

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 AN205411 FM0+ IEC60730 Class B Self-Test Library.pdf

		
				 AN205411
FM0+ IEC60730 Class B Self-Test Library
Associated Part Family:
Series Name
S6E1A1
Product Number
S6E1A11B0A
S6E1A12B0A
S6E1A11C0A
S6E1A12C0A
This application notes describes how to use and implement the library functions provided. It will first show the
requirement of IEC60730 Class B, and then explain how it can be implemented. At last an example is given to show
how to integrate test functions into a real system.
Contents
1
Introduction ... 1
2
3
4
1.1
About Document.. 1
1.2
About IEC60730 .. 1
1.3
About S6E1A Series MCU................................. 2
1.4
About FM0+ IEC60730 STL Demo Project 2
IEC60730 Class B Requirement 2
IEC60730 Class B STL Overview 4
IEC60730 Class B STL API .. 5
4.1
CPU Register Test…………………………… 5
4.2
CPU PC Test ... 8
4.3
Interrupt Test.. 9
4.4
Clock Test .. 11
1
Introduction
1.1
About Document
4.5
Invariable Memory Test 20
4.6
Variable Memory Test 27
4.7
IO Test ... 29
4.8
AD Test .. 31
5
Example project.. 33
5.1
User Configuration 33
5.2
Project Structure .. 33
5.3
Sample Code ... 35
6
STL API Performance .. 40
7
Reference Documents .. 40
8
Appendix .. 41
8.1
CRC code making method 41
Document History.. 46
This application notes describes how to use and implement the library functions provided. It will first show the
requirement of IEC60730 Class B, and then explain how it can be implemented. At last an example is given to show
how to integrate test functions into a real system.
1.2
About IEC60730
The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all
national electrotechnical committees (IEC National Committees). International Standard IEC60730-1 has been
prepared by IEC technical committee for automatic controls in household use. From 2007 onwards, home appliances
have to comply with Standard IEC60730 to make system more safety.
The Annex H of IEC60730 applies to electronic controls and embedded systems implemented by both hardware and
software. Therefore the system using a microcontroller is typically the case in modern appliances. Especially, Annex
H of IEC60730 explains detailed test and diagnostic methods for microcontrollers.
In Annex H, the software-related Standard items are classified by Class A, B or C.
www.cypress.com
Document No. 002-05411 Rev. *A
1
FM0+ IEC60730 Class B Self-Test Library
1.3
Class
A:
control functions which are not intended to be relied upon for the safety of the equipment,
such as humidity controls, lighting controls and timers.
Class
B:
software that includes code intended to prevent hazards if a fault, other than a software
fault, occurs in the appliance, such as thermal cut-outs and door locks for laundry
equipment.
Class
C:
software that includes code intended to prevent hazards without the use of other
protective devices, such as thermal cut-outs for closed water heater systems.
About S6E1A Series MCU
S6E1A1 series MCU is 32-bit general purpose MCU of FM0+ family that features the industry's leading-edge ARM
Cortex-M0+ CPU and integrates Spansion’s highly reliable and high-speed secure embedded flash technology. With
a maximum CPU frequency of 40MHz, a high speed flash memory, FM0+ covers the high end of the line-up. The
wide operation supply voltage range (2.7~ 5.5V) improves the signal to noise ratio, results in a robust design. All
products are based on the same architecture (software compatible), use the same peripherals and are pin compatible
in most cases.
It includes a host of robust peripheral features, including motor control timers (MFT), base timer (can be configured to
PWM, PPG, Reload, PWC timer), ADCs, on-chip memory (up to 88K Flash, up to 6K SRAM) and a wide range of
communication interfaces (I2C, UART, CSIO, LIN, CAN).
The size of on-chip memory can be configured according to different part number and the package is available in
LQFP and QFN, shown in table 1-1.
Table 1. FM0+ Product List
Product
1.4
Flash
SRAM
S6E1A11B0A
FLASH:
56KB
6kB
S6E1A12B0A
FLASH:
88KB
6kB
S6E1A11C0A
FLASH:
56KB
6kB
S6E1A12C0A
FLASH:
88KB
6kB
Package
LQFP-32
QFN-32
LQFP-48
QFN-48
LQFP-52
About FM0+ IEC60730 STL Demo Project
This is a sample project to demonstrate how to use FM0+ IEC60730 Self-Test Library. It is developed in IAR EWARM
Workbench V6.50 and Keil μVision V5.10 IDE, and evaluated on Spansion’s SK-FM0P-48LQFP-9AF160K V1.0.0
start-kit board.
Note: If the different version of IAR EWARM Workbench V6.50 and Keil μVision V5.10 are used to open this example
project, MCU type information in project setting may lose, please check it.
Note: If the former version of IAR EWARM Workbench V6.50 is used to open this example project, MCU type, preincluded files (in preprocess table of C/C++ compiler), icf file (in link table of debug option), flash loader file (down
table of debugger option) may lose, please check these settings.
Note: If the former version of Keil μVision V5.10 is used to open this example project, MCU type, pre-included files (in
C/C++ table of project option), debug setting (in debug table of project setting) may lose, please check these settings.
2
IEC60730 Class B Requirement
The specification defined in IEC60730 requires controls with functions classified as software class B or C shall use
measures to avoid and control software-related faults/errors in safety-related data and safety-related segments of the
software. This means the software must use test method to detect faults internal and external of the microcontroller.
FM0+ IEC60730 self-test library (STL) focuses on software Class B requirement for S6E1A1 series MCU, which
covers most IEC60730 requirements listed in the standard. For Class B controllers, below table lists elements that
must be tested, method to be adapted and definitions to be implemented as summary of Annex H table H.11.12.7.
www.cypress.com
Document No. 002-05411 Rev.*A
2
FM0+ IEC60730 Class B Self-Test Library
Table 2. FM0+ IEC60730 STL Test Items
Component
Fault/Error
Method used in STL
Definitions
In STL
1. CPU
1.1 Register
Stuck at
static memory test
H. 2.19.6
YES
1.2 Program counter
Stuck at
logical monitoring of
the program sequence
H.2.18.10.2
YES
2. Interrupt
No interrupt or too
frequency interrupt
Time-slot monitoring
H.2.18.10.4
YES
3. Clock
Wrong frequency
Frequency monitor
H.2.18.10.1
YES
4. Memory
4.1. Invariable memory
All single bit faults
Redundancy check
H.2.19.3.2
YES
4.2. Variable memory
DC fault
static memory test
H.2.19.6
YES
Stuck at
Redundancy check
-
YES
Stuck at
-
-
NO
Hamming distance 3
-
-
NO
Wrong point in time
-
-
NO
7. Input/output periphery
7.1 Digital I/O
Function error
Output verification
H.2.18.12
YES
7.2 A/D
Function error
Input comparison
H.2.18.8
YES
4.3. Address
[1]
5. Internal data path
[2]
6.External communication
[3]
6.1 Data
6.3 Timing
Note: The address test can be partly covered by test method of invariable and variable memory test. E.g. the error
that two cells are mapped to a same address can be identified when doing invariable memory test with CRC test.
Note: Internal data path is only tested when using external memory.
Note: The external communication test is not involved in this STL. But external communication data can be tested
with similar method of invariable memory test.
www.cypress.com
Document No. 002-05411 Rev.*A
3
FM0+ IEC60730 Class B Self-Test Library
3
IEC60730 Class B STL Overview
As shown in following figure, the STL block diagram includes CPU, Interrupt, Clock, Memory, and Input/output
periphery module. It shows file structure and software APIs in the STL. The STL is coded by mixed C and assembly
language.
FM0P IEC60730 STL should be compatible with ARM, IAR compiler. So STL supplies two kinds of CPU test.s and
ram test.s files according to different compilers.
Figure 1. FM0+ IEC60730 Class B STL Block Diagram
IEC60730_B_STL
CPU
Test.s
reg_test()
pc_test()
Clock
Test.c
ClkInit()
ClkTestReset()
ClkCnt()
ClkTest()
ClkMonInMainloop()
Interrupt
Test.c
IntCntPro()
IntTestInit()
IntTest()
ROM
Test.c
SoftwareCRC16Gen()
SoftwareCRC16Test()
RAM
Test.s
ram_test()
SoftwareCRC32Gen()
SoftwareCRC32Test()
InitCSV()
CheckCSVStat
IO
Test.c
GPIOOutput
Test()
GPIOInput
Test()
ADTest()
AD
Test.c
ADTest()
The STL consists of several independent function modules, which have to be executed once or cyclically as required
by the application.
The test function implemented once is called Power-On Self-Test (POST), which should be implemented in system
initialization, this test is always complete but destructive(need Initialize), which means it covers full test area but the
data is not restored after executing test. PC, register, ROM/RAM, IO, AD test are all POST.
The test function implemented cyclically is called Build-In Self-Test (BIST), which should be implemented in main
loop or timer interrupt service routine in a certain interval, this test will not change test data and act as a monitor when
program is running. Interrupt and clock are BIST.
Note: The library should be used as explained, if any part is changed, a new validation is needed for these parts.
Note: This library is usable, as-is, for all Spansion Cortex-M0+ MCU, including those not especially mentioned in this
application notes.
Note: The prefix of file and function name is omitted for easy description.
