

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 Download 001-91162_AN91162_Creating_a_BLE_Custom_Profile.pdf

		
				 AN91162
Creating a BLE Custom Profile
Author: Rohit Kumar
Associated Part Family: CY8C4XXX-BL, CYBL10XXX
Related Application Notes: For a complete list, click here.
To get the latest version of this application note, or the associated project file, please
visit http://www.cypress.com/AN91162.
®
AN91162 describes the methodology for developing a Bluetooth Low Energy (BLE) application with PSoC 4 BLE or
PRoC BLE devices using a custom BLE profile. It provides an overview of custom profiles and services and the
procedure to build an application with PSoC 4 BLE using RGB LED control as an example. This application note also
applies to the PRoC BLE part.
Content
1
2
Introduction ...1
PSoC Resources ..3
2.1
PSoC Creator ..4
2.2
PSoC Creator Help ..4
2.3
Code Examples ...5
3
Standard Service versus Custom Service6
4
Defining a Custom BLE Profile6
4.1
Defining Services ...6
4.2
Defining Characteristics7
4.3
Defining Descriptors ..7
4.4
Generate Custom UUIDs8
5
PSoC Creator Project: RGB LED Custom Profile8
5.1
Create a PSoC Creator Project...................... 10
5.2
Configure Components 11
5.3
Configure the BLE Peripheral 17
5.4
RGB LED Control .. 20
5.5
Configure Project’s Design-Wide Resources . 23
5.6
Build the Project... 25
1
5.7
Add a Source/Header File to Project 25
5.8
Project Files ... 26
5.9
Configure the Firmware 26
5.10
Build and Program ... 33
5.11
Testing with CySmart Mobile App 34
5.12 Testing with CySmart Central Emulation Tool ... 35
6
Summary .. 39
7
Related Information .. 39
A
Appendix .. 40
A.1
Send Notifications .. 40
Document History.. 43
Worldwide Sales and Design Support 44
Products .. 44
®
PSoC Solutions ... 44
Cypress Developer Community....................................... 44
Technical Support ... 44
Introduction
Bluetooth Low Energy (BLE) is an ultra-low-power wireless standard introduced by the Bluetooth Special Interest
Group (SIG) for short-range communication. The BLE physical layer, protocol stack, and profile architecture are
designed and optimized to minimize power consumption. Similar to Classic Bluetooth, BLE operates in the 2.4-GHz
ISM band but with a lower bandwidth of 1 Mbps.
Cypress PSoC 4 BLE is a programmable embedded system-on-chip (SoC), integrating BLE along with programmable
®
®
analog and digital peripheral functions, memory, and an ARM Cortex -M0 microcontroller on a single chip.
This application note demonstrates how to easily use the BLE Component GUI to create a custom BLE profile. You
will define the structure of the custom profile. The tool will auto-generate APIs and event codes that are to be used.
Similar steps can be followed to send or receive any type and length of data, as required by your custom profile. You
will then test the custom profile on Cypress’s CY8CKIT-042-BLE Pioneer Kit.
www.cypress.com
Document No. 001-91162 Rev. *C
1
Creating a BLE Custom Profile
This application note assumes that you have a basic understanding of the BLE architecture and terms.

If you are new to either BLE or PSoC, refer to the application note AN91267 - Getting Started with PSoC 4 BLE.

For complete details on the BLE specification, visit the BLE Developer Portal.
For an understanding of the structure of the BLE Component in the PSoC Creator environment, and to learn how
to develop applications based on standard BLE services, refer to the application note AN91184 - PSoC 4 BLE
Designing BLE Applications.
Install the latest BLE Pioneer Kit software from the kit webpage, which provides related tools for BLE application
development and debugging. CY8CKIT-042-BLE or BLE Pioneer Kit is a BLE development kit from Cypress that
supports both PSoC 4 BLE and PRoC BLE family of devices. This kit comprises pluggable PSoC 4 BLE (and PRoC
BLE) modules that connect to a pioneer baseboard. This kit will be used for demonstrating the example project
provided with this application note. The kit comprises a set of BLE example projects and documentation that help you
get started with developing your own BLE applications.
www.cypress.com
Document No. 001-91162 Rev. *C
2
Creating a BLE Custom Profile
2
PSoC Resources
Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device and quickly and
effectively integrate it into your design. For a comprehensive list of resources, see KBA86521, How to Design with
PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4 BLE:

Overview: PSoC Portfolio, PSoC Roadmap

Product Selectors: PSoC 1, PSoC 3,
PSoC 4, or PSoC 5LP. In addition, PSoC
Creator includes a device selection tool.
Datasheets: Describe and provide electrical
specifications for the PSoC 41XX-BL and
PSoC 42XX-BL device families.
Application Notes and Code Examples:
Cover a broad range of topics, from basic to
advanced level. Many of the application
notes include code examples. PSoC Creator
provides additional code examples; see Code
Examples.

Additionally, you can find code examples for
PSoC devices and appropriate kits at PSoC
3/4/5 Code Examples webpage. For BLE,
scroll to the table for CY8CKIT-042-BLE
Pioneer Kit.

Technical Reference Manuals (TRMs):
Provide detailed descriptions of the
architecture and registers in each PSoC 4
BLE device family.

CapSense Design Guide: Learn how to
design capacitive touch-sensing applications
with the PSoC 4 BLE family of devices.
www.cypress.com
Document No. 001-91162 Rev. *C
Development Tools

CY8CKIT-042-BLE Bluetooth Low Energy
(BLE) Pioneer Kit is an easy-to-use and
inexpensive development platform for
BLE. This kit includes connectors for
Arduino™
compatible
shields
and
®
Digilent Pmod™ daughter cards.

