AS
(OUTPUT)
9
14D
CSx
(OUTPUT)
DS
(OUTPUT)
WEx
(OUTPUT)
20
46A
R/W
(OUTPUT)
18
23
D31-D0
(OUTPUT)
25A
PRTY3-PRTY0
(OUTPUT)
29
2113A–HIREL–03/02
Figure 15. SRAM: Write Cycle (TRLX = 1, CSNTQ = 1, TCYC = 0)
S1
S0
S3
S2
S4
S5
CLKO1
(OUTPUT)
A31-A0
(OUTPUT)
AS
(OUTPUT)
9C
DS
(OUTPUT)
11A
9B
12A
CSx
(OUTPUT)
14C
WEx
(OUTPUT)
13A
20
17A
22
R/W
(OUTPUT)
46
47A
DSACK0
(I/O)
31A
DSACK1
(I/O)
55
25A
26
D31-D0
(OUTPUT)
23
PRTY0-PRTY3
(OUTPUT)
Note:
All timing is shown with respect to 0.8V and 2.0V levels.
Figure 16. ASYNC Bus Arbitration – IDLE Bus Case
CLKO1
(OUTPUT)
A31-A0
(OUTPUT)
D31-D0
(OUTPUT)
AS
(OUTPUT)
47A
47A
BR
(INPUT)
35
37
BG
(OUTPUT)
33
34
47A
BGACK
(INPUT)
47A
BCLRO
(OUTPUT)
60
30
61
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 17. ASYNC Bus Arbitration – Active Bus Case
S0
S1
S2
S3
S4
S5
CLKO1
(OUTPUT)
A31-A0
(OUTPUT)
7
D31-D0
(OUTPUT)
AS
(OUTPUT)
16
DS
(OUTPUT)
R/W
(OUTPUT)
DSACK0
(I/O)
DSACK1
(I/O)
47A
47A
BR
(INPUT)
39A
35
BG
(OUTPUT)
33
34
BGACK
(INPUT)
47A
37
BCLRO
(OUTPUT)
60
Figure 18. SYNC Bus Arbitration – IDLE Bus Case
CLKO1
(OUTPUT)
A31-A0
(OUTPUT)
D31-D0
(OUTPUT)
AS
(OUTPUT)
63
62
BR
(INPUT)
37
35
BG
(OUTPUT)
33
34
65
BGACK
(INPUT)
64
BCLRO
(OUTPUT)
60
61
31
2113A–HIREL–03/02
Figure 19. SYNC Bus Arbitration – Active Bus Case
S0
S1
S2
S3
S4
S5
S98
CLKO1
(OUTPUT)
A31-A0
(OUTPUT)
7
D31-D0
(OUTPUT)
AS
(OUTPUT)
16
DS
(OUTPUT)
R/W
(OUTPUT)
DSACK0
(I/O)
DSACK1
(I/O)
62
BR
(INPUT)
35
39A
BG
(OUTPUT)
33
34
BGACK
(INPUT)
64
37
BCLRO
(OUTPUT)
60
Figure 20. Configuration and Clock Mode Select Timing
RESETH
CONFIG2-CONFIG0,
76
MODCK1-MODCK0,
16BM
75
32
77
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 21. Show Cycle
S0
S41
S42
S0
S43
S2
S1
CLKO1
(OUTPUT)
8
6
A31-A0
(OUTPUT)
18
R/W
(OUTPUT)
20
AS
(OUTPUT)
12
15
9
DS
(OUTPUT)
72
71
70
D31-D0
27A
BKPT
(INPUT)
SHOW CYCLE
START OF EXTERNAL CYCLE
Figure 22. Background Debug Mode FREEZE Timing
CLKO1
86
FREEZE
87
IFETCH/DSI
89
88
Figure 23. Background Debug Mode Serial Port Timing
CLKO1
FREEZE
83
82
BKPT/DSCLK
80
81
IFETCH
84
IPIPE0/DSO
85
DSI
80
33
2113A–HIREL–03/02
Bus Operation - DRAM Accesses AC Timing Specification
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 24 to Figure 28).
25.0 MHz
Number
Min
100
RASx Asserted to Row Address Invalid
15
11.25
ns
101
RASx Asserted to column Address Valid
20
15
ns
102
RASx Width Asserted
75
56.25
ns
103A
RASx width Negated (Back to back Cycle) Non page mode @
WBTQ = 0
75
56.25
ns
103B
RASx width Negated (Back to back Cycle) Page mode @ WBTQ = 0
55
41.25
ns
103C
RASx width Negated (Back to back Cycle) Non page mode @
WBTQ = 1
115
86.25
ns
103D
RASx width Negated (Back to back Cycle) Page mode @ WBTQ = 1
95
69.23
ns
104
RASx Asserted to CASx Asserted
35
26.25
ns
105
CLKO1 Low to CASx Asserted
3
13
2
10
ns
CLKO1 High to CASx Asserted (Refresh Cycle)
3
13
2
10
ns
106
CLKO1 High to CASx Negated
3
13
2
10
ns
107
Column Address Valid to CASx Asserted
15
11.25
ns
108
CASx Asserted to Column Address Negated
40
30
ns
109
CASx Asserted to RASx Negated
35
27
ns
110
CASx Width Asserted
50
37.5
ns
CASx Width Negated (Back to Back Cycles)
95
71.25
ns
CASx Width Negated (Page Mode)
20
15
ns
113
WE Low to CASx Asserted
35
27
ns
114
CASx Asserted to WE Negated
35
27
ns
115
R/W Low to CASx Asserted (Write)
52.5
40
ns
116
CASx Asserted to R/W High (Write)
55
41.25
ns
117
Data-Out, Parity-Out Valid to CASx Asserted
10
7.5
ns
119
CLKO1 High to AMUX Negated
3
16
2
12
ns
120
CLKO1 High to AMUX Asserted
3
16
2
12
ns
121
AMUX High to RASx Asserted
15
11.25
ns
122
RASx Asserted to AMUX Low
15
11.25
ns
123
AMUX Low to CASx Asserted
15
11.25
ns
124
CASx Asserted to AMUX High
55
41.25
ns
125
RAS/CASx Negated to R/W change
0
0
ns
111
1
111A
34
Min
Unit
Characteristic
105A
Max
33.34 MHz
Max
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 24. DRAM: Normal Read Cycle (Internal Mux, TRLX = 0)
S0
S1
S2
S3
S4
S5
S0
S1
S2
S3
SW
SW
CLKO1
(OUTPUT)
6A
6
8
A31-A0
(OUTPUT)
108
11
107
AS
(OUTPUT)
9
12
100
9
101
RASx
(OUTPUT)
103
102
106
109
104
CAS3-CAS0
(OUTPUT)
110
111
105
OE
(OUTPUT)
21
18
R/W
(OUTPUT)
DSACK1,0
(I/O)
27
D31ÐD0
(INPUT)
PBEE = 0
29
27B
PARITY3-PARITY0
(INPUT)
PBEE = 1
D31-D0
(INPUT)
Note:
All timing is shown with respect to 0.8V and 2.0V levels.
35
2113A–HIREL–03/02
Figure 25. DRAM: Normal Write Cycle
S1
S0
S3
S2
S5
S4
S0
CLKO1
(OUTPUT)
6A
6
8
A31-A0
(OUTPUT)
108
11
107
AS
(OUTPUT)
9
12
100
RASx
(OUTPUT)
101
102
106
CAS3-CAS0
(OUTPUT)
105
113
WEx
(OUTPUT)
110
114
20
116
115
R/W
(OUTPUT)
17
DSACK1,0
(I/O)
117
D31-D0
(OUTPUT)
23
53
PARITY0-PARITY3
(OUTPUT)
Note:
36
All timing is shown with respect to 0.8V and 2.0V levels.
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 26. DRAM: Refresh Cycle
S4
S5
S0
S1
CLKO1
(OUTPUT)
A31-A0
(OUTPUT)
106
CAS3-CAS0
(OUTPUT)
105A
12
12
9
RASx
(OUTPUT)
12A
RASx
(OUTPUT)
PAGE MODE
NOT IN PAGE MODE
Note:
All timing is shown with respect to 0.8V and 2.0V levels.