Note: The STL provides two types of assembly files for CPU and RAM test for IAR and KEIL IDE.
Note: User has alternative test method in clock and Flash test.
www.cypress.com
Document No. 002-05411 Rev.*A
4
FM0+ IEC60730 Class B Self-Test Library
4
IEC60730 Class B STL API
4.1
CPU Register Test
ARM Cortex-M0+ has 19 core registers, which can be read and written. These registers below need to be tested.
Register Name
Bits tested
R0-R12
[31:0]
R13 (SP_main, SP_process)[1]
[31:4]
R14 (LR)
[31:0]
[2]
APSR
PRIMASK
[31:28]
[3]
0
Table 4-1: Cotex-M0+ Register List
Note: ARM Cortex-M0+ kernel has two stack pointers: main stack pointer (MSP) and process stack pointer (PSP).
Handler mode uses MSP and process mode uses MSP or PSP. R13 indicates current SP.
Note: Only high 4 bits of APSR is valid.
Note: Only bit 0 of PRIMASK is valid.
www.cypress.com
Document No. 002-05411 Rev.*A
5
FM0+ IEC60730 Class B Self-Test Library
4.1.1
Test Description
As shown at table H.11.12.7, registers must be checked for “stuck-at error”, a simple checker board method is used
to implement register test, which is an effective method to detect stuck-at error.
This test should be called at startup file when system resets in Privileged mode, as kernel registers needs to be
accessed. This test does not disable interrupts during the register test. It is the responsibility of the application to
disable interrupts when this function is called to ensure that the register test is not interrupted.
Assembly is used to implement register test due to access to registers directly. And as it is highly critical, it is
designed that once register test error is detected, program will run into an infinite loop.
The flow chart to test 1 register is shown as following figure.
Figure 2. Test 1 Register
Start
Select one pattern
Reverse the
pattern
Write pattern data into
register
Write reverse pattern
data into register
Read register
Read register
Verify if read data is
same with write data
Y
N
Verify if read data is
same with write data
N
Y
Jump to infinite loop
www.cypress.com
Return
Document No. 002-05411 Rev.*A
6
FM0+ IEC60730 Class B Self-Test Library
4.1.2
API Definition
Name
iec60730_reg_test
Parameter
None
Return
None
Description:
This function tests all registers including R0-R12 (low: R0-R7, high: R8-R12) special registers (SP, LR, APSR,
PRIMASK) with checker board method. This function should be called at reset handler.
www.cypress.com
Document No. 002-05411 Rev.*A
7
FM0+ IEC60730 Class B Self-Test Library
4.2
CPU PC Test
4.2.1
Test Description
As shown at table H.11.12.7, PC must be checked for “stuck-at error”. PC test makes use of 8 subroutines and
validates if PC value gotten from each subroutines is same with pre-define value.
This test should be called at startup file when system resets in Privileged mode. This test does not disable interrupts
during the register test. It is the responsibility of the application to disable interrupts when this function is called to
ensure that the register test is not interrupted.
Assembly is used to implement PC test due to access to PC register directly. As it is highly critical, it is designed that
once PC test error is detected, program will run into an infinite loop.
The PC test flow is shown as following figure.
Figure 3. PC Test Flow Chart
Jump to
subroutine1
Store
subroutine 1
address
Verify
subroutine 1
address
...
Jump to
subroutine8
Store
subroutine 8
address
Verify
subroutine 8
address
4.2.2
API Definition
Name
iec60730_pc_test
Parameter
None
Return
None
Description:
This function jumps to subroutines at different areas and gets the subroutine address, then verifies whether address
gotten is correct. It should be called at reset handler.
www.cypress.com
Document No. 002-05411 Rev.*A
8
FM0+ IEC60730 Class B Self-Test Library
4.3
Interrupt Test
4.3.1
Test Description
To meet Class B requirement, interrupt must be checked for “incorrect frequency”. This test is a task which is highly
system dependent and therefore the STL can only contribute the wrap up handle, which checks that a number of
specific interrupts occurred at least and at most a predefined number of times. It is assumed that
IEC60730_IntTest (interrupt test function) is called in specified intervals, e.g. triggered by a timer or line
frequency interrupt. Each specific interrupt handler which is to be supervised, must decrement a dedicated global
variable (Freq) by calling IEC60730_IntCnt, IEC60730_IntTest compares that variable to predefined upper
and lower bounds, sets it to its preset value and returns an error, if the limits are exceeded.
For example, measure if timer 0-3 interrupts happen 5 times in 10 second, assume 10 second timing can be gotten
by a reload timer and set the range of interrupt frequency of timer 0-3 at [3, 7].
Figure 4. Interrupt Test Block Diagram
Reload timer interrupt
User code
3<freq_init[0]-freq[0]<7?
IEC60730_IntTest()
N
Y
3<freq_init[1]-freq[1]<7?
N
Y
3<freq_init[2]-freq[2]<7?
N
Y
Timer 0
interrupt
N
3<freq_init[3]-freq[3]<7?
Y
IEC60730_
IntITestnit() Initialize freq
Return Normal
IEC60730_
IntTestInit()
Initialize freq
User code
IEC60730_
IntCntPro(0)
Timer 1
interrupt
Timer 2
interrupt
User code
User code
IEC60730_
IntCntPro(1)
IEC60730_
IntCntPro(2)
Timer 3
interrupt
User code
IEC60730
IntCntPro(3)
freq[0]--
freq[1]--
freq[2]--
freq[3]--
User code
User code
User code
User code
Return
Return
Return
Return
Return
INT_ERROR
User code
Return
Main loop
Interrupt
The interrupt test is independent from user application. User just needs to add the interrupt test API into his interrupt
which he wants to test.
www.cypress.com
Document No. 002-05411 Rev.*A
9
FM0+ IEC60730 Class B Self-Test Library
4.3.2
API Definition
Name
IEC60730_IntTestInit
pFreq: pointer to frequency counters
pFreqLower: pointer to lower frequencies
Parameter
pFreqUpper: pointer to upper frequencies
pFreqInitial: pointer to frequency initial value
ArraySize: pointer to interrupt num
Return
None
Description:
This function Initializes str_int_test_par_t structure for interrupt test, which includes pre-defined frequency ranges and
frequency initial values. It should be called at system initialization, before interrupt test starts.
Name
Parameter
Return
IEC60730_IntCntPro
IntNum: interrupt number
None
Description:
This function decreases frequency counter of the interrupt specified by the interrupt number, and should be called in
the interrupt which to be supervised.
www.cypress.com
Document No. 002-05411 Rev.*A
10
FM0+ IEC60730 Class B Self-Test Library
Name
Parameter
Return
IEC60730_IntTest
None
0: IEC60730_TEST_NORMAL
1: IEC60730_TEST_FUNC_ERROR
Description:
This is interrupt test main function, which verifies whether the interrupts are handled in time. It should be called at a
timer interrupt or main loop in a certain interval.
4.4
Clock Test
4.4.1
Test Description
To meet Class B requirement, CPU clock must be checked for “wrong frequency”. This requires a second
independent clock as a standard clock for clock test. This library provides two ways to implement clock test. First,
FM0+ MCU has integrated a watch counter which can be sourced by an external sub clock (32.768kHz oscillator).
The sub clock can be treated as the standard clock. For the second, FM0+ MCU has integrated a Clock Supervisor
(in following called CSV), which includes the functions: Clock failure detection and Anomalous frequency detection.
The CSV can also be used for clock test.
User should enable the definition “IEC60730_CLKTEST_USE_CSV” in IEC60730_user.h file if he wants to use CSV
to perform clock test.
Use watch counter to do clock test
This test takes watch counter as standard clock, and tests whether the frequency of CPU clock is within acceptable
bound by verifying a time tick which is counted in a timer interrupt. The source clock of timer interrupt should be same
with CPU clock. The case that CPU clock is sourced by sub clock can not be tested, as 32.768kHz oscillator is
assumed accurate.
These test functions are implemented: IEC60730_ClkCnt, IEC60730_ClkTest, and IEC60730_ClkMonMainloop,
shown as following figure. The timer interrupt occurrence frequency is monitored by watch counter and the watch
counter interrupt occurrence is checked in main loop.
Figure 5. Clock Test Block Diagram
Watch counter interrupt
handler
Main loop
Timer Interrupt handler
…
…
…
IEC60730_ClkCnt
…
freq
IEC60730_ClkTest
Int occurrence
flag
IEC60730_ClkMonInMainloop
…
…
Monitored clock
Dependent clock
The API IEC60730_ClkCnt is used to count a global variable “freq”, which is called in a timer interrupt handler, the
source clock of timer should be same with CPU clock. The flowchart of IEC60730_ClkCnt is shown as following
figure.
www.cypress.com
Document No. 002-05411 Rev.*A
11
FM0+ IEC60730 Class B Self-Test Library
Figure 6. Clock Counter Flowchart
Start
N
First watch counter
interrupt happened?
Y
freq++
freq overflow?
Y
Set overflow
flag
N
Return
Note: The global variable “freq” starts to count until first watch counter interrupt occurred, because it is a limitation of
watch counter in FM0+ MCU that the first count cycle is 2 times of normal cycle. So the first watch counter interrupt
should be ignored.
www.cypress.com
Document No. 002-05411 Rev.*A
12
FM0+ IEC60730 Class B Self-Test Library
API IEC60730_ClkTest is to check whether “freq” is in pre-defined range, which is called in watch counter interrupt