CySmart BLE Host Emulation Tool for
Windows, iOS, and Android is an easy-touse GUI that enables you to test and
debug your BLE Peripheral applications.
Technical Support

Frequently Asked Questions (FAQs):
Learn more about our BLE ecosystem

BLE Forum: See if your question is
already answered by fellow developers on
the PSoC 4 BLE and PRoC BLE forums.

Cypress support: Still no luck? Visit our
support page and create a technical
support case or contact a local sales
representative. If you are in the United
States, you can talk to our technical
support team by calling our toll-free
number: +1-800-541-4736. Select option 2
at the prompt.
3
Creating a BLE Custom Profile
2.1
PSoC Creator
PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables you to design hardware and
firmware systems concurrently, based on PSoC 4 BLE and PRoC BLE. As Figure 1 shows, with PSoC Creator, you
can:
1.
Drag and drop Components to build your
hardware system design in the main design
workspace.
2.
Co-design your application firmware with the
PSoC hardware.
3.
Configure
the
configuration tools.
Components
4.
Explore the library of
Components.
more
than
using
100
5. Review the Component datasheets.
Figure 1. PSoC Creator Schematic Entry and Components
2.2
PSoC Creator Help
Visit the PSoC Creator home page to download and install the latest version of PSoC Creator. Then launch PSoC
Creator and navigate to the following items:

Quick Start Guide: Choose Help > Documentation > Quick Start Guide. This guide gives you the basics for
developing PSoC Creator projects.

Simple Component example projects: Choose File > Open > Example projects. These example projects
demonstrate how to configure and use PSoC Creator Components.

Starter designs: Choose File > New > Project > PSoC 4 Starter Designs. These starter designs demonstrate
the unique features of PSoC 4 BLE.

System Reference Guide: Choose Help > System Reference > System Reference Guide. This guide lists and
describes the system functions provided by PSoC Creator.

Component datasheets: Right-click a Component and select “Open Datasheet.” Visit the PSoC 4 BLE
Component Datasheets page for a list of all PSoC 4 BLE Component datasheets.

Document Manager: PSoC Creator provides a document manager to help you to easily find and review
document resources. To open the document manager, choose the menu item Help > Document Manager.
www.cypress.com
Document No. 001-91162 Rev. *C
4
Creating a BLE Custom Profile
2.3
Code Examples
PSoC Creator includes a large number of code example projects.
These projects are available from the PSoC Creator Start Page,
as Figure 2 shows.
Figure 2. Code Examples in PSoC
Creator
Example projects can speed up your design process by starting
you off with a complete design, instead of a blank page. The
example projects also show how PSoC Creator Components can
be used for various applications. Code examples and datasheets
are included, as Figure 3 shows.
In the Find Example Project dialog shown in Figure 3, you have
several options:

Filter for examples based on architecture or device family,
that is, PSoC 4, PSoC 4 BLE, PRoC BLE, and so on;
category; or keyword.

Select from the menu of examples offered based on the
Filter Options. There are more than 20 BLE example
projects for you to get started, as shown in Figure 3.

Review the datasheet
Documentation tab)

Review the code example for the selection. You can copy
and paste code from this window to your project, which can
help speed up code development.

Or create a new project (and a new workspace if needed)
based on the selection. This can speed up your design
process by starting you off with a complete basic design. You
can then adapt that design to your application.
for
the
selection
(on
the
Figure 3. Code Example Projects with Sample Code
www.cypress.com
Document No. 001-91162 Rev. *C
5
Creating a BLE Custom Profile
3
Standard Service versus Custom Service
A Service is a group of characteristics that defines a particular function. There are two types of services. The first is
the Standard Service, which has been defined by the Bluetooth SIG for some common applications of BLE. Some
examples are Heart Rate, Health Thermometer, Blood Pressure, and Alert Notifications. The complete list of standard
services can be found in the Bluetooth Developer Portal. Refer to the application note AN91184 - PSoC 4 BLE
Designing BLE Applications to learn how to design a standard application using PSoC 4 BLE.
The second type of service is the Custom Service. This type of service, as the name suggests, is defined for custom
applications and not universally recognized. These services allow you to deploy BLE devices that can have custom
applications beyond the limited set of services defined by the BLE SIG but still utilize the BLE framework. Custom
services can be formulated by anyone developing a BLE application. The example project with this application note
will demonstrate custom services that will allow you to transfer custom RGB LED data between the BLE Pioneer Kit
and a BLE-capable mobile phone or PC.
4
Defining a Custom BLE Profile
A custom BLE profile incorporates custom services and characteristics. It can also include standard services and
characteristics.
4.1
Defining Services
The first thing to analyze while creating a custom BLE application is the set of functions that the application requires.
Each of these functions is represented by a custom service, which can then be used to obtain any data required.
For example, one function can be controlling the red, green, and blue color intensity of an RGB LED. This function
can be represented by a custom service, named “RGB LED Control”. Other functions could read the room humidity
level or room temperature. Figure 4 shows one such instance of an application, which defines custom services to
implement three functions.
Figure 4. Define Custom Services
BLE Application
Function 1:
Control RGB LED
Function 2: Read
Humidity level of
room
Function 3: Notify
change in room
temperature
Service 1
Service 2
Service 3
Functions that differ only in the type of values they provide can be grouped under one service. In the RGB LED
Control example, you do not need to create four different custom services for controlling the four RGB LED color
values (red, green, blue, and intensity). As the function is to control the RGB LED values, one service will suffice.
After the services have been defined, allocate universally unique IDs (UUIDs) to each of these services that will
uniquely identify them. These UUIDs should be 128-bit values for custom services.
www.cypress.com
Document No. 001-91162 Rev. *C
6
Creating a BLE Custom Profile
4.2
Defining Characteristics
Next, you need to define characteristics for each service. This definition contains the following:

Data Value: The data value describes the type and the length of the data transferred. Supported data types
include unsigned byte, signed byte, word, character string, and array.