Figure 27. DRAM: Page Mode – Page-Hit
S0
S1
S2
S3
S4
S5
S0
S1
S4
S5
S0
S1
CLKO1
(OUTPUT)
6A
8
6A
A31-A0
(OUTPUT)
108
11
INTERNAL
INTERNALMUX
MUX
107
107
AS
(OUTPUT)
9
100
RASx
(OUTPUT)
105
101
106
CAS3-CAS0
(OUTPUT)
121
122
105
111A
123
AMUX
(OUTPUT)
119
120
124
EXTERNAL MUX
Note:
All timing is shown with respect to 0.8V and 2.0V levels.
37
2113A–HIREL–03/02
Figure 28. DRAM: Page Mode – Page-Miss
S0
S1
S2
S3
S4
S5
S1
S0
S2
S3
SW
SW
CLKO1
(OUTPUT)
6A
6A
8
A31-A0
(OUTPUT)
INTERNAL MUX
11
AS
(OUTPUT)
9
12A
RASn
(OUTPUT)
106
CAS3-CAS0
(OUTPUT)
105
122
123
AMUX
(OUTPUT)
120
119
120
EXTERNAL MUX
Note:
38
All timing is shown with respect to 0.8V and 2.0V levels.
TS68EN360
2113A–HIREL–03/02
TS68EN360
040 Bus Type Slave Mode Bus Arbitration AC Electrical Specifications
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary (See Figure 29).
25.0 MHz
Number
Min
Max
Min
Max
Unit
Address, Transfer Attributes High Impedance to Clock High
7
-
6
-
ns
Clock High to BG Low
-
20
-
15
ns
233
Clock High to BG High
4
20
4
15
ns
234
BB High to Clock High (040 output)
7
-
6
-
ns
235
BB High Impedance to Clock High (040 output)
0
-
0
-
ns
236
Clock High to BB Low (360 Output)
-
20
-
15
ns
237
Clock High to BB High (360 Output)
-
20
-
15
ns
238
Clock Low to BB High Impedance (360 output)
-
20
-
15
ns
231
232
Note:
(1)
Characteristic
33.34 MHz
1. BG remains low until either the SDMA or the IDMA requests the external bus.
Figure 29. TS68040 Companion Mode Arbitration
040 BUS MASTER
360 BUS MASTER
C2
C1
S0
S1
S2
S3
S4
S5
CLKO1
(OUTPUT)
A31-A0
(I/O)
231
TRANSFER
ATTRIBUTES
(INPUT)
232
233
BG
(OUTPUT)
234
BB
(I/O)
237
235
238
236
60
61
BCLRO
(OUTPUT)
140
141
BCLRI
(INPUT)
Notes:
1. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.
2. BG always remains asserted until either the SDMA or the IDMA requests the external bus.
39
2113A–HIREL–03/02
040 Bus Type Slave Mode Internal Read/Write/Lack Cycles AC Electrical Specifications
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 30 to Figure 33)
25.0 MHz
Number
Min
Max
Min
Max
Unit
Address, Transfer Attributes Valid to Clock Low
15
-
11.25
-
ns
252
TS Low to Clock High
7
-
6
-
ns
253
Clock High to TS High
5
-
3
-
ns
254
Clock high to Address, Transfer Attributes Invalid
0
-
0
-
ns
255
Data-In, MBARE Valid to Clock High (040 Write)
0
-
0
-
ns
256
Clock High to Data-In, MBARE Hold Time
0
-
0
-
ns
257
Clock High to TA, TBI Low (External to External)
4
20
4
15
ns
257
Clock High to TA, TBI Low (External to Internal)
4
23
4
18
ns
Clock High to TA, TBI High
4
20
4
15
ns
259
TA, TBI High to TA, TBI High Impedance
-
15
-
11.25
ns
260
Clock Low to Data-Out Valid (040 Read)
-
20
-
15
ns
262
Clock Low to Data-Out Invalid
-
20
-
15
ns
263
Clock Low to Data-Out High Impedance
-
15
-
264
Clock High to AVECO Low
-
20
-
15
ns
265
Clock Low to AVECO High Impedance
-
30
-
23
ns
266
Clock Low to IACK Low
-
30
-
23
ns
267
Clock High to IACK High
-
30
-
23
ns
Clock Low to AVEC Low
-
30
-
23
ns
251(1)
258(2)(3)
268
Notes:
40
Characteristic
33.34 MHz
ns
1. Transfer attributes signals = SIZx, TTx, TMx, R/W and LOCK.
2. When TS68040 is accessing the internal registers, specification 258 is from clock low not clock high.
3. The clock reference is EXTAL, not CLK01.TS68040 Internal Registers Read Cycles
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 30. TS68040 Internal Registers Read Cycles
C1
C2
CW
CW
CW
CW
C1
CLKO1
(OUTPUT)
251
A31-A0
(INPUT)
254
TRANSFER
ATTRIBUTES
(INPUT)
253
252
TS
(INPUT)
260
263
D31-D0
(040 WRITE)
(INPUT)
TA
(OUTPUT)
258
257
259
TBI
(OUTPUT)
3Ð4 CLOCKS
Notes:
1. Three wait states are inserted when reading the SIM, dual-port RAM, and CPM. Four wait states are inserted when reading
the SI RAM. Additional wait states may be inserted when the SHEN1-SHEN0 = 10 and one of the internal masters is
accessing an internal peripheral.
2. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.
Figure 31. TS68040 Internal Registers Write Cycles
C1
C2
CW
CW
CW
C1
CLKO1
(OUTPUT)
251
A31-A0
(INPUT)
254
TRANSFER
ATTRIBUTES
(INPUT)
252
TS
(INPUT)
D31-D0
(040 WRITE)
(INPUT)
253
256
255
256
255
MBARE
(INPUT)
258
TA
(OUTPUT)
257
TBI
(OUTPUT)
Notes:
259
2Ñ4 CLOCKS
1. Two wait states are inserted when writing. Three wait states are inserted when writing to the dual-port RAM and CPM. Four
wait states are inserted when writing to the SI RAM. Additional wait states may be inserted when the SHEN1-SHEN0 = 10
and one of the internal masters is accessing an internal peripheral.
2. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.
41
2113A–HIREL–03/02
Figure 32. TS68040 IACK Cycles (Vector Driven)
C1
C2
CW
CW
CW
CW
CW
CLKO1
(OUTPUT)
251
254
A31-A0
(INPUT)
TRANSFER
ATTRIBUTES
(INPUT)
253
252
TS
(INPUT)
263
262
D31-D0
(OUTPUT)
260
258
TA
(OUTPUT)
257
259
TBI
(OUTPUT)
IACK7-1
(OUTPUT)
266
267
0Ð2 CLOCKS
Notes:
1. TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.
2. Up to two wait states may be inserted for internal peripheral.
Figure 33. TS68040 IACK Cycles (No Vector Driven)
C1
C2
CW
CW
CLKO1
(OUTPUT)
251
254
A31-A0
(INPUT)
TRANSFER
ATTRIBUTES
(INPUT)
253
252
TS
(INPUT)
290
TA
(INPUT)
289
TBI
(OUTPUT)
257
250
264
265
AVECO
(OUTPUT)
IACK7-1
(OUTPUT)
266
Note:
42
267
TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.
TS68EN360
2113A–HIREL–03/02
TS68EN360
040 Bus Type SRAM/DRAM Cycles AC Electrical Specifications
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 34 to Figure 38).