handler.
Figure 7. Clock Test Flowchart
Start
N
First watch counter
interrupt happened?
Y
Set first interrupt flag
Reset clock
test
Set watch counter
interrupt flag
Check overflow
flag
Y
Return
TEST_FUNC_ERROR
N
freq>lower freq &&
freq<higher freq
N
Y
Clear freq
Ruturn
TEST_NORMAL
API IEC60730_ClkMonInMainloop guarantees the occurrence of watch counter interrupt in a certain period, this
period depends on the threshold value set by user according to a real application. The flowchart of
IEC60730_ClkMonMainInloop is shown as following figure.
Figure 8. Clock Main Loop Monitor Flowchart
Start
N
First watch counter
interrupt happened?
Y
loop count++
Check
watch counter
interrupt flag
N
Y
N
Loop count>
threshold value
Clear watch counter
interrupt flag
Reset clock test
Return
TEST_NORMAL
Return
TEST_FUNC_ERROR
Y
Clear loop
count
www.cypress.com
Document No. 002-05411 Rev.*A
13
FM0+ IEC60730 Class B Self-Test Library
Use CSV to do clock test
The CSV has two types of functions: Clock failure detection (CSV: Clock failure detection by clock Super Visor) and
Anomalous frequency detection (FCS: anomalous Frequency detection by Clock Super visor).
The clock failure detection monitors the main and sub clocks. If a rising edge of the monitored clock is not detected
within the specified period, this function determines that the oscillator has failed, and outputs a system reset request.
The main clock is monitored with the high-speed CR clock, and the sub clock is monitored with the low-speed CR
clock. When a rising edge is not detected within 32 clocks of high-speed CR for the main clock, or within 32 clocks of
low-speed CR for the sub clock, this function determines that the oscillator has failed. Figure 4-8 shows the block
diagram of the clock failure detection.
Figure 9. Clock Failure Detection Block Diagram
Main_OSC
High-speed CR
Main clock
counter
Control circuit/
registers
Sub_OSC
Low-speed CR
CSV_RESET
Sub clock
counter
The Anomalous frequency detection monitors the main clock. Within the specified period between an edge and the
next edge of the divided clock of high-speed CR, this function counts up the internal counter using the main clock. If
the count value reaches out of the set window range, the function determines that the main clock frequency is
anomalous, and outputs an interrupt request or a system reset request to the CPU. Figure 4-9 shows the block
diagram of the anomalous frequency detection.
www.cypress.com
Document No. 002-05411 Rev.*A
14
FM0+ IEC60730 Class B Self-Test Library
Figure 10. Anomalous Frequency Detection Block Diagram
Main_OSC
Frequency
counter
Edge
detection
driver
High-speed CR
Control circuit/
registers and
window registers
FCS_RESET
FCS_INT
Two test functions are implemented:
IEC60730_InitCSV and IEC60730_CheckCSVStat.
The API IEC60730_InitCSV provides a selection for user to disable/enable Clock failure detection and Anomalous
frequency detection functions. It should be called before system clock initialization. Figure 4-10 shows the flow chart
of it.
Figure 11. IEC60730_InitCSV Flow Chart
Start
Get the trimming value
from 0x00101004*1
Enable CSV main clock
monitor function*4
Set the trimming frequency
register MCR_FTRM*2
CSV sub clock
monitor enable?
Set the upper and lower
frequency*3
N
Enable FCS function
Y
Enable CSV sub clock
monitor function*4
Set FCS count cycle to
1/512
CSV main clock
monitor enable?
N
Y
FCS main clock frequency
monitor enable?
N
www.cypress.com
Enable FCS interrupt*5
Document No. 002-05411 Rev.*A
Y
Open FCS interrupt
Return normal status
15
FM0+ IEC60730 Class B Self-Test Library
Note: The default high-speed CR trimming value is stored in the address 0x00100004 when leaving factory.
Note: If the CR trimming value in the address 0x00100004 is destroyed, a typical value must be written into the
trimming register MCR_FTRM.
Note: When setting the expected accuracy of main clock, high-speed CR frequency should also be considered.
Consider the high-speed CR oscillator precision is 4M±3% (As found in data sheet, for S6E1A1, the high-speed CR
oscillator precision is 4M±2% in 25°C, so 4M±3% is used for a little margin). The base upper and lower count can be
calculated by following formula.
1.
base lower count (operating in +3.0%) = 1/[(freq/512*) × (1 + 0.03)] × freq = 512/1.03 = 497
2.
base upper count (operating in -3.0%) = 1/[(freq/512*) × (1 - 0.03)] × freq = 512/0.97 = 528
3.
If 5% accuracy is set,
4.
lower count = 497 × 0.95 = 472
5.
upper count = 528 × 1.05 = 554
Note: After enable CSV function, a reset will occurred when a rising edge is not detected within 32 clocks of highspeed CR for the main clock, or within 32 clocks of low-speed CR for the sub clock.
Note: After enable FCS function and FCS interrupt, a FCS interrupt will occur if main clock frequency is detected not
in the setting range, but FCS reset is set not to output.
The API IEC60730_CheckCSVStat is used to check if Clock failure detection or Anomalous frequency
detection happens. This API should be called before IEC60730_InitCSV. Figure 4-11 shows the flow chart of it.
Figure 12. IEC60730_CheckCSVStat Flow Chart
Start
N
Read reset cause register
Read CSV status register
Reset caused by
CSV?
Reset caused by main
clock frequency failure
Y
N
Y
Disable hardware watchdog
Reset caused by sub
clock frequency failure
Y
N
Return normal status
www.cypress.com
Document No. 002-05411 Rev.*A
Return error status
16
FM0+ IEC60730 Class B Self-Test Library
4.4.2
API Definition
Use watch counter to do clock test
Name
IEC60730_ClkCnt
Parameter
None
Return
None
Description:
This API is used to count clock frequency, which should be called in the timer interrupt.
Name
Parameter
Return
IEC60730_ClkTest
None
0: IEC60730_TEST_NORMAL
1: IEC60730_TEST_FUNC_ERROR
Description:
This API tests if the frequency of CPU clock is within acceptable bound by verifying a time tick which is counted in a
timer interrupt. It should be called in the watch counter interrupt, which is sourced by an independent 32.768kHz
clock (sub-clock of FM4 MCU).
Name
Parameter
Return
IEC60730_ClkMonInMainloop
None
0: IEC60730_TEST_NORMAL
1: IEC60730_TEST_FUNC_ERROR
Description:
This API is used to monitor watch counter interrupt occurrence, it should be called in main loop.
Name
IEC60730_ClkTestReset
Parameter
None
Return
None
Description:
This API resets interrupt test variables.
www.cypress.com
Document No. 002-05411 Rev.*A
17
FM0+ IEC60730 Class B Self-Test Library
Name
IEC60730_ClkInit
FreqLower: indicate timer interrupt minimum occur frequency
Parameter
FreqUpper: indicate timer interrupt maximum occur frequency
ClkTestThreshold: indicate threshold value
Return
None
Description:
This API should be called at system initialization before clock test starts.
The parameter FreqLower and FreqUpper should be set according to actual example. For example, if user uses 1s
interval for watch counter to monitor a 50ms timer interrupt. The value FreqLower =18, FreqUpper =22 can be set
as bound of timer clock frequency, the standard of which is 20.
It is important to estimate threshold value, which should be at least 1s/mainloop execution time.
Use CSV to do clock test
Name
Parameter
Return
IEC60730_CheckCSVStat
pRegRSTStat: get the data from reset cause register
None
Description:
This API is used to check if Clock failure detection or anomalous frequency detection happens. The parameter
“pRegRSTStat” store the address of data read from reset cause register. This API only handles the reset caused by
CSV, otherwise it will return normal status. It should be called before IEC60730_InitCSV.
www.cypress.com
Document No. 002-05411 Rev.*A
18
FM0+ IEC60730 Class B Self-Test Library
Name
IEC60730_InitCSV
CSV_MCLKMonEn: 0: disable CSV main clock monitor 1:enable CSV main clock monitor
CSV_SCLKMonEn: 0: disable CSV sub clock monitor 1:enable CSV sub clock monitor
FCS_MONInfo: a fcs_mon_info_t structure
Parameter
typedef struct fcs_mon_info
{
stl_uint8_t FCSMonEn;
/* 0: disable FCS function, 1: enable FCS function */
stl_uint8_t MCLKFreqAccuracy; /* input the excepted accuracy of main clock, 5->5%*/
} fcs_mon_info_t;
Return
0: IEC60730_TEST_NORMAL
2: IEC60730_TEST_PARA_ERROR
Description:
This API can enable/disable CSV main/sub clock function, and input the expected accuracy of main clock frequency.
It should be called before system clock initialization.
www.cypress.com
Document No. 002-05411 Rev.*A
19
FM0+ IEC60730 Class B Self-Test Library
4.5
Invariable Memory Test
Invariable memory in FM0+ MCU means On-Chip Flash. The Flash size can be configured according to different
product shown as table 1-1.
The CRC (Cyclic Redundancy Check) module is an error detection system. The CRC code is a remainder after an
input data string is divided by the pre-defined generator polynomial, assuming the input data string is a high order
polynomial. Ordinarily, a data string is suffixed by a CRC code when being sent, and the received data is divided by a
generator polynomial as described above. If the received data is dividable, it is judged to be correct. On-Chip Flash
Test confirms with CRC that data and program is correct.
This module can either use CCITT CRC16 or IEEE-802.3 CRC32, which can be configured by CRCCR: CRC32 bit.
In this module, the generator polynomials are fixed to the numeric values for those two modes.