Property: The property describes how the data value is accessed. Available choices are Broadcast, Read, Write,
WriteWithoutResponse, Notify, Indicate, SignedWrite, and WritableAuxiliaries.

Permissions: Permissions describe the access permissions for the data. Permission settings are provided for
Encryption, Authentication, and Authorization.

UUID: The UUID value (128-bit) uniquely identifies the characteristic.
In the RGB LED Control example, the defined characteristic sends an array of four bytes, one byte defining each of
the color values of the RGB LED, and one byte to control intensity. The definition of the characteristic depends on
how the application interprets the data. The property of this characteristic is “Write” because the GATT client writes
the new RGB LED values to the GATT server.
Similarly, you can add another characteristic that will provide the 2-byte temperature information from an onboard
heat sensor that monitors LED overheating. Figure 5 provides an overview of the characteristics described above.
Figure 5. Define Characteristic in Service
Service 1
(RGB LED Control)
4.3
Characteristic 1
(RGB LED Color)
Characteristic 2
(LED Temperature)
Data type: array, 4 bytes
Property: Write
Data type: 2 bytes
Property: Read, Notify
Defining Descriptors
Depending on the characteristics, you may add descriptors. These descriptors provide information to the user about
characteristics. They can also be used by the GATT client device to enable or disable notifications and indications.
An example of descriptors under a custom characteristic is shown in Figure 6. In this example, a descriptor, termed
Client Characteristic Configuration, is used by the GATT client to enable and disable notifications or indications. This
is under the characteristic that supports notification or indication. Another example descriptor is the Characteristic
User Description, which provides a string through which the characteristic can be recognized in a human-readable
format.
Figure 6. Define Descriptor in Characteristics
Characteristic 1
Value
Descriptor 1
Client Characteristic Configuration
(Enable/Disable Notification)
Descriptor 2
Characteristic User Description
(String: RGB LED Control)
www.cypress.com
Document No. 001-91162 Rev. *C
7
Creating a BLE Custom Profile
4.4
Generate Custom UUIDs
All the BLE custom services and characteristic must use 128-bit UUIDs for identification and ensure that the base
UUID is different from the BLE defined base UUID (00000000-0000-1000-8000-00805F9B34FB). Base UUID is a
128-bit value on which the standard UUIDs (16-bit and 32-bit) are defined.
The BLE specification does not define a method to generate custom UUIDs for BLE services and characteristics. It is
up to the user to generate their own 128-bit UUID, which is different from the BLE defined base UUID. There can be
various ways one can generate a UUID for custom services and characteristics.
Cypress uses the following mechanism to generate UUIDs for custom services and characteristic. Similar
methodology can be used by you to create your own UUID.
Custom UUID value: XXXXYYYY-0000-1000-8000-00805F9B0131
Table 1. Cypress’s method to generate custom 128-bit UUID from BLE defined based UUID
UUID Part
Description
XXXX
16-bit value identifying the device/product
YYYY
16-bit UUID for the specific service or characteristic
00805F9B0131
Base UUID for all Cypress’s custom services and characteristics. This is the last 6 bytes of the BLE SIG
defined base UUID with last 2 bytes replaced by Cypress’s Bluetooth assigned company identifier
(0x0131).
The XXXX for PSoC 4 BLE has been set to 0x0003.
For example, we use the RGB LED custom service in this project. Its 128-bit custom UUID is set as 0003CBBB0000-1000-8000-00805F9B0131. Here, the device identifier is set to 0x0003, the last 6 bytes of the base UUID is set
to 0x00805F9B0131 and the RGB LED service specific 16-bit UUID is set to 0xCBBB.
Alternately, you can refer to the webpage http://www.itu.int/en/ITU-T/asn1/Pages/UUID/uuids.aspx to generate a
unique 128-bit UUID.
5
PSoC Creator Project: RGB LED Custom Profile
To create and verify this project, ensure that you have the following prerequisites:

PSoC Creator 3.3 SP1 (or later) along with PSoC Programmer 3.24 (or later)
CySmart™ Central Emulation Tool
CySmart iOS App or CySmart Android App
CY8CKIT-042-BLE Pioneer Kit
This project will use the following PSoC Creator Components: BLE, PrISM, Clock, and Digital Output Pins. The
project schematic in PSoC Creator looks as shown in Figure 7.
www.cypress.com
Document No. 001-91162 Rev. *C
8
Creating a BLE Custom Profile
Figure 7. PSoC Creator Project Schematic
Do the following to implement the project:
1. Create a PSoC Creator project.
2.
Configure Components in PSoC Creator.
3.
Write the firmware to handle BLE events and other Components.
4.
Build the project and program the BLE Pioneer Kit.
5.
Test the project using the CySmart tool or app.
This example project contains a custom service for RGB LED control that will be used to control the color and
brightness of an onboard RGB LED on the BLE Pioneer Kit.
For RGB LED control, you will define the data format as a 4-byte array of type uint8, as shown in Figure 8. Both Write
and Read properties will be supported.
Figure 8. RGB LED Data Format
RED
(0-255)
www.cypress.com
GREEN
0-255
BLUE
0-255
Document No. 001-91162 Rev. *C
INTENSITY
0-255
9
Creating a BLE Custom Profile
5.1
Create a PSoC Creator Project
1.
Open PSoC Creator from Start > All Programs > Cypress > PSoC Creator 3.3 > PSoC Creator 3.3.
2.
Create a new project (File > New > Project). Select the PSoC 4100 BLE / PSoC 4200 BLE Design template, and
then select CY8C4247LQI-BL483 as the device. Name the project AN91162 and save the workspace in the
desired location.
Note CY8C4XX7-BL parts have 128K FLASH and 16K SRAM. Select CY8C4XX8-BL part if using PSoC 4 BLE
device with 256K FLASH and 32K SRAM. These devices are supported on BLE component 2.3.
CY8C4248LQI-BL583 is a 256K FLASH and 32K SRAM device that supports BLE 4.2. Change the project to this
part number from Device Selector settings if you have the BLE 4.2 capable device and update the BLE
component to version 3.0 or greater.
To change the part number between various PSoC 4 BLE devices, perform these steps:

Right-click on the project name in Workspace Explorer.
Select Device Selector….
Set the Family to PSoC 4200 BLE.
Select your device number from the list and click OK (see Figure 9).
Figure 9. Device Selector settings
www.cypress.com
Document No. 001-91162 Rev. *C
10
Creating a BLE Custom Profile
5.2
Configure Components
1.
Drag and drop a BLE Component from the Component Catalog (on the right-hand side of the PSoC Creator IDE)
onto Top Design, as shown in Figure 10.
Figure 10. BLE Component in Component Catalog
2.
Double-click the Component to open its configuration window. Change the instance name of the Component to
BLE, as shown in Figure 11.
Figure 11. Instance Name of the BLE Component
Note Unlike other PSoC Creator Components, the instance name set in the BLE Component does not change
the API naming convention. As BLE libraries are closed, the BLE Component APIs always start with “CyBle_” and
not the instance name. The instance name only changes the name of the generated files.
www.cypress.com
Document No. 001-91162 Rev. *C
11
Creating a BLE Custom Profile
3.
On the General tab, select Profile and set Custom as the Profile option as shown in Figure 12. The other two
options, Profile role and GAP role, are automatically set to GATT Server and Peripheral, respectively.
Figure 12. Set Profile Role as Custom
4.
On the Profiles tab, configure profile-specific parameters. The Component exposes services, characteristics, and
descriptors in the form of a profile tree, as shown in Figure 13.
No changes are required in the Generic Access and Generic Attribute services.
Figure 13. Default Custom Profile Tree in BLE Component
www.cypress.com
Document No. 001-91162 Rev. *C
12
Creating a BLE Custom Profile
5.
Right-click Custom Service and select Rename. Rename the service as RGB LED as shown in Figure 14.
Figure 14. Rename Custom Service
6.
Click the RGB LED service on the service tree and set the UUID format for your custom service as 128-bit, as
shown in Figure 15. This UUID is used by the GATT client device to recognize the attribute present within the
GATT server device.
Note The default 128-bit UUID value seen in the Component (00000000-0000-1000-8000-00805F9B34FB) is the
base UUID defined by the BLE SIG that is used to calculate the complete 128-bit UUIDs from 16-bit and 32-bit
UUIDs.
The BLE SIG recommends using a custom 128-bit UUID, different from the base UUID, for custom attributes to
ensure that it does not conflict with existing UUIDs for standard services. Refer to Generate Custom UUIDs for
methods to generate custom UUIDs.
Figure 15. Select 128-bit UUID Format
www.cypress.com
Document No. 001-91162 Rev. *C
13
Creating a BLE Custom Profile
7.
Modify the 128-bit UUID value to the hexadecimal value 0003CBBB-0000-1000-8000-00805F9B0131. Select the
service type as Primary, as shown in Figure 16.
Note You must specify the UUID as 0003CBBB-0000-1000-8000-00805F9B0131. Cypress defines this as the
UUID for the RGB LED service. The CySmart app uses this UUID to display the RGB LED GUI page.
For any other customer service/characteristic, you need to generate your own 128-bit UUID and add it in box.
Figure 16. Set UUID for RGB LED Service
8.
Right-click Custom Characteristic under the RGB LED service, rename it to RGB LED Control, and then edit
its parameters per Table 1. These changes are shown in Figure 17.
Table 1. RGB LED Characteristic Parameters
Parameter
UUID
Fields
Properties
(checkbox)
www.cypress.com
Value
Description
0003CBB1-0000-1000-8000-00805F9B0131
Type: uint8 array
Length: 4
Read, Write
Specifies the 128-bit UUID for the RGB LED characteristic. Use
this value as the UUID to allow mobile applications to present the
correct GUI page for RGB LED.
Specifies the type of data that will be transferred.
Specifies that the GATT client device can both read from and write
to this characteristic.
Document No. 001-91162 Rev. *C
14
Creating a BLE Custom Profile
Figure 17. RGB LED Characteristic Values
9.
This characteristic does not require a custom descriptor, so right-click Custom Descriptor and select Delete as
shown in Figure 18. Custom descriptors may be added to a characteristic if you want to append custom
information to it.
Figure 18. Delete Custom Descriptor
10. Select the RGB LED Control characteristic, and then click the Add Descriptor option in the toolbar. From the
pull-down list, select Characteristic User Description as shown in Figure 19.
www.cypress.com
Document No. 001-91162 Rev. *C
15
Creating a BLE Custom Profile
Figure 19. Add Characteristic User Description to RGB LED Characteristic
11. Click the Characteristic User Description descriptor. On the right, under Fields, click the Value field and type in
the name as RGB LED Control as the user description of this characteristic, and set Permissions to ‘Read’, as
shown in Figure 20. This will allow the client to read the name of the RGB LED Control characteristic.
Note The Characteristic User Description descriptor is a BLE SIG-defined standard descriptor. Its 16-bit UUID
has the value 0x2901 per the BLE specification. The BLE Component adds this descriptor with the correct UUID
value; no change is required in it.
Figure 20. Characteristic User Description for RGB LED Characteristic
www.cypress.com
Document No. 001-91162 Rev. *C
16
Creating a BLE Custom Profile
5.3
Configure the BLE Peripheral
1.
On the GAP Settings tab in the BLE Component configuration window, configure the parameters under General
settings per Table 2, and then click Apply.
Table 2. General GAP Settings for the Peripheral Device
Parameter
Public Address
Value
Description
00A050-XXXXXX
Specifies the 6-byte Bluetooth device address. This address is used during
advertising. The last three bytes of the address are silicon-generated if the
Silicon generated option is selected. This must be a non-zero value per the
BLE SIG.
Note that 00A050 is the Company ID of Cypress Semiconductor.
Silicon generated
“Company assigned”
part of device address
Checked
Allows the company-assigned part of the public address to be generated from