25.0 MHz
Number
Characteristic
33.34 MHz
Min
Max
Min
Max
Unit
280
Address Valid to BADD2-3 Valid
-
20
-
15
ns
280A
BADD2-3 Valid to CAS Assertion
15
-
10
-
ns
281
Address Invalid to BADD2-3 Invalid
0
-
0
-
ns
282
Clock High to CSx/RASx Low (TSS40 = 0)
4
16
4
12
ns
283
Clock High to CSx/RASx High (CSNT40 = 0)
4
16
4
12
ns
284
Clock High to BRK Low
-
20
-
15
ns
284A
Clock Low to BRK Low
-
20
-
15
ns
285
Clock high to BRK High
-
20
-
15
ns
286
Clock Low to CSx/RASx Low (TSS40 = 1)
4
16
4
12
ns
287
Clock Low to CSx/RASx High (CSNT40 = 1)
4
16
4
12
ns
288
(1)
Address Transfer Attributes Valid to Clock High (TSS40 = 0)
10
-
10
-
ns
289
(2)
TA Low to Clock High (External Termination)
11
-
9
-
ns
Clock High to TA High (External Termination)
-
20
-
15
ns
291
Clock High to OE Low (Read Cycles)
-
20
-
15
ns
292
Clock High to OE High (Read Cycles)
-
20
-
15
ns
293
Clock High to WE Low (Write Cycles)
-
20
-
15
ns
294
Clock High to WE High (Write Cycles)
-
20
-
15
ns
295
Clock High to CASx Low
4
13
4
10
ns
Clock Low to CASx Low (040 Burst Read only)
4
13
4
10
ns
Clock High to CASx High
4
13
4
10
ns
297
Clock Low to AMUX Low
3
16
3
12
ns
298
Clock High to AMUX High
3
16
3
12
ns
299
Clock High to BADD2-3 Valid (040 Burst Cycles)
4
20
4
15
ns
TEA Low to Clock High
11
-
-
ns
Clock High to TEA High
2
20
2
15
ns
302
Data, Parity Valid to Clock High (Data, Parity Setup)
7
-
6
-
ns
303
Clock High to Data, Parity Invalid (Data, Parity Hold)
7
-
5
-
ns
305
CLKO1 High (After TS Low) to Parity Valid
-
20
-
15
ns
CLKO1 High (After TA Low) to Parity Hi-Z
4
20
15
ns
290(2)
295A
296
300
(3)
(2)
301(2)
306
Notes:
1. Transfer attributes signals = SIZx, TTx, TMx, R/W and LOCK.
2. TEA/TA should not be asserted on a DRAM burst access, or on the same clock or before RASx/CSx is asserted.
3. The clock reference is EXTAL, not CLK01.
43
2113A–HIREL–03/02
Figure 34. TS68040 SRAM Read/Write Cycles (TSS40 = 0, CSNT40 = 0)
C1
C2
CLKO1
(OUTPUT)
288
TRANSFER
ATTRIBUTES
(INPUT)
254
A31-A0
(INPUT)
280
281
BADD3BADD2
(OUTPUT)
TS
(INPUT)
252
282
253
283
CSx
(OUTPUT)
258
TA
(OUTPUT)
259
257
TBI
(OUTPUT)
284
BKPTO
(OUTPUT)
285
OE
(OUTPUT)
(READ
CYCLES)
291
292
WE
(OUTPUT)
(WRITE
CYCLES)
293
294
300
301
TEA
(INPUT)
Note:
44
TS68040 Transfer Attribute Signals = SIZx, TTx, TMx, R/W, LOCK.
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 35. TS68040 SRAM Read/Write Cycles (TSS40 = 1, CSNT40 = 1)
C1
C2
C3
CLKO1
(OUTPUT)
251
TRANSFER
ATTRIBUTES
(INPUT)
254
A31-A0
(INPUT)
281
280
BADD3BADD2
(OUTPUT)
253
TS
(INPUT)
252
287
CSn
(OUTPUT)
286
258
TA
(OUTPUT)
259
257
TBI
(OUTPUT)
284A
285
BKPTO
(OUTPUT)
300
301
289
290
TEA
(INPUT)
TA
(INPUT)
45
2113A–HIREL–03/02
Figure 36. External TS68040 DRAM Cycles Timing Diagram
C1
Cw
C2
C1
CLKO1
(OUTPUT)
288
TRANSFER
ATTRIBUTES
(INPUT)
254
A31-A0
(INPUT)
281
280
BADD3BADD2
(OUTPUT)
253
252
TS
(INPUT)
282
283
RASx
(OUTPUT)
296
295
CAS3CAS0
(OUTPUT)
122
121
123
298
298
AMUX
(OUTPUT)
297
WE
(WRITE CYCLE
OUTPUT)
294
293
258
TA
(OUTPUT)
257
259
TBI
(OUTPUT)
TEA
(INPUT)
46
300
301
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 37. External TS68040 DRAM Burst Cycles Timing Diagram
C1
Cw
C1
C2
C2
CLKO1
(OUTPUT)
288
TRANSFER
ATTRIBUTES
(INPUT)
A31-A0
(INPUT)
299
280
299
BADD3BADD2
(OUTPUT)
TS
(INPUT)
252
253
282
RASx
(OUTPUT)
295A
296
296
CAS3CAS0
(OUTPUT)
295
295
AMUX
(OUTPUT)
297
WE
(WRITE
CYCLE
OUTPUT)
293
258
TA
(OUTPUT)
257
258
257
TBI
(OUTPUT)
47
2113A–HIREL–03/02
Figure 38. External TS68040 Parity Bit Checking Timing Diagram
D31-D0
(INPUT)
PRTY3PRTY0
(OUTPUT)
212
213
(a) Generation Timing Diagram
CPU Clears PERn Bit
C1
C2
C1
CLKO1
(OUTPUT)
TRANSFER
ATTRIBUTES
(INPUT)
A31-A0
(INPUT)
BADD3BADD2
(OUTPUT)
TS
(INPUT)
TA
(OUTPUT)
302
303
D31-D0,
(INPUT)
305
PRTY3PRTY0
(INPUT)
306
90
91
PERR
(OUTPUT)
(b) Checking Timing Diagram
48
TS68EN360
2113A–HIREL–03/02
TS68EN360
IDMA AC Electrical Specifications
GND = 0 VDC, TC = -55 to +125°C.The electrical specifications in this document are preliminary
(See Figure 39 and Figure 40).
25.0 MHz
Number
Characteristic
33.34 MHz
Min
Max
Min
Max
Unit
1
CLKO1 Low to DACK, DONE Asserted
3
24
3
18
ns
2
CLKO1 Low to DACK, DONE Negated
3
24
3
18
ns
3
(1)
DREQx Asserted to AS Asserted (for DMA Bus Cycle)
4
(1)
Asynchronous Input Setup Time to CLKO1 Low
12
-
9
-
ns
Asynchronous Input Hold Time from CLKO1 Low
0
-
0
-
ns
6
AS to DACK Assertion Skew
0
20
0
15
ns
7
DACK to DONE Assertion Skew
-8
8
-6
6
ns
8
AS, DACK, DONE Width Asserted
70
-
52.5
-
ns
5(1)
8A
3tcyc + tAIST + tCLSA
AS, DACK, DONE Width Asserted (Fast Termination Cycle)
28
-
20.5
-
ns
(1)
Asynchronous Input Setup Time to CLKO1 Low
5
-
4
-
ns
(1)
Asynchronous Input Hold Time from CLKO1 Low
10
-
7.5
-
ns
(2)
12
DREQ Input Setup Time to CLKO1 Low
20
-
15
-
ns
13(2)
10
11
DREQ Input Hold Time from CLKO1 Low
5
-
3.75
-
ns
(2)
DONE Input Setup Time to CLKO1 Low
20
-
15
-
ns
(2)
DONE Input Hold Time From CLKO1 Low
5
-
3.75
-
ns
(2)
DREQ Asserted to AS Asserted
2
-
2
-
clk
14
15
16
Notes:
1. These specifications are for asynchronous mode.
2. These specifications are for synchronous mode.
49
2113A–HIREL–03/02
Figure 39. IDMA Signal Asynchronous Timing Diagram
CPU_CYCLE
(IDMA REQUEST)
S0
S1
S2
IDMA_CYCLE
S3
S5
S4
S0
S1
S3
S2
S5
S4
CLKO1
(OUTPUT)
4
1
5
DREQ
(INPUT)
6
8
3
AS
(OUTPUT)
1
2
DACK
(OUTPUT)
7
DONE
(OUTPUT)
1
DONE
(INPUT)
11
10
Figure 40. IDMA Signal Synchronous Timing Diagram
CPU_CYCLE
(IDMA REQUEST)
S0
S1
S2
IDMA_CYCLE
S3
S4
S5
S0
S1
S2
S3
S4
S5
CLKO1
(OUTPUT)
12
DREQ
(INPUT)
1
13
6
8
16
AS
(OUTPUT)
1
2
DACK
(OUTPUT)
7
DONE
(OUTPUT)
1
DONE
(INPUT)
15
14
50
TS68EN360
2113A–HIREL–03/02
TS68EN360
PIP/PIO Electrical Specifications
GND = 0 Vdc, TC = -55 to +125°C.The electrical specifications in this document are preliminary
(See Figure 41 to Figure 45).