CCITT CRC16 generator polynomial: 0x1021(Omitted most significant bit of 0x11021)

IEEE-802.3 CRC32 generator polynomial: 0x04C11DB7
Due to the lack of CRC hardware module, we use software CRC16/32 to do the testing.
Following figure shows an application of CRC test when FM0+ MCU communicates with other devices.
Figure 13. CRC test by communication
HardwareCRCTest
(FM0+ MCU)
SoftwareCRCTest
(other MCU or PC)
Software CRC
arithmetic
Software CRC
arithmetic
RX
D0,D1,D2…DN
D0,D1,D2…DN
Generate
CRC code
CRC
code
D0,D1,D2…DN
CRC
code
D0,D1,D2…DN
Software CRC
arithmetic
Verify generate CRC
code
D0,D1,D2…DN
TX
D0,D1,D2…DN
Generate
CRC code
CRC code
Software CRC
arithmetic
Verify generate CRC
code
D0,D1,D2…DN
4.5.1
D0,D1,D2…DN
CRC
code
Test Description
To meet Class B requirement, Flash test must be checked for “single bit fault”. This test can be implemented as
CRC16/32 test.
Enable the definition “FLASH_TEST_USE_CRC16” in IEC60730_user.h file if user wants to use CRC16 arithmetic for
Flash test, otherwise CRC32 arithmetic will be implemented.
This test can be implemented at startup procedure to test whole code area, or it can also be called periodically to test
sub blocks. Flash Test compares the generated CRC code at the time of test with the stored CRC code when build by
a workbench tool. See, 8.1 CRC code making methodX for generating CRC code with a workbench tool.
X
www.cypress.com
X
X
Document No. 002-05411 Rev.*A
20
FM0+ IEC60730 Class B Self-Test Library
Note: The CRC can also be used to test external communication data, which fulfills H.2.19.4.1 to detect hamming
distance 3 errors.