the silicon. With this setting, each device will have a unique public address.
Device Name
CY Custom BLE
Specifies the name of the device that you want the GATT client to see while
scanning.
Appearance
Unknown
Specifies the appearance of the device. For this custom service, leave it as
Unknown.
MTU size (bytes)
23 (default)
Specifies the size of the protocol data unit (PDU) that can be transferred on
the attribute level.
Adv/San TX Power
level (dBm)
0 (default)
Specifies the radio TX power level while advertising data.
Connection TX power
level (dBm)
0 (default)
Specifies the radio TX power level while sending data during connection.
2.
Click Advertisement settings under Peripheral role and configure the parameters per Table 3, and then click
Apply.
Table 3. Advertisement Settings Configuration
Parameter
Value
Description
Discovery Mode
General
Sets the device to advertise in general mode so that it can be found by any
Central device.
Advertising type
Connectable
undirected advertising
Sets the Peripheral to advertise without any preference for a Central device
and to receive connection requests from any Central device scanning it.
Filter policy
Scan request: Any
Connect request: Any
Sets the Peripheral to choose whether to receive scan and connect requests
from a particular device or any Central device. In this project, it is set to
receive requests from any Central device for both scan requests and
connection requests.
Advertising channel
Map
All channels
Sets the Peripheral to advertise in all three advertising channels (37, 38, and
39).
Fast advertising
interval: Minimum (ms)
80 ms
Specifies the minimum interval for advertising data. Actual advertising interval
is calculated using both minimum and maximum intervals.
Fast advertising
interval: Maximum (ms)
100 ms
Specifies the maximum interval for advertising data. Actual advertising interval
is calculated using both minimum and maximum intervals.
Fast advertising
interval: Timeout (s)
Uncheck
Specifies the time for which the Peripheral device will continue advertising
before timing out and ceasing to advertise further.
If unchecked, the advertisement happens continuously without any timeout.
Disables slow advertising.
Slow advertising
interval
www.cypress.com
Uncheck
If this setting is enabled, the Peripheral device will go into the slow advertising
mode after a fast advertising timeout. In the slow advertising mode, the
interval between advertisements is longer but saves power during
advertisement. This project does not use this feature.
Document No. 001-91162 Rev. *C
17
Creating a BLE Custom Profile
3.
Click Advertisement packet under Peripheral role settings to specify the information in advertisement packets
that Central devices receives. For this project, select the complete Local name to be sent as part of
advertisement packet, as shown in Figure 21.
Figure 21. Advertisement Packet Settings
4.
Click Scan response packet under Peripheral role to specify the data that the Peripheral should send in
response to requests from Central devices during scanning. For this project, select the Service UUID > RGB
LED service data as shown in Figure 22, and click Apply.
Figure 22. Scan Response Packet Settings for Peripheral
www.cypress.com
Document No. 001-91162 Rev. *C
18
Creating a BLE Custom Profile
5.
Click Peripheral preferred connection parameters and set the parameters as shown in Table 4.
Table 4. Peripheral Preferred Connection Parameters
Parameter
Value
Description
Connection interval:
Minimum (ms)
75 ms
Sets the minimum interval in which the Peripheral and Central device will go into
the transmission mode to communicate data after the Peripheral device is
connected. A lower minimum interval means faster data rate but more power
consumption.
Connection interval:
Maximum (ms)
80 ms
Specifies the maximum connection interval that the Peripheral device supports.
Central and Peripheral devices must agree upon the connection interval to have
a successful connection. The actual connection interval is negotiated with the
Central device during connection.
Slave latency
Sets the maximum number of times the Peripheral device can choose not to
answer when the Central device requests data. It is useful for devices that want
to send data at a faster rate but also want to remain in the low-power mode when
no data is present to be sent.
0
For this project, no slave latency is required.
Connection supervision
timeout (ms)
6.
2000 (2 seconds)
Sets the total time after the last successful connection event for which the
Peripheral or Central device will consider the connection alive. If no connection
event happens during this time, then the link is assumed broken, so devices
disconnect.
Click Security under Peripheral role to configure the security level of the BLE communication. This project does
not require security settings, so set the I/O capabilities to No Input No Output and Bonding requirement to No
Bonding. Retain rest of the settings at their default values and click Apply, as shown in Figure 23.
Figure 23. Security Settings
7.
Click OK to save the changes and close the BLE Component configuration window.
www.cypress.com
Document No. 001-91162 Rev. *C
19
Creating a BLE Custom Profile
5.4
RGB LED Control
For RGB LED control, this project uses a PrISM Component based on Cypress’s propriety technology for LED
intensity control. This Component utilizes stochastic signal density modulation to control the intensity of individual
LEDs. Combining multiple LEDs allows for both color and intensity control. For more information, see AN47372 PrISM™ Technology for LED Dimming.
1.
Drag two PrISM Components from the Component catalog (Cypress > Digital > PrISM) as shown in Figure 24.
Each Component supports two outputs, so for controlling three LEDs, two PrISM Components are required.
Figure 24. Place PrISM Components on Top Design
2.
Double-click the first PrISM Component. On the Configuration window, perform the following on the General tab,
as shown in Figure 25, and click OK:

Set the Resolution as 8 bits and Seed value to the full range of 0xFF.
Under Pulse Mode, keep PulseDensity0 and PulseDensity1 at the default value of ‘1’. The generated
random number is compared to this value.
Set both PulseType0 and PulseType1 as Less than or Equal. This implies that whenever a random number
generated by the Component is less than or equal to the set Pulse Density value, the Component output at
pulse_den0 and pulse_den1 will be HIGH; otherwise, it will be LOW.
www.cypress.com
Document No. 001-91162 Rev. *C
20
Creating a BLE Custom Profile
Figure 25. PrISM Component Settings
3.
Configure the PrISM_2 Component with identical settings. For this Component, only one output, pulse_den0, is
used for the third LED. The other output will not be connected.
4.
Add the following Components to the input connections of both PrISM Components from the Component Catalog:

A Logic High (1) Component on the enable input pins to enable the Component by default.
Logic Low (0) Component on the kill and reset input pins to disable the hardware reset and kill options of the
Component. These two options are not needed in this project.
Figure 26. Logic High and Logic Low Components
www.cypress.com
Document No. 001-91162 Rev. *C
21
Creating a BLE Custom Profile
5.
Drag and drop a Clock Component from the System group on the Component Catalog, and configure it as
shown in Figure 27, and click OK:
a. Rename the instance to PrISM_Clock.
b.
Set the frequency as 500 kHz.
Figure 27. PrISM Clock Configuration
6.
Connect the Clock Component to the clock input of both PrISM Components using the wire tool (press ‘w’
anywhere on Top Design to enable the wire functionality and then click the connecting points).
7.
Drag and drop three Digital Output Pin Components from the Ports and Pins group in the Component Catalog.
Connect them to the pulse_den0 and pulse_den1 pins of PrISM_1 and the pulse_den0 pin of PrISM_2 as
shown in Figure 28. These pins will be driven by the PrISM Components and will control the RGB LEDs.
Figure 28. Connect Digital Output Pins to PrISM
8.
Double-click Pin_1, Pin_2, and Pin_3 Components and name them RED, GREEN, and BLUE, respectively. Set
the drive mode to High impedance Analog. This is done because the RGB LED on BLE Pioneer Kit is active low
and the initial strong drive of RGB LED pins will cause the RGB LED to show white light for a short duration.
www.cypress.com
Document No. 001-91162 Rev. *C
22
Creating a BLE Custom Profile
5.5
Configure Project’s Design-Wide Resources
1.
To assign ports to Components, double-click on the project CYDWR in Workspace Explorer as shown in
Figure 29.
Figure 29. Open Project’s CYDWR
2.
On the Pins tab, configure the pin numbers for each Component as shown in Figure 30. You can use the dropdown menu, enter the port name (for example, P3[7]), or drag the pin name to the desired location in the figure to
assign the ports.
Figure 30. Pins Configuration in CYDWR
www.cypress.com
Document No. 001-91162 Rev. *C
23
Creating a BLE Custom Profile
3.
On the Clocks tab, double-click on the IMO clock to open the System Clocks configuration window, as shown in
Figure 31.
Figure 31. CYDWR Clock Settings
4.
For this project, the IMO frequency (High-Frequency Clock) is reduced from the default 48 MHz to 12 MHz for a
lower power consumption, as shown in Figure 32. Keep other clock configurations at their default values, and
click OK.
Note The CPU clock frequency set here will affect the overall power consumption of the device. In addition, some
peripherals require a minimum clock frequency to work correctly. Choose a CPU clock frequency to keep the
power consumption low while not hindering the operation of the project.
Figure 32. IMO Clock Settings
www.cypress.com
Document No. 001-91162 Rev. *C
24
Creating a BLE Custom Profile
5.
On the Interrupts tab, set the priority for the BLE interrupt as ‘0’, as shown in Figure 33. This will ensure that any
other low-priority interrupt added will not affect the BLE operation.
Figure 33. CYDWR Interrupts Setting
5.6
Build the Project
Select Build > Build AN91162 [Shift+F6] to build the complete project, as shown in Figure 34.
Figure 34. Build Project
5.7
Add a Source/Header File to Project
To add a new header (H) or source (C) file to the project, right-click Header Files or Source Files and then select
Add > New Item as shown in Figure 35. Select the file type to be added, enter the desired name, and then click OK.
Figure 35. Add a Source/Header File
www.cypress.com
Document No. 001-91162 Rev. *C
25
Creating a BLE Custom Profile
5.8
Project Files
The associated project has the following files:
5.9

main.c/.h: These files contain the main function that acts as the entry point for the system. It initializes the
system, including BLE, and regularly calls the function to process BLE events.

BLEProcess.c/.h: These files contain the definitions of the functions for handling BLE event callbacks and
updating the RGB LED characteristic value in the GATT database.

led.c/.h: These files contain the definitions of the function that handles the Component for displaying RGB LED
colors and intensity.
Configure the Firmware
This project’s firmware handles the following processes:

Initializes the Components and enable interrupts.