25.0 MHz
Number
Characteristic
33.34 MHz
Min
Max
Min
Max
Unit
21
Data-In Setup Time to STBI Low
0
-
0
-
ns
22
Data-In Hold Time to STBI High
2.5 - t3
-
2.5 - t3
-
clk
23
STBI Pulse Width
1.5
-
1.5
-
clk
24
STBO Pulse Width
1 CLKO1 5 ns
-
1 CLKO1 5 ns
-
-
25
Data-Out Setup Time to STBO Low
2
-
2
-
clk
26
Data-Out Hold Time from STBO High
5
-
5
-
clk
27
STBI Low to STBO Low (Rx Interlock)
-
2
-
2
clk
28
STBI Low to STBO High (Tx Interlock)
2
-
2
-
clk
29
Data-In Setup Time to Clock Low
20
-
15
-
ns
30
Data-In Hold Time from Clock Low
10
-
7.5
-
ns
-
25
-
25
ns
Clock High to Data-Out Valid (CPU Writes Data,
Control, or Direction)
Note:
1. t3 = spec. 3 on “AC Electrical Specifications Control Timing” on page 17.
Figure 41. PIP Rx (Interlock Mode)
26
25
DATA OUT
STRBO
(OUTPUT)
28
23
STRBI
(INPUT)
51
2113A–HIREL–03/02
Figure 42. PIP Tx (Interlock Mode)
22
21
DATA IN
23
STRBI
(INPUT)
24
STRBO
(OUTPUT)
Figure 43. PIP Tx (Pulse Mode)
22
21
DATA IN
23
STBI
(INPUT)
24
STBO
(OUTPUT)
52
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 44. PIP Tx (Pulse Mode)
26
25
DATA OUT
24
STBO
(OUTPUT)
23
STBI
(INPUT)
Figure 45. Parallel I/O Data-in/Data-out Timing Diagram
CLKO1
(OUTPUT)
DATA IN
29
30
DATA OUT
31
CPU WRITE S4
Interrupt Controller AC Electrical Specifications
GND = 0 Vdc, TC = -55 to +125°C.The electrical specifications in this document are preliminary.
(See Figure 46 and Figure 47).
25.0 MHz
Number
Characteristic
33.34 MHz
Min
Max
Min
Max
Unit
35
Port C Interrupt Pulse Width Low (Edge Triggered Mode)
70
-
55
-
ns
36
Minimum Time Between Active Edges Port C
70
-
55
-
clk
37
Clock High to IOUT Valid (Slave Mode)
-
20
-
17
ns
38
Clock High to RQOUT Valid (Slave Mode)
-
20
-
17
ns
53
2113A–HIREL–03/02
Figure 46. Interrupts Timing Diagram
Port C
(INPUT)
35
36
Figure 47. Slave Mode: Interrupts Timing Diagram
CLKO1
(OUTPUT)
IOUT2IOUT0
(OUTPUT)
37
RQOUT
(OUTPUT)
38
BAUD Rate Generator AC Electrical Specifications
GND = 0 VDC, TC = -55 to +125°C.The electrical specifications in this document are preliminary (See Figure 48).
25.0 MHz
Number
Characteristic
33.34 MHz
Min
Max
Min
Max
Unit
-
10
-
7.5
ns
60
40
60
%
50
BRGO Rise and Fall Time
51
BRGO Duty Cycle
40
52
BRGO Cycle
40
30
ns
Figure 48. Baud Rate Generator Output Signals
50
50
BRGOx
51
51
52
54
TS68EN360
2113A–HIREL–03/02
TS68EN360
Timer Electrical Specifications
GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary (See Figure 49).
25.0 MHz
Number
Characteristic
33.34 MHz
Symbol
Min
Max
Min
Max
Unit
61
TIN/TGATE Rise and Fall Time
trf
10
-
10
-
ns
62
TIN/TGATE Low Time
-
1
-
1
-
clk
63
TIN/TGATE High Time
-
2
-
2
-
clk
64
TIN/TGATE Cycle Time
-
3
-
3
-
clk
65
CLKO1 High to TOUT Valid
tTO
3
25
3
22
ns
Figure 49. CPM General-purpose Timers
60
CLKO1
(OUTPUT)
61
62
63
TIN/TGATE
(INPUT)
64
61
65
TOUT
(OUTPUT)
55
2113A–HIREL–03/02
SI Electrical Specifications
GND = 0 VDC, TC = -55 to +125°C.The electrical specifications in this document are preliminary
(See Figure 50 to Figure 54).
25.0 MHz
Number
(1)(3)
(1)
70
71
71A(2)
Characteristic
33.34 MHz
Min
Max
Min
Max
Unit
L1RCLK, L1TCLK Frequency (DCS = 0)
-
10
-
10
MHz
L1RCLK, L1TCLK Width Low (DCS = 0)
P+10
-
P+10
-
ns
L1RCLK, L1TCLK Width High (DCS = 0)
P+10
-
P+10
-
ns
-
15
-
15
ns
72
L1TXD, L1ST(1-4), L1RQ, L1CLKO Rise/Fall Time
73
L1RSYNC, L1TSYNC Valid to L1CLK Edge (SYNC Setup Time)
20
-
20
-
ns
74
L1CLK Edge to L1RSYNC, L1TSYNC Invalid (SYNC Hold Time)
35
-
35
-
ns
75
L1RSYNC, L1TSYNC Rise/Fall Time
-
15
-
15
ns
76
L1RXD Valid to L1CLK Edge (L1RXD Setup Time)
42
-
42
-
ns
77
L1CLK Edge to L1RXD Invalid (L1RXD Hold Time)
35
-
35
-
ns
78
L1CLK Edge to L1ST(1-4) Valid
10
45
10
45
ns
78A(4)
L1SYNC Valid to L1ST(1-4) Valid
10
45
10
45
ns
79
L1CLK Edge to L1ST(1-4) Invalid
10
45
10
45
ns
80
L1CLK Edge to L1TXD Valid
10
65
10
65
ns
L1TSYNC Valid to L1TXD Valid
10
65
10
65
ns
81
L1CLK Edge to L1TXD High Impedance
0
42
0
42
ns
82
L1RCLK, L1TCLK Frequency (DSC = 1)
-
12.5
-
16
MHz
83
L1RCLK, L1TCLK Width Low (DSC = 1)
P+10
-
P+10
-
ns
83A
L1RCLK, L1TCLK Width High (DSC = 1)
P+10
-
P+10
-
ns
84
L1CLK Edge to L1CLKO Valid (DSC = 1)
-
30
-
30
ns
(4)
80A
(2)
85(3)
L1RQ Valid Before Falling Edge of L1TSYNC
1
-
1
-
L1TCLK
(3)
L1GR Setup Time
42
-
42
-
ns
(3)
L1RG Hold Time
42
-
42
-
ns
-
0
-
0
ns
86
87
L1CLK Edge to L1SYNC Valid (FSD = 00, CNT = 0000, BYT = 0,
DSC = 0)
88
Notes:
56
1.
2.
3.
4.
The ratio SyncCLK/L1RC LK must be greater than 2.5/1.
Where P = 1/CLKO1. Thus for a 25 MHz CLKO1 rate, P = 40 ns.
These specs are valid for IDL mode only.