Software CRC

Software CRC16 Arithmetic
The CRC table enquiry method is used. The software CRC16 arithmetic should implement 6 steps to generate a new
CRC code.
(1) Initialize CRC code in 0xFFFF.
(2) Store CRC code in “temp” after having divided it by 256.
(3) Left shift 8 bits of the CRC code.
(4) Store the CRC code by XOR CRC code with the data gotten from CRC table (use the data which calculated by
XOR “temp” with the target data for a table index).
(5) Increment the target data for 1 byte.
(6) Repeat processes of (2) to (5) until byte size of target data.
The software CRC16 generation code and CRC16 table is shown as following figure.
Figure 14. Software CRC16 Generation Source Code
stl_uint16_t IEC60730_SoftwareCRC16Gen(stl_uint8_t *pData, stl_uint32_t Size)
{
stl_uint8_t temp;
stl_uint8_t *p_temp_data = pData;
stl_uint16_t crc = 0xFFFF;
while(Size-- != 0)
{
temp = crc/256;
crc <<=8;
crc ^= CRCTable[temp^*p_temp_data];
p_temp_data++;
}
return crc;
}
www.cypress.com
Document No. 002-05411 Rev.*A
21
FM0+ IEC60730 Class B Self-Test Library
Figure 15. CRC16 table
const stl_uint16_t crc_table[256]={
0x0000, 0x1021, 0x2042, 0x3063,
0x8108, 0x9129, 0xA14A, 0xB16B,
0x1231, 0x0210, 0x3273, 0x2252,
0x9339, 0x8318, 0xB37B, 0xA35A,
0x2462, 0x3443, 0x0420, 0x1401,
0xA56A, 0xB54B, 0x8528, 0x9509,
0x3653, 0x2672, 0x1611, 0x0630,
0xB75B, 0xA77A, 0x9719, 0x8738,
0x48C4, 0x58E5, 0x6886, 0x78A7,
0xC9CC, 0xD9ED, 0xE98E, 0xF9AF,
0x5AF5, 0x4AD4, 0x7AB7, 0x6A96,
0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E,
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5,
0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD,
0x7E97, 0x6EB6, 0x5ED5, 0x4EF4,
0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC,
0x9188, 0x81A9, 0xB1CA, 0xA1EB,
0x1080, 0x00A1, 0x30C2, 0x20E3,
0x83B9, 0x9398, 0xA3FB, 0xB3DA,
0x02B1, 0x1290, 0x22F3, 0x32D2,
0xB5EA, 0xA5CB, 0x95A8, 0x8589,
0x34E2, 0x24C3, 0x14A0, 0x0481,
0xA7DB, 0xB7FA, 0x8799, 0x97B8,
0x26D3, 0x36F2, 0x0691, 0x16B0,
0xD94C, 0xC96D, 0xF90E, 0xE92F,
0x5844, 0x4865, 0x7806, 0x6827,
0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E,
0x4A75, 0x5A54, 0x6A37, 0x7A16,
0xFD2E, 0xED0F, 0xDD6C, 0xCD4D,
0x7C26, 0x6C07, 0x5C64, 0x4C45,
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C,
0x6E17, 0x7E36, 0x4E55, 0x5E74,
};
www.cypress.com
0x4084,
0xC18C,
0x52B5,
0xD3BD,
0x64E6,
0xE5EE,
0x76D7,
0xF7DF,
0x0840,
0x8948,
0x1A71,
0x9B79,
0x2C22,
0xAD2A,
0x3E13,
0xBF1B,
0xD10C,
0x5004,
0xC33D,
0x4235,
0xF56E,
0x7466,
0xE75F,
0x6657,
0x99C8,
0x18C0,
0x8BF9,
0x0AF1,
0xBDAA,
0x3CA2,
0xAF9B,
0x2E93,
0x50A5,
0xD1AD,
0x4294,
0xC39C,
0x74C7,
0xF5CF,
0x66F6,
0xE7FE,
0x1861,
0x9969,
0x0A50,
0x8B58,
0x3C03,
0xBD0B,
0x2E32,
0xAF3A,
0xC12D,
0x4025,
0xD31C,
0x5214,
0xE54F,
0x6447,
0xF77E,
0x7676,
0x89E9,
0x08E1,
0x9BD8,
0x1AD0,
0xAD8B,
0x2C83,
0xBFBA,
0x3EB2,
0x60C6,
0xE1CE,
0x72F7,
0xF3FF,
0x44A4,
0xC5AC,
0x5695,
0xD79D,
0x2802,
0xA90A,
0x3A33,
0xBB3B,
0x0C60,
0x8D68,
0x1E51,
0x9F59,
0xF14E,
0x7046,
0xE37F,
0x6277,
0xD52C,
0x5424,
0xC71D,
0x4615,
0xB98A,
0x3882,
0xABBB,
0x2AB3,
0x9DE8,
0x1CE0,
0x8FD9,
0x0ED1,
0x70E7,
0xF1EF,
0x62D6,
0xE3DE,
0x5485,
0xD58D,
0x46B4,
0xC7BC,
0x3823,
0xB92B,
0x2A12,
0xAB1A,
0x1C41,
0x9D49,
0x0E70,
0x8F78,
0xE16F,
0x6067,
0xF35E,
0x7256,
0xC50D,
0x4405,
0xD73C,
0x5634,
0xA9AB,
0x28A3,
0xBB9A,
0x3A92,
0x8DC9,
0x0CC1,
0x9FF8,
0x1EF0
Document No. 002-05411 Rev.*A
22
FM0+ IEC60730 Class B Self-Test Library
Software CRC32 Arithmetic
The CRC table enquiry method is used. The software CRC32 arithmetic should implement 6 steps to generate a new
CRC code.
(1) Initialize CRC code in 0xFFFFFFFF.
(2) Store CRC code in “temp” after having 24 bits shifted it.
(3) Store the CRC code by XOR left 8 bits shifted CRC code with the data gotten from CRC table (use the data which
calculated by XOR “temp” with the target data for a table index).
(4) Increment the target data for 1 byte.
(5) Repeat processes of (2) to (4) until byte size of target data.
(6) Finally, return reversed bit of CRC code.
The software CRC32 generation code and CRC32 table is shown as following figure.
Figure 16. Software CRC32 Generation Source Code
stl_uint32_t IEC60730_SoftwareCRC32Gen(stl_uint8_t *pData, stl_uint32_t Size)
{
stl_uint8_t temp;
stl_uint8_t *p_temp_data = pData;
stl_uint32_t crc = 0xFFFFFFFF;
while(Size--)
{
temp=(crc >> 24);
crc = (crc << 8) ^ CRCTable[temp^*p_temp_data];
p_temp_data++;
}
return ~crc;
}
www.cypress.com
Document No. 002-05411 Rev.*A
23
FM0+ IEC60730 Class B Self-Test Library
Figure 17. CRC32 table
const stl_uint32_t CRCTable[256]={
0x00000000L, 0x04c11db7L, 0x09823b6eL,
0x130476dcL, 0x17c56b6bL, 0x1a864db2L,
0x2608edb8L, 0x22c9f00fL, 0x2f8ad6d6L,
0x350c9b64L, 0x31cd86d3L, 0x3c8ea00aL,
0x4c11db70L, 0x48d0c6c7L, 0x4593e01eL,
0x5f15adacL, 0x5bd4b01bL, 0x569796c2L,
0x6a1936c8L, 0x6ed82b7fL, 0x639b0da6L,
0x791d4014L, 0x7ddc5da3L, 0x709f7b7aL,
0x9823b6e0L, 0x9ce2ab57L, 0x91a18d8eL,
0x8b27c03cL, 0x8fe6dd8bL, 0x82a5fb52L,
0xbe2b5b58L, 0xbaea46efL, 0xb7a96036L,
0xad2f2d84L, 0xa9ee3033L, 0xa4ad16eaL,
0xd4326d90L, 0xd0f37027L, 0xddb056feL,
0xc7361b4cL, 0xc3f706fbL, 0xceb42022L,
0xf23a8028L, 0xf6fb9d9fL, 0xfbb8bb46L,
0xe13ef6f4L, 0xe5ffeb43L, 0xe8bccd9aL,
0x34867077L, 0x30476dc0L, 0x3d044b19L,
0x278206abL, 0x23431b1cL, 0x2e003dc5L,
0x128e9dcfL, 0x164f8078L, 0x1b0ca6a1L,
0x018aeb13L, 0x054bf6a4L, 0x0808d07dL,
0x7897ab07L, 0x7c56b6b0L, 0x71159069L,
0x6b93dddbL, 0x6f52c06cL, 0x6211e6b5L,
0x5e9f46bfL, 0x5a5e5b08L, 0x571d7dd1L,
0x4d9b3063L, 0x495a2dd4L, 0x44190b0dL,
0xaca5c697L, 0xa864db20L, 0xa527fdf9L,
0xbfa1b04bL, 0xbb60adfcL, 0xb6238b25L,
0x8aad2b2fL, 0x8e6c3698L, 0x832f1041L,
0x99a95df3L, 0x9d684044L, 0x902b669dL,
0xe0b41de7L, 0xe4750050L, 0xe9362689L,
0xf3b06b3bL, 0xf771768cL, 0xfa325055L,
0xc6bcf05fL, 0xc27dede8L, 0xcf3ecb31L,
0xd5b88683L, 0xd1799b34L, 0xdc3abdedL,
0x690ce0eeL, 0x6dcdfd59L, 0x608edb80L,
0x7a089632L, 0x7ec98b85L, 0x738aad5cL,
0x4f040d56L, 0x4bc510e1L, 0x46863638L,
0x5c007b8aL, 0x58c1663dL, 0x558240e4L,
0x251d3b9eL, 0x21dc2629L, 0x2c9f00f0L,
0x36194d42L, 0x32d850f5L, 0x3f9b762cL,
0x0315d626L, 0x07d4cb91L, 0x0a97ed48L,
0x1011a0faL, 0x14d0bd4dL, 0x19939b94L,
0xf12f560eL, 0xf5ee4bb9L, 0xf8ad6d60L,
0xe22b20d2L, 0xe6ea3d65L, 0xeba91bbcL,
0xd727bbb6L, 0xd3e6a601L, 0xdea580d8L,
0xc423cd6aL, 0xc0e2d0ddL, 0xcda1f604L,
0xbd3e8d7eL, 0xb9ff90c9L, 0xb4bcb610L,
0xae3afba2L, 0xaafbe615L, 0xa7b8c0ccL,
0x9b3660c6L, 0x9ff77d71L, 0x92b45ba8L,
0x8832161aL, 0x8cf30badL, 0x81b02d74L,
0x5d8a9099L, 0x594b8d2eL, 0x5408abf7L,
0x4e8ee645L, 0x4a4ffbf2L, 0x470cdd2bL,
0x7b827d21L, 0x7f436096L, 0x7200464fL,
0x68860bfdL, 0x6c47164aL, 0x61043093L,
0x119b4be9L, 0x155a565eL, 0x18197087L,
0x029f3d35L, 0x065e2082L, 0x0b1d065bL,
0x3793a651L, 0x3352bbe6L, 0x3e119d3fL,
0x2497d08dL, 0x2056cd3aL, 0x2d15ebe3L,
0xc5a92679L, 0xc1683bceL, 0xcc2b1d17L,
0xd6ad50a5L, 0xd26c4d12L, 0xdf2f6bcbL,
0xe3a1cbc1L, 0xe760d676L, 0xea23f0afL,
0xf0a5bd1dL, 0xf464a0aaL, 0xf9278673L,
0x89b8fd09L, 0x8d79e0beL, 0x803ac667L,
0x9abc8bd5L, 0x9e7d9662L, 0x933eb0bbL,
0xafb010b1L, 0xab710d06L, 0xa6322bdfL,
0xbcb4666dL, 0xb8757bdaL, 0xb5365d03L,
};
www.cypress.com
0x0d4326d9L,
0x1e475005L,
0x2b4bcb61L,
0x384fbdbdL,
0x4152fda9L,
0x52568b75L,
0x675a1011L,
0x745e66cdL,
0x95609039L,
0x8664e6e5L,
0xb3687d81L,
0xa06c0b5dL,
0xd9714b49L,
0xca753d95L,
0xff79a6f1L,
0xec7dd02dL,
0x39c556aeL,
0x2ac12072L,
0x1fcdbb16L,
0x0cc9cdcaL,
0x75d48ddeL,
0x66d0fb02L,
0x53dc6066L,
0x40d816baL,
0xa1e6e04eL,
0xb2e29692L,
0x87ee0df6L,
0x94ea7b2aL,
0xedf73b3eL,
0xfef34de2L,
0xcbffd686L,
0xd8fba05aL,
0x644fc637L,
0x774bb0ebL,
0x42472b8fL,
0x51435d53L,
0x285e1d47L,
0x3b5a6b9bL,
0x0e56f0ffL,
0x1d528623L,
0xfc6c70d7L,
0xef68060bL,
0xda649d6fL,
0xc960ebb3L,
0xb07daba7L,
0xa379dd7bL,
0x9675461fL,
0x857130c3L,
0x50c9b640L,
0x43cdc09cL,
0x76c15bf8L,
0x65c52d24L,
0x1cd86d30L,
0x0fdc1becL,
0x3ad08088L,
0x29d4f654L,
0xc8ea00a0L,
0xdbee767cL,
0xeee2ed18L,
0xfde69bc4L,
0x84fbdbd0L,
0x97ffad0cL,
0xa2f33668L,
0xb1f740b4L
Document No. 002-05411 Rev.*A
24
FM0+ IEC60730 Class B Self-Test Library
4.5.2
API Definition
Use CRC16 arithmetic to implement Flash test
Name
Parameter
Return
IEC60730_SoftwareCRC16Gen
pData: test data address
Size: data size
CRC value
Description:
This API implements CRC16 generation by software CRC arithmetic. The CRC table enquiry method is used.
Name
IEC60730_SoftwareCRC16Test
pData: test data address
Parameter
Size: data size
Crc: expected CRC code
Return
0: IEC60730_TEST_NORMAL
1: IEC60730_TEST_FUNC_ERROR
Description:
This API implements software CRC16 test.
www.cypress.com
Document No. 002-05411 Rev.*A
25
FM0+ IEC60730 Class B Self-Test Library
Use CRC32 arithmetic to implement Flash test
Name
Parameter
Return
IEC60730_SoftwareCRC32Gen
pData: test data address
Size: data size
CRC value
Description:
This API implements CRC32 generation by software CRC arithmetic. The CRC table enquiry method is used.
Name
IEC60730_SoftwareCRC32Test
pData: test data address
Parameter
Size: data size
Crc: expected CRC code
Return
0: IEC60730_TEST_NORMAL
1: IEC60730_TEST_FUNC_ERROR
Description:
This API implements software CRC32 test.
www.cypress.com
Document No. 002-05411 Rev.*A
26
FM0+ IEC60730 Class B Self-Test Library
4.6
Variable Memory Test
Variable memory test in FM0+ MCU means SRAM test, the SRAM size can be configured according to different
product, shown as table 1-1.
4.6.1
Test Description
To meet Class B requirement, SRAM test must be checked for “DC fault”. A simple checkerboard method is used to
implement this SRAM.
This test can be implemented at startup procedure to test entire SRAM area. And it can also test sub blocks
periodically when code is running, however user should pay attention that the data will be destroyed after test.
As all RAM area is involved in this test, it is better not to use variable in this test, so assembly is used to implement
register test. And as it is highly critical, it is designed that once RAM test error is detected, program will run into an
infinite loop.
The procedure to test 1 word data is shown as following figure.
Figure 18. Test 1 Word with Checkerboard Method
Start
www.cypress.com
Write 0x55555555
to the address in
RAM area
Write 0xAAAAAAAA
to the address in
RAM area
Verify the write
data
Verify the write data
Document No. 002-05411 Rev.*A
end
27
FM0+ IEC60730 Class B Self-Test Library
4.6.2
API Definition
Name
Parameter
Return
iec60730_ram_test
StartAddr(R0): start RAM address
EndAddr(R1): end RAM address
None
Description:
This API tests SRAM area with Checkerboard arithmetic which writes alternate “0” and “1” to memory, and verifies if
the write data is right by reading back the data written. It can detect stuck-at faults and direct coupling faults.
This test should be called in startup procedure, and it can also be called in cycle, but the data is not saved after test.
www.cypress.com
Document No. 002-05411 Rev.*A
28
FM0+ IEC60730 Class B Self-Test Library
4.7
IO Test
FM4 MCU has up to 8 IO ports: Port0-Port8, each port has up to 16 channels. These ports can be configured
according to different package.
4.7.1
Test Description
To meet Class B requirement, GPIO must be check for “Function error”. So function test is implemented for both input
and output function. The IO direction can be configured by IO register shown in figure 4-14. Please refer to the
peripheral manual for detail of GPIO.

Input IO configuration: ADE=0,PFR=0,DDR=0

Output IO configuration: ADE=0,PFR=0,DDR=1
Table 2. IO Function Configuration
I/O Port Function
Available main function
ADE/
PFR
SPSR
Available sub function
DDR
PCR
Special pin
Analog Input
N/A
1
-
-
Disconnect
0
Valid
1
Disconnect
Oscillation
GPIO function input pin
GPIO function output pin
Peripheral
function output pin
Peripheral
function bidirectional pin
Peripheral
function input pin
Peripheral
function input pin
GPIO
function input pin (FB)
0
Peripheral
function input pin (FB)
GPIO
function input pin (FB)
Peripheral
function input pin (FB)
0
GPIO
function input pin (FB)
Peripheral
function input pin (FB)
GPIO
function input pin
Disconnect
1
Valid
Valid
The IO input test checks if selected IO input value which stores in PDIR is same with expected value, . And IO output
can check if output value by which stores in PDOR is correct. These tests should be tested in startup procedure as
function test.
www.cypress.com
Document No. 002-05411 Rev.*A
29
FM0+ IEC60730 Class B Self-Test Library
Figure 19. Input /Output Test Flowchart
IEC60730_GPIOOutputTest
IEC60730_GPIOInputputTest
Start
Start
Write test data
into data register
Read input data
Read data from
data register
Verify if read data is same
with expected data
Check if the read
data is same with
write data
N
Return
TEST_ERROR
N
Return
TEST_ERROR
Y
Y
Return
TEST_NORMAL
Return
TEST_NORMAL
4.7.2
API Definition
Name
IEC60730_GPIOOutputTest
Port: port number
Parameter
Bit: bit number
Value: output level
0: IEC60730_TEST_NORMAL
Return
1: IEC60730_TEST_FUNC_ERROR
2: IEC60730_TEST_PARA_ERROR
Description:
This API implements GPIO output test by setting a level for output pin and check if read back value is the expected
value.
Name
IEC60730_GPIOInputTest
Port: port number
Parameter
Bit: bit number
Value: expected pin level
0: IEC60730_TEST_NORMAL
Return
1: IEC60730_TEST_FUNC_ERROR
2: IEC60730_TEST_PARA_ERROR
Description:
This API implements GPIO input test by reading the value from input pin and check if read value is the expected
value.
www.cypress.com
Document No. 002-05411 Rev.*A
30
FM0+ IEC60730 Class B Self-Test Library
4.8
AD Test
FM0+ MCU integrates a 12bit AD module. It has 1 unit with totally 8 channels.
4.8.1
Test Description
To meet Class B requirement, AD must be check for “Function error”. This test samples AD signal from selected AD
channels and check if the AD convert values are in the expected ranges.
Scan mode is used, multi-channel can be tested at the same time. The AD test flowchart of checking single-channel
is shown as following figure.
Figure 20. AD Test Flowchart
Start
IEC60730_ADTest
N
Selected A/D unit
Check if
convert finish
Y
Selected A/D
channel
Get current A/D
channel
Start A/D convert
Get A/D convert
value
N
Return
TEST_ERROR
A/D value＜max &&
A/D value＞min
Y
Return
TEST_NORMAL
www.cypress.com
Document No. 002-05411 Rev.*A
31
FM0+ IEC60730 Class B Self-Test Library
4.8.2
API Definition
Name
IEC60730_ADTest
ADTest_Info: a ad_test_info_t structure
typedef struct ad_test_info {
uint8_t ADUnit;
Parameter
uint8_t *Ch;
/* unit num, 8/10 bit A/D -> 0/1/2 */
/* pointer to AD channel num
uint8_t ChSize;
*/
/* channel size */
uint16_t *ExpLowerValue; /* pointer to expected lower value */
uint16_t *ExpUpperValue; /* pointer to expected upper value */
} ad_test_info_t;
0: IEC60730_TEST_NORMAL
Return
1: IEC60730_TEST_FUNC_ERROR
2: IEC60730_TEST_PARA_ERROR
Description:
This API implements AD test by checking if AD convert result is in expected range. It should be implemented in
startup procedure.
www.cypress.com
Document No. 002-05411 Rev.*A
32
FM0+ IEC60730 Class B Self-Test Library
5
Example project
Two demo projects are provided according to IAR and keil IDE. This chapter introduces IAR demo project based on
Spansion SK-FM0P-48LQFP-9AF160K V1.0.0 and shows how to integrate the IEC60730 STL into a real system.
5.1
User Configuration
User should first configure some definitions in IEC60730_user.h file.
5.1.1
T h e d e f i n i t i o n “ I E C 6 0 7 3 0 _ F L AS H T E S T _ U S E _ C R C 1 6 ”
If user wants to use CRC16 arithmetic for Flash test, enable this definition, if user wants to use CRC32 arithmetic for
Flash test, disable this definition.
In this demo program, CRC32 arithmetic is used.
5.1.2
The definition “IEC60730_CLKTEST_USE_CSV”
If user wants to use CSV to implement clock test, enable this definition, or clock test will be done with watch counter
as standard timer, which is sourced by sub clock.
In the demo program, the latter method is demonstrated.
5.2
Project Structure
Class B STL routines are divided into two main processes: startup and periodic self-tests. The periodic test must be
initialized by a set-up block before it is applied.
5.2.1
Startup Self-Test
PC, register, SRAM test are all startup self-tests, and they should be called in reset handler.
And Flash, AD, IO can be tested after system clock initialization after program jumps into main function.
For AD test, channel 0/3 (Analog input) are used for test. P10 should connect to VCC and P13 need to connect to
GND.
For IO input test, key input pin P04/ P0F are used for test.
www.cypress.com
Document No. 002-05411 Rev.*A
33
FM0+ IEC60730 Class B Self-Test Library
5.2.2
Periodic Test Initialization
Interrupt and clock test should be initialized before tests start.