The strobes and Txd on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 50. SI Receive Timing with Normal Clocking (DSC = 0)
L1RCLK
(FE = 0,CE = 0)
(INPUT)
72
70
L1RCLK
(FE =1,CE = 1)
(INPUT)
71
75
RFCD = 1
L1RSYNC
(INPUT)
73
74
77
76
L1RXD
(INPUT)
BIT0
78
79
L1ST (4-1)
(OUTPUT)
57
2113A–HIREL–03/02
Figure 51. SI Receive Timing with Double Speed Clocking (DSC = 1)
72
L1RCLK
(FE = 0,
CE = 0)
(INPUT)
83A
82
L1RCLK
(FE = 1,
CE = 1)
(INPUT)
75
RFCD = 1
L1RSYNC
(INPUT)
73
74
77
76
L1RXD
(INPUT)
BIT0
78
79
L1ST (4-1)
(OUTPUT)
L1CLKO
(OUTPUT)
84
58
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 52. SI Transmit Timing with Normal Clocking (DSC = 0)
L1TCLK
(FE = 0,
CE = 0)
(INPUT)
72
70
L1TCLK
(FE = 1,
CE = 1)
(INPUT)
71
75
L1TSYNC
(OUTPUT)
73
74
81
80A
L1TXD
(INPUT)
TFCD = 0
BIT0
80
78A
79
L1ST (4-1)
(OUTPUT)
78
59
2113A–HIREL–03/02
Figure 53. SI Transmit Timing with Double Speed Clocking (DSC = 1)
72
83A
L1RCLK
(FE = 0,
CE = 0)
(INPUT)
82
L1RCLK
(FE = 1,
CE = 1)
(INPUT)
75
L1TSYNC
(INPUT)
73
74
TFCD = 0
81
80A
L1TXD
(OUTPUT)
BIT0
80
78A
79
L1ST (1-4)
(OUTPUT)
78
L1CLKO
(OUTPUT)
84
60
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 54. IDL Timing SI Transmit Timing with Double Speed Clocking (DSC = 1)
SCC in NMSI Mode-external Clock Electrical Specifications
GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 55 to Figure 57).
25.0 MHz
Number
Min
Max
Min
Max
RCLK1 and TCLK1 Width High
CLKO1
-
CLKO1
-
101
RCLK1 and TCLK1 Width Low
CLKO1 +
5 ns
-
CLKO1 +
5 ns
-
102
RCLK1 and TCLK1 Rise/Fall Time
-
15
-
15
ns
103
TXD1 Active Delay (From TCLK1 Falling Edge)
0
50
0
50
ns
104
RTS1 Active/Inactive Delay (From TCLK1 Falling Edge)
0
50
0
50
ns
105
CTS1 Setup Time to TCLK1 Rising Edge
40
-
40
-
ns
106
RXD1 Setup Time to RCLK1 Rising Edge
40
-
40
-
ns
RXD1 Hold Time from RCLK1 Rising Edge
0
-
0
-
ns
CD1 Setup Time to RCLK1 Rising Edge
40
-
40
-
ns
100
(1)
107(2)
108
Notes:
Characteristic
33.34 MHz
Unit
1. The ratio SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2.25/1.
2. Also applies to CD and CTS hold time when they are used as external sync signals.
61
2113A–HIREL–03/02
SCC in NMSI Mode-internal Clock Electrical Specifications
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 55 to Figure 57).
25.0 MHz
Number
Min
Max
Min
Max
Unit
RCLK1 and TCLK1 Frequency
0
8.3
0
11
MHz
102
RCLK1 and TCLK1 Rise/Fall Time
-
-
-
-
ns
103
TXD1 Active Delay (From TCLK1 Falling Edge)
0
30
0
30
ns
104
RTS1 Active/Inactive Delay (From TCLK1 Falling Edge)
0
30
40
-
ns
105
CTS1 Setup Time to TCLK1 Rising Edge
40
-
40
-
ns
106
RXD1 Setup Time to RCLK1 Rising Edge
40
-
0
-
ns
RXD1 Hold Time from RCLK1 Rising Edge
0
-
40
-
ns
CD1 Setup Time to RCLK1 Rising Edge
40
-
0
30
ns
100
(1)
107(2)
108
Notes:
Characteristic
33.34 MHz
1. The ratio SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1.
2. Also applies to CD and CTS hold time when they are used as external sync signals.
Figure 55. SCC NMSI Receive
102
102
101
RCLK1
100
106
RXD1
(INPUT)
107
CD1
(INPUT)
108
107
CD1
(SYNCINPUT)
62
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 56. SCC NMSI Transmit
102
102
101
TCLK1
100
103
TXD1
(OUTPUT)
RTS1
(OUTPUT)
104
104
105
CTS1
(INPUT)
107
CTS1
(SYNCINPUT)
Figure 57. HDLC BUS Timing
102
102
101
TCLK1
100
103
TXD1
(OUTPUT)
RTS1
(OUTPUT)
104
104
107
105
CTS1
(ECHO
INPUT)
63
2113A–HIREL–03/02
Ethernet Electrical Specifications
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 58 to Figure 63).
25.0 MHz
Number
Characteristic
33.34 MHz
Min
Max
Min
Max
Unit
40
-
40
-
ns
-
15
-
15
ns
120
CLSN Width High
121
RCLK1 Rise/Fall Time
122
RCLK1 Width Low
CLKO1 +
5 ns
-
CLKO1 +
5 ns
-
123(1)
RCLK1 Width High
CLKO1
-
CLKO1
-
124
RXD1 Setup Time
20
-
20
-
ns
125
RXD1 Hold Time
5
-
5
-
ns
126
RENA Active Delay (from RCLK1 rising edge of the last
data bit)
10
-
10
-
ns
127
RENA Width Low
100
-
100
-
ns
128
TCLK1 Rise/Fall Time
-
15
-
15
ns
129
TCLK1 Width Low
CLKO1 +
5 ns
-
CLKO1 +
5 ns
-
130(1)
TCLK1 Width High
CLKO1
-
CLKO1
-
131
TXD1 Active Delay (from TCLK1 rising edge)
10
50
10
50
ns
132
TXD1 Inactive Delay (from TCLK1 rising edge)
10
50
10
50
ns
133
TENA Active Delay (from TCLK1 rising edge)
10
50
10
50
ns
134
TENA Inactive Delay (from TCLK1 rising edge)
10
50
10
50
ns
135
RSTRT Active Delay (from TCLK1 falling edge)
10
50
10
50
ns
136
RSTRT Inactive Delay (from TCLK1 falling edge)
10
50
10
50
ns
137
RRJCT Width Low
1
-
1
-
CLKO1
138
(2)
CLKO1 Low to SDACK Asserted
-
20
-
20
ns
139
(2)
CLKO1 Low to SDACK Negated
-
20
-
20
ns
Notes:
1. SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2.25/1
2. SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.
Figure 58. Ethernet Collision Timing
CLSN (CTS1)
(INPUT)
120
64
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 59. Ethernet Receive Timing
121
121
122
RCLK1
123
124
RXD1
(INPUT)
LAST BIT
125
127
RENA (CD1)
(INPUT)
126
Figure 60. Ethernet Transmit Timing
128
128
129
TCLK1
(NOTE 1)
130
131
132
TXD1
(OUTPUT)
133
TENA (RTS1)
(OUTPUT)
134
RENA (CD1)
(INPUT)
(NOTE 2)
Notes:
1. Transmit clock invert (TCI) bit in GSMR is set.
2. If RENA is deasserted before TENA, or RENA is not asserted at all during transit, then CSL bit is set in the buffer descriptor
at the end of frame transmission.
65
2113A–HIREL–03/02
Figure 61. CAM Interface Receive Start Timing
RCLK1
RXD1
(INPUT)
1
0
1
Bit # 1
Bit # 2
START FRAME DELIMITER
135
136
RSTRT
(OUTPUT)
Note:
Valid for the ethernet protocol only.
Figure 62. CAM Interface Reject Timing
137
RRJCT
(INPUT)
Note:
Valid for the ethernet protocol only.
Figure 63. SDACK Timing Diagram
SDMA CYCLE
S0
S1
S2
S3
S4
S5
CLKO1
(OUTPUT)
AS
(OUTPUT)
SDACKx
(OUTPUT)
Note:
138
139
SDACKx is asserted when the SDMA writes the received Ethernet frame into memory.
SMC Transparent Mode Electrical Specifications
GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary (See Figure 64).
25.0 MHz
Number
Characteristic
Min
Max
Min
Max
Unit
SMCLK Clock Period
100
-
100
-
ns
151
SMCLK Width Low
50
-
50
-
ns
151A
SMCLK Width High
50
-
50
-
ns
150(1)
66
33.34 MHz
TS68EN360
2113A–HIREL–03/02
TS68EN360
SMC Transparent Mode Electrical Specifications
GND = 0 VDC, TC = -55 to +125°C. The electrical specifications in this document are preliminary (See Figure 64).
25.0 MHz
Number
Characteristic
33.34 MHz
Min
Max
Min
Max
Unit
-
15
-
15
ns
152
SMCLK Rise/Fall Time
153
SMTXD Active Delay (from SMCLK falling edge)
10
50
10
50
ns
154
SMRXD/SYNC1 Setup Time
20
-
20
-
ns
155
SMRXD/SYNC1 Hold Time
5
-
5
-
ns
Note:
1. The ratio SyncCLK/SMCLK must be greater or equal to 2/1. SMC Transparent.
Figure 64. SMC Transparent
152
152
151A
151
SMCLK
150
TXD1
(OUTPUT)
Note 1
153
154
155
SYNC1
154
RXD1
(INPUT)
155
Note:
This delay is equal to an integer number of “Character length” clocks.
67
2113A–HIREL–03/02
SPI Master Electrical Specifications
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 65 and Figure 66).
25.0 MHz
Number
Characteristic
33.34 MHz
Min
Max
Min
Max
Unit
160
Master Cycle Time
4
1024
4
1024
tcyc
161
Master Clock (SPICLK) High or Low Time
2
512
2
512
tcyc
162
Master Data Setup Time (Inputs)
50
-
50
-
ns
163
Master Data Hold Time (Inputs)
0
-
0
-
ns
164
Master Data Valid (after SPICLK Edge)
-
20
-
20
ns
165
Master Data Hold Time (Outputs)
0
-
0
-
ns
166
Rise Time: Output
15
15
ns
167
Fall Time: Output
15
15
ns
Figure 65. SPI Master (CP = 0)
167
166
SPICLK
CI=0
OUTPUT
167
161
160
SPICLK
CI=1
OUTPUT
161
162
166
163
SPIMISO
INPUT
MSB IN
DATA
165
SPIMOSI
OUTPUT
"1"
MSB OUT
167
68
MSB IN
LSB IN
164
DATA
LSB OUT
"1"
MSB OUT
166
TS68EN360
2113A–HIREL–03/02
TS68EN360
Figure 66. SPI Master (CP = 1)
167
160
166
SPICLK
CI=0
OUTPUT
161
160
SPICLK
CI=1
OUTPUT
163
166
161
162
SPIMISO
INPUT
MSB IN
DATA
165
SPIMOSI
OUTPUT
"1"
MSB OUT
DATA
MSB
LSB IN
164
LSB OUT
"1"
MSB
166
167
SPI Slave Electrical Specifications
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 67 and Figure 68).
25.0 MHz
Number
Characteristic
33.34 MHz
Min
Max
Min
Max
Unit
-
2
-
tcyc
170
Slave Cycle Time
2
171
Slave Enable Lead Time
15
15
ns
172
Slave Enable Lag Time
15
15
ns
173
Slave Clock (SPICLK) High or Low Time
1
174
Slave Sequential Transfer Delay (Does Not Require Deselect)
1
175
Slave Data Setup Time (Inputs)
20
-
20
-
ns
176
Slave Data Hold Time (Inputs)
20
-
20
-
ns
177
Slave Access Time
50
50
ns
178
Slave SPIMISO Disable Time
50
50
ns
179
Slave Data Valid (after SPICLK Edge)
-
50
-
50
ns
180
Slave Data Hold Time (Outputs)
0
-
0
-
ns
181
Rise Time: Input
15
15
ns
182
Fall Time: Input
15
15
ns
-
1
-
1
tcyc
tcyc
69
2113A–HIREL–03/02
Figure 67. SPI Slave (CP = 0)
171
172
SPISEL
INPUT
174
182
181
SPICLK
CI=0
INPUT
173
170
SPICLK
CI=1
INPUT
181
173
SPIMISO
OUTPUT
182
MSB OUT
180
179
180
177
DATA
LSB OUT
UNDEF.
181
176
178
MSB OUT
182
175
SPIMOSI
INPUT
MSB IN
DATA
LSB IN
MSB IN
Figure 68. SPI Slave (CP = 1)
SPISEL
INPUT
174
182
170
181
173
SPICLK
CI=0
INPUT
172
173
171
SPICLK
CI=1
INPUT
181
179
179
180
177
SPIMISO
OUTPUT
UNDEF.
182
MSB OUT
DATA
SLAVE
LSB OUT
178
UNDEF.
181
176
175
SPIMOSI
INPUT
70
MSB IN
DATA
LSB IN
TS68EN360
2113A–HIREL–03/02
TS68EN360
JTAG Electrical Specifications
GND = 0 Vdc, TC = -55 to +125°C. The electrical specifications in this document are preliminary
(See Figure 69 and Figure 72).
25.0 MHz
Number
Characteristic
33.34 MHz
Min
Max
Min
Max
Unit
TCK Frequency of Operation
0
25
0
25
MHz
1
TCK Cycle Time in Crystal Mode
40
-
40
-
ns
2
TCK Clock Pulse Width Measured at 1.5V
18
-
18
-
ns
3
TCK rise and Fall Times
0
3
0
3
ns
6
Boundary Scan Input Data Setup Time
10
-
10
-
ns
7
Boundary Scan Input Data Hold Time
18
-
18
-
ns
8
TCK Low to Output Data Valid
0
30
0
30
ns
9
TCK Low to Output High Impedance
0
40
0
40
ns
10
TMS, TDI Data Setup Time
10
-
10
-
ns
11
TMS, TDI Data Hold Time
10
-
10
-
ns
12
TCK Low to TDO Data Valid
0
20
0
20
ns
13
TCK Low to TDO High Impedance
0
20
0
20
ns
14
TRST Assert Time
100
-
100
-
ns
15
TRST Setup Time to TCK Low
40
-
40
-
ns
Figure 69. Test Clock Input Timing Diagram
1
2
2
VIH
TCK
(INPUT)
VM
VM
VIL
3
3
Figure 70. TRST Timing Diagram
TCK
(INPUT)
15
TRST
(INPUT)
14
71
2113A–HIREL–03/02
Figure 71. Boundary Scan (JTAG) Timing Diagram
TCK
(INPUT)
VIH
VIL
6
DATA
INPUTS
7
INPUT DATA VALID
8
DATA
OUTPUTS
OUTPUT DATA VALID
9
DATA
OUTPUTS
8
DATA
OUTPUTS
OUTPUT DATA VALID
Figure 72. Test Access Port Timing Diagram
TCK
(INPUT)
VIH
VIL
10
TDI
TMS
(INPUT)
11
INPUT DATA VALID
12
TDO
(OUTPUT)
OUTPUT DATA VALID
13
TDO
(OUTPUT)
12
TDO
(OUTPUT)
72
OUTPUT DATA VALID
TS68EN360
2113A–HIREL–03/02
TS68EN360
Functional
Description
CPU32+ Core
The CPU32+ core is a CPU32 that has been modified to connect directly to the 32-bit
IMB and apply the larger bus width. Although the original CPU32 core had a 32-bit internal data path and 32-bit arithmetic hardware, its interface to the IMB was 16 bits. The
CPU32+ core can operate on 32-bit external operands with one bus cycle. This allows
the CPU32+ core to fetch a long-word instruction in one bus cycle an to fetch two wordlength instructions in one bus cycle, filling the internal instruction queue more quickly.