Interrupt Test Initialization
It is designed that a dual time interrupt is used to monitor reload timer 0-3. The initialization setting parameter is
shown as following table.
Interrupt Name
Interrupt Interval
interrupt of dual timer
Standard Frequency
Pre-defined Range
Reload timer 0
2.5ms
25ms
10
[8,12]
Reload timer 1
1ms
25ms
25
[22, 28]
Reload timer 2
500us
25ms
50
[45,55]
Reload timer 3
250us
25ms
100
[95,105]

Table 5-1: Input /Output Test Flowchart
Clock Test Initialization
The CPU clock is HCLK, and the source clock of dual timer in this system is set to PCLK0 (HCLK/2). So the source
clock of dual timer can be tested indirectly instead of CPU clock by watch counter.
It is designed that the interrupt Interval of watch counter is 0.5s and interrupt Interval of dual timer is 25ms, so the
Standard Frequency of dual timer is 20 and the accepted range is set between 18 and 22. Assume it takes 10 cycles
to implement main loop. So the minimum execution time of main loop is 1/4000000 s, so set the threshold value to
10000000.
5.2.3
Periodic Test
The interrupt and clock test should be tested in period when code is running.
Integrate IEC60730_IntTest into dual timer interrupt and IEC60730_IntCnt into each reload timer interrupts.
Integrate IEC60730_ClkTest into watch counter interrupt, IEC60730_ClkCnt into dual timer interrupt, and
IEC60730_ClkMonInMainloop into main loop.
The Figure 5-1 shows the basic principle of how to integrate the Class B software package into this application
software.
www.cypress.com
Document No. 002-05411 Rev.*A
34
FM0+ IEC60730 Class B Self-Test Library
Figure 21. Project Structure
Reset
Start up self-tests (1)
(PC, register, SRAM test)
X
Application startup
Reload timer 0 Reload timer 1 Reload timer 2 Reload timer 3
ISR
ISR
ISR
ISR
System clock
initialization
Start up self-tests (2)
(CRC, AD, IO test)
X
User periphery and
function initilazation
Clock and Interrupt
initialization
X
User code
User code
User code
User code
IEC60730_
IntCnt(0)
IEC60730_
IntCnt(1)
IEC60730_
IntCnt(2)
IEC60730_
IntCnt(3)
User code
User code
User code
User code
Return
Return
Return
Return
Main loop
Watch counter
ISR
Dual timer
ISR
User code
User code
IEC60730_
ClkTest()
IEC60730_
IntTest()
User code
User code
Return
Return
User module 1
IEC60730_
ClkMonInMainloop()
X
User module 2
…
5.3
Sample Code
5.3.1
Startup File

Reset handler
Figure 22. Reset Handler Sample Code
Reset_Handler
BL
BL
LDR
LDR
BL
www.cypress.com
iec60730_reg_test
iec60730_pc_test
R0, =0x20000000
R1, =0x200017FF
iec60730_ram_test
;
;
;
;
;
after reset, test register first
test pc
set RAM start address
set RAM end address
test all D-RAM area
Document No. 002-05411 Rev.*A
35
FM0+ IEC60730 Class B Self-Test Library
5.3.2
Main File

Main function
Figure 23. Main Function Sample Code
uint32_t main(void)
{
uint32_t sw_crc;
uint8_t a[10] = {0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99};
/* Use CSV to implement clock test */
#ifdef IEC60730_CLKTEST_USE_CSV
uint16_t reg_rst_str;
fcs_mon_info_t fcs_mon_info = {FCS_MON_DISABLE, 5};
if(IEC60730_TEST_NORMAL != IEC60730_CheckCSVStat(®_rst_str))
{
while(1);
}
IEC60730_InitCSV(CSV_MCLK_MON_ENABLE, CSV_SCLK_MON_ENABLE, fcs_mon_info);
#endif
SystemInit();
#ifdef IEC60730_FLASHTEST_USE_CRC16
/* use software CRC16 to calculate expected crc first,
then verify if the CRC code calculated by hardware is same with expected crc */
sw_crc = IEC60730_SoftwareCRC16Gen(a, sizeof(a));
if(IEC60730_TEST_NORMAL != IEC60730_SoftwareCRC16Test(a, sizeof(a), sw_crc))
{
while(1);
}
#else
/* use software CRC32 to calculate expected crc first,
then verify if the CRC code calculated by hardware is same with expected crc */
sw_crc = IEC60730_SoftwareCRC32Gen(a, sizeof(a));
if(IEC60730_TEST_NORMAL != IEC60730_SoftwareCRC32Test(a, sizeof(a), sw_crc))
{
while(1);
}
#endif
/* GPIO output test
* test P61 (control LED)
*/
#ifdef SK_FM0P_48LQFP_9AF160K_V1_0_0
/* Test LED_PORT Output */
if(IEC60730_TEST_NORMAL != IEC60730_GPIOOutputTest(LED_PORT,LED_PIN,TEST_PIN_LOW))
{
while(1);
}
if(IEC60730_TEST_NORMAL != IEC60730_GPIOOutputTest(LED_PORT,LED_PIN,TEST_PIN_HIGH))
{
while(1);
}
#endif
/* GPIO input test
* test P04
* test P0F
*/
#ifdef SK_FM0P_48LQFP_9AF160K_V1_0_0
/* Test GPIO P04 input */
if(IEC60730_TEST_NORMAL != IEC60730_GPIOInputTest(PORT_NUM_0, BIT_NUM_4, TEST_PIN_HIGH))
{
while(1);
}
/* Test GPIO P0F input */
if(IEC60730_TEST_NORMAL != IEC60730_GPIOInputTest(PORT_NUM_0, BIT_NUM_F, TEST_PIN_HIGH))
{
www.cypress.com
Document No. 002-05411 Rev.*A
36
FM0+ IEC60730 Class B Self-Test Library
while(1);
}
#endif
/* Init LEDs
LED_Init();
*/
/* Init Buttons */
Button_Init();
#ifdef SK_FM0P_48LQFP_9AF160K_V1_0_0
/* AD test - Check if input is in expected range.
*
Steps - 1.Connect AN00 test pin (P10-NO.25)to VCC
*
- 2.Connect AN03 test pin (P13-NO.28)to GND
*
- This ADTest function will sample the analog value and compare
*
with the set range
*/
if(IEC60730_TEST_NORMAL != IEC60730_ADTest(ADC_UNIT0, CH00, 0xFFA, 0x1000))
{
while(1);
}
if(IEC60730_TEST_NORMAL != IEC60730_ADTest(ADC_UNIT0, CH03, 0x000, 0x010))
{
while(1);
}
#endif
/* Interrupt test initialization */
IEC60730_IntTestInit(IntTest_Freq,
\
IntTest_FreqLower,\
IntTest_FreqUpper,\
IntTest_FreqInit, \
sizeof(IntTest_Freq)/sizeof(uint32_t));
#ifndef IEC60730_CLKTEST_USE_CSV
/* clock test initialization
* test CPU clock by checking if the 25ms interval time is set for dual timer,
* the occurrence frequency of dual-time is about 20 per 500ms(produced by watch counter)
* 1 cycle time = (1/40MHz). Assume it takes 10 cycles to implement main loop.
*/
IEC60730_ClkInit(18, 22, 10000000);
/* Initialize watch-counter */
WTC_Init();
#endif
/* Initialize dual-timer */
DT_Init();
/* Initialize 4 base-timers */
BT_Init();
/* Main Loop */
while(1)
{
/* Wait for timer tick- LED will keep blinking */
/* Dual-Timer Tmr1Tick-25ms */
if(40 == Tmr1Tick)
{
LED_Twinkle();
Tmr1Tick = 0;
// clear timer tick
}
#ifndef IEC60730_CLKTEST_USE_CSV
/* monitor watch counter interrupt */
if(IEC60730_TEST_NORMAL != IEC60730_ClkMonInMainloop())
{
while(1);
}
#endif
}
www.cypress.com
Document No. 002-05411 Rev.*A
37
FM0+ IEC60730 Class B Self-Test Library

Dual Timer ISR
Figure 24. Dual Timer ISR
void DT_QDU_IRQHandler(void)
{
if(1 == FM0P_DTIM->TIMER1RIS&0x01)
{
FM0P_DTIM->TIMER1INTCLR = 1;
#ifndef IEC60730_CLKTEST_USE_CSV
/* count the clock tick
*/
IEC60730_ClkCnt();
#endif
/* Set timer tick for LEDs */
Tmr1Tick++;
/* implement interrupt test */
if(IEC60730_TEST_NORMAL != IEC60730_IntTest())
{
while(1);
}
}
}

Watch Counter ISR
Figure 25. Watch Counter ISR
void TIM_IRQHandler(void)
{
if(1 == bFM0P_INTREQ_IRQ24MON_WCINT)
{
/* Clear interrupt flag
*/
FM0P_WC->WCCR &= 0xFE;
/* implement clock test
*/
if(IEC60730_TEST_NORMAL != IEC60730_ClkTest())
{
while(1);
}
}
}