The CPU32+ core can also read and write 32-bits of data in one bus cycle.
Although the CPU32+ instruction timings are improved, its instruction set is identical to
that of the CPU32. It will also execute the entire 68000 instruction set. It contains the
same background debug mode (BDM) features as the CPU32. No new compilers,
assemblers or other software support tools need be implemented for the CPU32+; standard CPU32 tools can be used.
The CPU32+ delivers approximately 4.5 MIPS at 25 MHz, based on the standard
(accepted) assumption that a 10-MHz 68000 delivers 1 VAX MIPS. If an application
requires more performance, the CPU32+ can be disabled, allowing the rest of the
QUICC to operate as an intelligent peripheral to a faster processor. The QUICC provides a special mode called TS68040 companion mode to allow it to conveniently
interface to members of the TS68040 family. This two-chip solution provides a 22-MIPS
performance at 25 MHz.
The CPU32+ also offers automatic byte alignment features that are not offered on the
CPU32. These features allow 16- or 32-bit data to be read or written at an odd address.
The CPU32+ automatically performs the number of bus cycles required.
System Integration
Module (SIM60)
The SIM60 integrates general-purpose features that would be useful in almost any 32bit processor system. The term “SIM60” is derived from the QUICC part number,
TS68EN360. The SIM60 is an enhanced version of the SIM40 that exists on the
TS68332 device.
First, new features, such as a DRAM controller and breakpoint logic, have been added.
Second, the SIM40 was modified to support a 32-bit IMB as well as a 32-bit external
system bus. Third, new configurations, such as slave mode and internal accesses by an
external master, are supported.
Although the QUICC is always a 32-bit device internally, it may be configured to operate
with a 16-bit data bus. Regardless of the choice of the system bus size, dynamic bus
sizing is supported. Bus sizing allows 8-16-, and 32-bit peripherals and memory to exist
in the 32-bit system bus mode and 8- and 16-bit peripherals and memory to exist in the
16-bit system bus mode.
Communications
The CPM contains features that allow the QUICC to excel in communications and conProcessor Module (CPM) trol applications. These features may be divided into three sub-groups:
•
Communications Processor (CP)
•
Two IDMA Controllers
•
Four General-purpose Timers
73
2113A–HIREL–03/02
The CP provides the communication features of the QUICC. Included are a RISC processor, four SCCs, two SMCs, one SPI, 2.5K bytes of dual-port RAM, an interrupt
controller, a time slot assigner, three parallel ports, a parallel interface port, four independent baud rate generators, and fourteen serial DMA channels to support the SCCs,
SMCs, and SPI.
The IDMAs provide two channels of general-purpose DMA capability. They offer highspeed transfers, 32-bit data movement, buffer chaining, and independent request and
acknowledge logic. The RISC controller may access the IDMA registers directly in the
buffer chaining modes. The QUICC IDMAs are similar to, yet enhancements of, the one
IDMA channel found on the TS68302.
The four general-purpose timers on the QUICC are functionally similar to the two general-purpose timers found on the TS68302. However, they offer some minor
enhancements, such as the internal cascading of two timers to form a 32-bit timer. The
QUICC also contains a periodic interval timer in the SIM60, bringing the total to five
on-chip timers.
Ethernet on QUICC
The Ethernet protocol is available only on the Ethernet version of the QUICC called the
TS68EN360. The non-Ethernet version of the QUICC is the MC68360. The term
“QUICC” is the overall device name that denotes all versions of the device.
The TS68EN360 is a superset of the MC68360, having the additional option allowing
Ethernet operation on any of the four SCCs. Due to performance reason not ass SCCs
can be configured as Ethernet controller at the same time. The TS68EN360 is not
restricted only to Ethernet operation. HDLC, UART, and other protocols may be used to
allow dynamic switching between protocols. See Appendix A Serial Performance for
available SCC performance.
When the MODE bits of the SCC GSMR select the Ethernet protocol, then that SCC
performs the full set of IEEE 802.3/Ethernet CSMA/CD media access control and channel interface functions (see Figure 73).
Figure 73. Ethernet Block Diagram
IMB
SLOT TIME
AND DEFER
COUNTER
RANDOM NO.
CONTROL
REGISTERS
PERIPHERAL BUS
CLOCK
GENERATOR
RX CLOCK
TX CLOCK
INTERNAL CLOCKS
RTS = TENA
RRJCT
RECEIVER
CONTROL
UNIT
RSTRT
CD = RENA
CTS = CLSN
RXD
74
RECEIVE
DATA
FIFO
TRANSMIT
DATA
FIFO
SHIFTER
SHIFTER
TRANSMITTER
CONTROL
UNIT
CD = RENA
CTS = CLSN
TXD
TS68EN360
2113A–HIREL–03/02
TS68EN360
Upgrading Designs from
the TS68302
Since the QUICC is a next-generation TS68302, many designers currently using the
TS68302 may wish to use the QUICC in a follow-on design. The following paragraphs
briefly discuss this endeavor in terms of architectural approach, hardware issues, and
software issues.
Architectural Approach
The QUICC is the logical extension of the TS86302, but the overall architecture and philosophy of the TS86302 design remains intact in the QUICC. The QUICC keeps the best
features of the TS86302, while making the changes required to provide for the
increased flexibility, integration, and performance requested by customers. Because the
CPM is probably the most difficult module to learn, anyone who has used the TS86302
can easily become familiar with the QUICC since the CPM architectural approach
remains intact.
The most significant architectural change made on the QUICC was the translation of the
design into the standard 68300 family IMB architecture, resulting in a faster CPU and
different system integration features.
Although the features of the SIM60 do not exactly correspond to those of the TS86302
SIM, they are very similar.
Because of the similarity of the QUICC SIM60 and CPU to other members of the 68300
family, such as the TS68332, previous users of these devices will be comfortable with
these same features on the QUICC.
Hardware Compatibility
Issues
The following list summarizes the hardware differences between the TS86302 and the
QUICC:
•
Pinout – The pinout is not the same. The QUICC has 240 pins; the TS86302 has
132 pins.
•
Package – Both devices offer PGA and PQFP packages. However, the QUICC QFP
package has a 20-mil pitch; whereas, the TS86302 QFP package has a 25-mil
pitch.
•
System Bus – The system bus signals now look like those of the TS68020 as
opposed to those of the 68000. It is still possible to interface 68000 peripherals to
the QUICC, utilizing the same techniques used to interface them to a TS68020.
•
System Bus in Slave Mode – A number of QUICC pins take on new functionality in
slave mode to support an external TS68EC040. On the TS68302, the pin names
generally remained the same in slave mode.
•
Peripheral Timing – The external timings of the peripherals (SCCs, timers, etc.) are
very similar (if not identical) to corresponding peripherals on the TS68302.
•
Pin Assignments – The assignment of peripheral functions to I/O pins is different in
several ways. First, the QUICC contains more general-purpose parallel I/O pins
than the TS68302. However, the QUICC offers many more functions than even a
240-pin package would normally allow, resulting in more multifunctional pins than
the TS68302.
75
2113A–HIREL–03/02
Software Compatibility Issues
The following list summarizes the major software differences between the TS68302 and
the QUICC:
•
Since the CPU32+ is a superset of the 68000 instruction set, all previously written
code will run. However, if such code is accessing the TS68302 peripherals, it will
require some modification.
•
The QUICC contains an 8-Kbyte block of memory as opposed to a 4-Kbyte block on
the TS68302. The register addresses within that memory map are different.
•
The code used to initialize the system integration features of the TS68302 has to be
modified to write the corresponding features on the QUICC SIM60.
•
As much as possible, QUICC CPM features were made identical to those of the
TS68302 CP. The most important benefit is that the code flow (if not the code itself)
will port easily from the TS68302 to the QUICC. The nuances learned from the
TS68302 will still be useful in the QUICC.
•
Although the registers used to initialize the QUICC CPM are new (for example, the
SCM on the TS68302 is replaced with the GSMR and PSMR on the QUICC), most
registers retain their original purpose such as the SCC event, SCC mask, SCC
status, and command registers. The parameter RAM of the SCCs is very similar,
and most parameter RAM register names and usage are retained. More importantly,
the basic structure of a buffer descriptor (BD) on the QUICC is identical to that of the
TS68302, except for a few new bit functions that were added. (In a few cases, a bit
in a BD status word had to be shifted.)