Reload Timer ISR
Figure 26. Reload Timer ISR
void BT0_3_FLASH_IRQHandler(void)
{
if(FM0P_BT0_RT->STC&0x01)
{
FM0P_BT0_RT->STC = FM0P_BT0_RT->STC &
IEC60730_IntCntPro(0);
/* count
}
else if(FM0P_BT1_RT->STC&0x01)
{
FM0P_BT1_RT->STC = FM0P_BT1_RT->STC &
IEC60730_IntCntPro(1);
/* count
}
else if(FM0P_BT2_RT->STC&0x01)
{
FM0P_BT2_RT->STC = FM0P_BT2_RT->STC &
IEC60730_IntCntPro(2);
/* count
www.cypress.com
0xFE;
frequency value for interrupt 0 */
0xFE;
frequency value for interrupt 1 */
0xFE;
frequency value for interrupt 2 */
Document No. 002-05411 Rev.*A
38
FM0+ IEC60730 Class B Self-Test Library
}
else if(FM0P_BT3_RT->STC&0x01)
{
FM0P_BT3_RT->STC = FM0P_BT3_RT->STC & 0xFE;
IEC60730_IntCntPro(3);
/* count frequency value for interrupt 3 */
}
}
www.cypress.com
Document No. 002-05411 Rev.*A
39
FM0+ IEC60730 Class B Self-Test Library
6
STL API Performance
Table 2. STL API Performance
API Name
Execution time
Stack usage
ROM Usage
RAM usage (Bytes)
(Cycles)
(Bytes)
(Bytes)
(Global variable)
iec60730_pc_test
48
0
200
0
iec60730_reg_test
222
0
604
0
8
62
0
4
46
0
4
98
20
IEC60730_IntTestInit
IEC60730_IntCntPro
IEC60730_IntTest
81
(4 interrupts)
22
168
(4 interrupts)
IEC60730_ClkCnt
14
4
36
0
IEC60730_ClkTest
43
8
84
32
IEC60730_ClkMonInMainloop
43
8
76
0
IEC60730_ClkTestReset
15
0
32
0
IEC60730_InitCSV
62
16
264
0
IEC60730_CheckCSVStat
11
4
80
0
IEC60730_SoftwareCRC16Gen
IEC60730_SoftwareCRC16Test
IEC60730_SoftwareCRC32Gen
IEC60730_SoftwareCRC32Test
iec60730_ram_test
191
(10 bytes data)
199
(10 bytes data)
169
(10 bytes data)
176
(10 bytes data)
104
(16 bytes data)
66+
16
512
0
(CRC table)
8
22
0
48+
8
1024
0
(CRC table)
8
20
0
0
80
0
IEC60730_GPIOOutputTest
127
28
288
0
IEC60730_GPIOInputTest
136
36
320
0
IEC60730_ADTest
1014
76
876
0
Note: The code execution cycle is tested in normal run status.
Note: The ROM size of this STL is 3468 bytes. (Use CRC16 for Flash test, and watch counter for clock test)
Note: The code is compiled by IAR Embedded Workbench IDE V6.50 and optimization level was set to “Low”.
7
Reference Documents
[1]. IEC 60730-1 Reference Manual Edition3.2, 2007
[2]. ARMv7-M Architecture Application Level Reference Manual, 2008
[3]. Cortex-M0P r0p1 Technical Reference Manual, 2012
[4]. S6E1A1-DS710-00001 (FM0+ Family - S6E1A1 Series Data Sheet)
www.cypress.com
Document No. 002-05411 Rev.*A
40
FM0+ IEC60730 Class B Self-Test Library
[5]. Spansion 32-bit Microcontroller FM0+ Peripheral Manual, 2013
[6]. IAR SYSTEM Technical Note 65473 – IELFTOOL Checksum – Basic actions
8
Appendix
8.1
CRC code making method
The method to make CRC code to use in 4.1 CPU Register Test, follows is example of IAR Embedded Workbench.
Please refer to IAR’s manual for details (IAR Technical Note 65473 – IELFTOOL Checksum – Basic actions).
X4. 1
X
8.1.1
Start of the Command-Line
Click “Project”→”Options”→”Linker”→”Extra options” tabs, then check the “Use command line options”.
8.1.2
Input the command
“--place_holder” command
"--place_holder" is used that make CRC code and a section in ROM. If input the following command, to set the size of
section in 4byte and the alignment in 1.
--place_holder __checksum,4,.checksum,1
“--fill” command
www.cypress.com
Document No. 002-05411 Rev.*A
41
FM0+ IEC60730 Class B Self-Test Library
The unused area of the target area needs to fill with optional value making the CRC code. Therefore, use “--fill”
command. If input the following command, 0x00000000-0x00003FFF is filled with 0xFF.
--fill 0xFF;0x0000-0x3FFF
If input the following command, 0x00000000-0x00003FFF, 0x5000-0x5FFF and 0x6500-0x6FFF are filled with 0xFF.
--fill 0xFF;0x0-0x3FFF;0x5000-0x5FFF;0x6500-0x6FFF
“--checksum” command
Set algorithm of CRC. If input the following command, you can set items as follow. The CRC code is stored in the
symbol name “__checksum”, the CRC code size is 4byte, the algorithm is CRC32, calculation is LSB first, CRC code
is initialized by 0xFFFFFFFF, 0x00000000-0x00003FFF, 0x5000-0x5FFF and 0x6500-x6FFF are filled with 0xFF.
--checksum __checksum:4,crc32:mi,0xffffffff;0x0-0x3FFF;0x5000-0x5FFF;0x6500-0x6FFF
If input the command mentioned above (1, 2, and 3), close the window by clicking the “OK”.
www.cypress.com
Document No. 002-05411 Rev.*A
42
FM0+ IEC60730 Class B Self-Test Library
8.1.3
Setting of build messages to display in the message window
If set the following contents, you can display build messages at the time of make to the message window.
Click “Tools”→”Options”→”Messages” tabs, then select the “All” from the combo box of “Show build messages”.
Finally, close the window by clicking the “OK”.
www.cypress.com
Document No. 002-05411 Rev.*A
43
FM0+ IEC60730 Class B Self-Test Library
8.1.4
Setting of the Linker configuration file
Add settings to the Linker configuration file to store CRC code in Flash. In the case of debug mode, you must use
“S6E1A11x0A_ram.icf” file. In the case of release mode, you must use “S6E1A11x0A.icf” file.
Configuring the CRC code to store at address 0x8000, please add the commands below:
define symbol __ICFEDIT_checksum_start__ = 0x00008000;
place at address mem: __ICFEDIT_checksum_start__ { readonly section .checksum };
www.cypress.com
Document No. 002-05411 Rev.*A
44
FM0+ IEC60730 Class B Self-Test Library
8.1.5
Making CRC code
Confirm that the CRC code was made after make.
www.cypress.com
Document No. 002-05411 Rev.*A
45
FM0+ IEC60730 Class B Self-Test Library
9
Document History
Document Title: AN205411 - FM0+ IEC60730 Class B Self-Test Library
Document Number: 002-05411
Revision
ECN
Orig. of
Change
Submission
Date
Description of Change
**

XLZH
02/07/2014
Initial Release
*A
5029006
XLZH
12/03/2015
Migrated Spansion Application Note “MCU-AN-510126-E-10” to Cypress format
www.cypress.com
Document No. 002-05411 Rev.*A
46
FM0+ IEC60730 Class B Self-Test Library
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
Automotive
cypress.com/go/automotive
psoc.cypress.com/solutions
Clocks & Buffers
cypress.com/go/clocks
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Interface
cypress.com/go/interface
Cypress Developer Community
Lighting & Power Control
cypress.com/go/powerpsoc
Memory
cypress.com/go/memory
PSoC
cypress.com/go/psoc
Touch Sensing
cypress.com/go/touch
USB Controllers
cypress.com/go/usb
Wireless/RF
cypress.com/go/wireless
Spansion Products
spansion.com/products
Community | Forums | Blogs | Video | Training
Technical Support
cypress.com/go/support
All other trademarks or registered trademarks referenced herein are the property of their respective owners.
Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone
Fax
Website
: 408-943-2600
: 408-943-4730
: www.cypress.com
© Cypress Semiconductor Corporation, 2014-2015. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
www.cypress.com
Document No. 002-05411 Rev.*A
47

				

 Open as PDF

 	Similar pages
	

										TI CC1010

	

										AN78175 PSoC 3 and PSoC 5LP - IEC 60730 Class B Safety Software Library.pdf

	

										TI CC1110F8RHHR

	

										SILABS Si4010-C2-GT

	

										SILABS SI4010

	

										TI CC1110F8RSP

	

										MICROCHIP CC1010

	

										TAOS CC2430F32RTCR

	

										MCNIX MX10EXA

	

										HOLTEK HT46R006

	

										0.8MB

	

										FM4 FAMILY IEC60730 CLASS B SELF-TEST LIBRARY APPLICATION NOTE

	

										IEC60730 Class B準拠セルフテストライブラリ

	

										MCU-AN-510126 - IEC60730 Class_B Self-Test Library Application Note

	

										1.1 MB

	

										AN210985 Getting Started with FM0+ Development.pdf

	

										FMx family How to setup Flash Security

	

										S6E1B8 series sample application note

	

										AN204438 How to Setup Flash Security for FM0+, FM3 and FM4 Families.pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