•
When porting code from the TS68302 CP to the QUICC CPM, the software writer
may find that the QUICC has new options to simplify what used to be a more codeintensive process. For specific examples, see the INIT TX AND RX PARAMETERS,
GRACEFUL STOP TRANSMIT, and CLOSE BD commands.
Preparation for
Delivery
Packaging
Microcircuits are prepared for delivery in accordance with MIL-PRF-38535 or Atmel
standards.
Certificate of Compliance
Atmel offers a certificate of compliances with each shipment of parts, affirming the products are in compliance either with MIL-STD-883 or Atmel standard and guarantying the
parameters not tested at temperature extremes for the entire temperature range.
Handling
MOS devices must be handled with certain precautions to avoid damage due to accumulation of static charge. Input protection devices have been designed in the chip to
minimize the effect of this static buildup. However, the following handling practices are
recommended:
a) Devices should be handled on benches with conductive and grounded surfaces.
b) Ground test equipment, tools and operator.
c) Do not handle devices by the leads.
d) Store devices in conductive foam or carriers.
e) Avoid use of plastic, rubber, or silk in MOS areas.
f) Maintain relative humidity above 50% if practical.
76
TS68EN360
2113A–HIREL–03/02
TS68EN360
Package Mechanical Data
241-pin – PGA
Inches
A
(top view)
Millimeters
Dim
Min
Max
Min
Max
A
1.840
1.880
46.74
47.75
C
0.110
0.140
2.79
3.56
D
0.016
0.020
0.41
0.51
E
0.045
0.055
1.143
1.4
F
0.045
0.055
1.143
1.4
G
K
0.100 BASIC
0.150
0.170
2.54 BASIC
3.81
4.32
C
G
E
A1
D
G
T
(BOTTOM VIEW)
1
18
F
A
A
K
77
2113A–HIREL–03/02
240-pin – CERQUAD
S
VIEW AC
VIEW AC
4 PLACES
U
AD
121
AD
120
Y
P
181
G
180
–X–
X = L, M or N
SECTION AD
F
–N–
–L–
240
D
0.08(0.003) M T L–N
61
1
60
MILLIMETERS
–M–
A
4 x 60 TIPS
0.20 (0.008) M H L–N
S
M
S
W
E
C
0.25(0.010) T L–N M
–H–
DATUM
PLANE
0.10(0.004)
AB
–T–
SEATING
PLANE
VIEW AE
VIEW AE
θ2
–H–
DATUM
PLANE
K
AA
Notes:
1. Dimensioning and tolerancing per ASME Y 14.5, 1994.
2. Controlling dimension: millimeter.
3. Datum plane -H- is located at bottom of lead and is coincident with the
lead where the lead exits the ceramic body at the bottom of the parting
line.
4. Datums -L-, -M- and -N- to be determined at datum plane -H-.
5. Dimensions S and V to be determined at seating plane -T-.
6. Dimensions A and B define maximum ceramic body dimensions
including glass protrusion and top and bottom mismatch.
S
M
S
INCHES
DIM
MIN
MAX
MIN
MAX
A
30.86
31.75
1.215
1.250
B
30.86
31.75
1.215
1.250
C
3.67
4.15
0.144
0.163
D
0.18
0.30
0.007
0.012
E
3.10
3.90
0.122
0.154
F
0.17
0.23
0.007
0.009
G
0.50 BSC
0.019 BSC
J
0.13
0.175
0.005
0.007
K
0.45
0.55
0.018
0.021
P
0.25 BSC
0.010 BSC
R
0.15 BSC
0.006 BSC
S
U
34.41
34.75
17.30 BSC
1.355
1.37
0.681 BSC
V
34.41
34.75
1.355
1.37
W
0.25
0.75
0.01
0.03
Y
Z
17.30 BSC
0.12
0.13
0.681 BSC
0.005
0.005
AA
1.80 REF
0.071 REF
AB
0.95 REF
0.037 REF
θ2
78
J
Z
B
V
240 PLACES
1°
7°
1°
7°
TS68EN360
2113A–HIREL–03/02
TS68EN360
Ordering Information
Hi-REL Product
Commercial Atmel
Part-Number
Norms
Package
Temperature
Range Tc (°C)
Frequency
(MHz)
TS68EN360MRB/C25L
MIL-STD-883
PGA 241 Gold
-55/+125
25
-
TS68EN360MRB/C33L
MIL-STD-883
PGA 241 Gold
-55/+125
33
-
TS68EN360MR1B/C25L
MIL-STD-883
PGA 241 Tinned
-55/+125
25
-
TS68EN360MR1B/C33L
MIL-STD-883
PGA 241 Tinned
-55/+125
33
-
TS68EN360MAB/C25L
MIL-STD-883
CERQUAD 240
-55/+125
25
-
TS68EN360MAB/C33L
MIL-STD-883
CERQUAD 240
-55/+125
33
-
TS68EN360DES01MXCL
DSCC
PGA 241 Gold
-55/+125
25
5962-9760701MXC
TS68EN360DES02MXCL
DSCC
PGA 241 Gold
-55/+125
33
5962-9760702MXC
TS68EN360DES01MXAL
DSCC
PGA 241 Tinned
-55/+125
25
5962-9760701MXA
TS68EN360DES02MXAL
DSCC
PGA 241 Tinned
-55/+125
33
5962-9760702MXA
TS68EN360DES01MYAL
DSCC
CERQUAD 240
-55/+125
25
5962-9760701MYA
TS68EN360DES02MYAL
DSCC
CERQUAD 240
-55/+125
33
5962-9760702MYA
Commercial Atmel
Part-Number
Norms
Package
Temperature
Range Tc (°C)
Frequency
(MHz)
TS68EN360VR25L
Atmel Standard
PGA 241
-40/+85
25
Internal
TS68EN360MR25L
Atmel Standard
PGA 241
-55/+125
25
Internal
TS68EN360VA25L
Atmel Standard
CERQUAD 240
-40/+85
25
Internal
TS68EN360MA25L
Atmel Standard
CERQUAD 240
-55/+125
25
Internal
TS68EN360VR33L
Atmel Standard
PGA 241
-40/+85
33
Internal
TS68EN360MR33L
Atmel Standard
PGA 241
-55/+125
33
Internal
TS68EN360VA33L
Atmel Standard
CERQUAD 240
-40/+85
33
Internal
TS68EN360MA33L
Atmel Standard
CERQUAD 240
-55/+125
33
Internal
Drawing Number
Standard Product
Drawing Number
79
2113A–HIREL–03/02
(TSX) TS68EN360
M
R
1
B/C
25
X
Prototype version
Generic
Revision level
L:
Temperature range : (TC )
M : -55°C, +125°C
V : -40°C, +110°C
C : 0°C, +70°C
Operating frequency :
Package :
R = Pin grid array 241 (gold)
25 : 25 MHz
33 : 33 MHz
A = CERQUAD 240 (tin)
Screening :
Hirel lead finish :
___ = Standard
80
_=
Gold (for PGA)
B/C = MIL STD 883 Class B
_=
Hot solder dip (for CERQUAD)
B/T = According to MIL-STD883
1=
Hot solder dip (for PGA - On request)
D/T = Standard + Burn in
TS68EN360
2113A–HIREL–03/02
TS68EN360
81
2113A–HIREL–03/02
Atmel Headquarters
Atmel Operations
Corporate Headquarters
Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600
Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314
Microcontrollers
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314
Atmel Nantes
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60
Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369
ASIC/ASSP/Smart Cards
Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581
Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01
RF/Automotive
Atmel Heilbronn
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340
Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80
Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759
Atmel Smart Card ICs
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743
e-mail
[email protected]
Web Site
http://www.atmel.com
© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.
ATMEL ® is the registered trademarks of Atmel.
Other terms and product names may be the trademarks of others.
2113A–HIREL–03/02
0M