Displays the color on the RGB LED when a new color data is received from the GATT client.
Processes the BLE events that are generated by the BLE stack, such as BLE start, connection request, and write
command.
This project uses the following BLE APIs:
API
Description
CyBle_Start(CYBLE_CALLBACK_T)
Starts the BLE Component and registers a function as the event handler
for events coming from the BLE stack. The argument to this function is
the name of the event-handler function.
CyBle_ProcessEvents(void)
Processes the BLE events between the BLE stack and the application.
This should be continuously called in the main function. This function has
no argument.
CyBle_GappStartAdvertisement(uint8)
Starts BLE Peripheral advertising with the interval set in the BLE
Component (as listed in Table 3). The argument defines if the
advertisement is fast, slow, or custom.
CyBle_GattsWriteRsp(CYBLE_CONN_HANDLE_T)
Sends a write response back to the GATT client device whenever the
GATT client device sends a write request. This function has the
connection handle as the argument.
CyBle_GattsWriteAttributeValue(
CYBLE_GATT_HANDLE_VALUE_PAIR_T *,
uint16, CYBLE_CONN_HANDLE_T *, uint8)
www.cypress.com
Updates the data value of an attribute (such as a characteristic) so that
the value is available for read by the GATT client device. This function
has four arguments to receive the updated data, offset, connection
handle, and flags related to the data to be communicated.
Document No. 001-91162 Rev. *C
26
Creating a BLE Custom Profile
5.9.1
Macro Definitions
Each header file contains macros for constants used in the code. Macros from each file are shown below:
main.h
#define TRUE
#define FALSE
0x01
0x00
BLEProcess.h
/* RGB LED Characteristic data length*/
#define RGB_CHAR_DATA_LEN
4
led.h
/* LED Color and status related Macros */
#define RGB_LED_MAX_VAL
#define RGB_LED_OFF
#define RGB_LED_ON
0xFF
0xFF
0x00
/* Index values in array where respective color coordinates
* are saved */
#define RED_INDEX
0x00
#define GREEN_INDEX
0x01
#define BLUE_INDEX
0x02
#define INTENSITY_INDEX
0x03
5.9.2
S ys t e m I n i t i a l i z a t i o n
The first step in firmware configuration is to initialize the Components in the system. The following function is called
first after entering main.c. Open main.c by double-clicking on it in the Workspace Explorer window on the left-hand
side of the PSoC Creator window. Add the following function definition in main.c:
void InitializeSystem(void)
{
/* Enable Global Interrupt Mask */
CyGlobalIntEnable;
/* Start BLE stack and register the event callback function. */
CyBle_Start(GeneralEventHandler);
/* Start PrISM modules for LED control */
PrISM_1_Start();
PrISM_2_Start();
/* Switch off the RGB LEDs through PrISM modules */
PrISM_1_WritePulse0(RGB_LED_OFF);
PrISM_1_WritePulse1(RGB_LED_OFF);
PrISM_2_WritePulse0(RGB_LED_OFF);
/* Set Drive modes of the output pins to Strong */
RED_SetDriveMode(RED_DM_STRONG);
GREEN_SetDriveMode(GREEN_DM_STRONG);
BLUE_SetDriveMode(BLUE_DM_STRONG);
}
www.cypress.com
Document No. 001-91162 Rev. *C
27
Creating a BLE Custom Profile
5.9.3
E ve n t H a n d l e r R e g i s t r a t i o n
Unlike other Components’ startup, the BLE Component requires the registering of an event callback function while
starting the Component. This function is called to handle BLE events, including general events such as stack ON and
events at the GAP/GATT layer such as connection, disconnection, and write command. The General event handler
function is defined in BLEProcess.c in the example project. You can either place it in a separate file or in main.c. See
Table 5 for a description of the events that are included in the switch statement. In the function definition shown
below, each case is empty. We will add code to handle each event in the next section.
void GeneralEventHandler(uint32 event, void * eventParam)
{
/* Structure to store data written by Client */
CYBLE_GATTS_WRITE_REQ_PARAM_T *wrReqParam;
/* 'RGBledData[]' is an array to store 4 bytes of RGB LED data*/
uint8 RGBledData[RGB_CHAR_DATA_LEN];
switch(event)
{
case CYBLE_EVT_STACK_ON:
/* This event is generated when BLE stack is ON */
break;
case CYBLE_EVT_GAP_DEVICE_DISCONNECTED:
/* This event is generated at GAP disconnection. */
break;
case CYBLE_EVT_GATTS_WRITE_REQ:
/* This event is generated when the connected Central */
/* device sends a Write request. */
/* The parameter ‘eventParam’ contains the data written */
break;
default:
}
}
break;
These events are the basic events to be handled in the application to allow a successful BLE connection. These
events are explained in Table 5. Other events that can be generated by the BLE Component are described in the
BLE_Stack.h file in “CYBLE_EVENT_T” enum.
www.cypress.com
Document No. 001-91162 Rev. *C
28
Creating a BLE Custom Profile
Table 5. BLE Events
Event Name
Event Description
BLE stack is initialized successfully after
calling CyBle_Start().
CYBLE_EVT_STACK_ON
5.9.4
Event Handling
When BLE stack is ON, start the
advertisement.
CYBLE_EVT_GAPP_ADVERTISEME
Peripheral advertising starts or stops.
NT_START_STOP
Go into a low-power mode or restart the
advertisement.
CYBLE_EVT_GAP_DEVICE_DISCO
NNECTED
The BLE connection between the Peripheral
and Central device is disconnected.
Go into a low-power mode or restart the
advertisement.
CYBLE_EVT_GATT_CONNECT_IND
A connection has been established between
the Peripheral and a Central device.
Update the connection handle variable.
CYBLE_EVT_GATT_DISCONNECT_
IND
The connection with the Central device has
been disconnected.
Reset the GATT database values.
CYBLE_EVT_GATTS_WRITE_REQ
A write request has been sent from the GATT
client device.
Extract the data sent by the GATT client
and send the Write response.
Not used in this project.
S t a r t Ad ve r t i s e m e n t
As the project is a GAP Peripheral, it needs to start advertisement to allow a GAP Central device to connect to it.
There are two events where advertisement will be started. Place the respective code in the general event callback
function for the following events:

When the system powers up and the BLE Stack is ON (event CYBLE_EVT_STACK_ON)
case CYBLE_EVT_STACK_ON:
/* BLE stack is on. Start BLE advertisement */
CyBle_GappStartAdvertisement(CYBLE_ADVERTISING_FAST);
break;

When
the
existing
connection
with
CYBLE_EVT_GAP_DEVICE_DISCONNECTED)
a
Central
device
has
been
disconnected
(event
case CYBLE_EVT_GAP_DEVICE_DISCONNECTED:
/* This event is generated at GAP disconnection. */
/* Restart advertisement */
CyBle_GappStartAdvertisement(CYBLE_ADVERTISING_FAST);
break;
5.9.5
A t t r i b u t e H a n d l e s f o r C u s t o m S e r vi c e
In BLE communication, both the GATT client and the GATT server access data on attributes (services,
characteristics, or descriptors) by using an attribute handle. This attribute handle is a 16-bit value that uniquely
identifies the attribute after establishing a connection.
For custom services and characteristics added to the BLE Component, the value of these handles is generated by
the Component and can be found in the generated file BLE_custom.h as #defines. For the BLE custom services
added in this project (RGB LED), the handles generated are as shown in Figure 36.
Figure 36. Attribute Handle Data Structure for Custom Services
The RGB LED service supports both reads and writes on the same characteristic with the attribute handle of value
0x000E.
www.cypress.com
Document No. 001-91162 Rev. *C
29
Creating a BLE Custom Profile
5.9.6
Handle Write Requests
For the RGB LED characteristic, the GATT client sends a Write request with four bytes of data. This data is received
as part of the CYBLE_EVT_GATTS_WRITE_REQ event in the general event callback function. The attribute handle of
the received data is compared with that of the RGB LED Control characteristic. If they match, the following actions
are taken:
1.
The four bytes of data are extracted and stored in an array.
2.
The RGB LED update function (UpdateRGBLED) is called to update the onboard LED color.
3.
The RGB Control characteristic update function (UpdateRGBcharacteristic) is called to update the internal
GATT database value.
4.
Irrespective of whether the attribute handle matches RGB LED Control Characteristic handle, a write response is
sent back to the Client device using the BLE function CyBle_GattsWriteRsp, so that the client knows that the
data was received.
Place the following code under CYBLE_EVT_GATTS_WRITE_REQ event:
case CYBLE_EVT_GATTS_WRITE_REQ:
/* Extract the Write data sent by Client */
wrReqParam = (CYBLE_GATTS_WRITE_REQ_PARAM_T *) eventParam;
/* If the attribute handle of the characteristic written to
* is equal to that of RGB_LED characteristic, then extract
* the RGB LED data */
if(CYBLE_RGB_LED_RGB_LED_CONTROL_CHAR_HANDLE ==
wrReqParam->handleValPair.attrHandle)
{
/* Store RGB LED data in local array */
RGBledData[RED_INDEX] =
wrReqParam->handleValPair.value.val[RED_INDEX];
RGBledData[GREEN_INDEX] =
wrReqParam->handleValPair.value.val[GREEN_INDEX];
RGBledData[BLUE_INDEX] =
wrReqParam->handleValPair.value.val[BLUE_INDEX];
RGBledData[INTENSITY_INDEX] =
wrReqParam->handleValPair.value.val[INTENSITY_INDEX];
/* Update the PrISM component density value to represent color */
UpdateRGBLED(RGBledData, sizeof(RGBledData));
/* Update the GATT DB for RGB LED read characteristics*/
UpdateRGBcharacteristic(RGBledData,
sizeof(RGBledData),
CYBLE_RGB_LED_RGB_LED_CONTROL_CHAR_HANDLE);
}
/* Send the response to the write request received. */
CyBle_GattsWriteRsp(cyBle_connHandle);
break;
www.cypress.com
Document No. 001-91162 Rev. *C
30
Creating a BLE Custom Profile
The UpdateRGBLED function calculates the brightness of each of the RGB LEDs using the four-byte (red, green,
blue, intensity) values received. It then updates the density value of the PrISM Components to achieve the desired
color. Place the following function in the project (defined in the led.c file of the associated project).
void UpdateRGBLED(uint8* ledData, uint8 len)
{
/* Local variables to store calculated color components */
uint8 calc_red;
uint8 calc_green;
uint8 calc_blue;
/* Check if the array has length equal to expected length for
* RGB LED data */
if(len == RGB_CHAR_DATA_LEN)
{
/* True color to be displayed is calculated on basis of color
* and intensity value received */
calc_red = (uint8)
(((uint16)ledData[RED_INDEX]*ledData[INTENSITY_INDEX])/RGB_LED_MAX_VAL);
calc_green = (uint8)
(((uint16)ledData[GREEN_INDEX]*ledData[INTENSITY_INDEX])/RGB_LED_MAX_VAL);
calc_blue = (uint8)
(((uint16)ledData[BLUE_INDEX]*ledData[INTENSITY_INDEX])/RGB_LED_MAX_VAL);
}
}
/* Update the density value of the PrISM module */
PrISM_1_WritePulse0(RGB_LED_MAX_VAL - calc_red);
PrISM_1_WritePulse1(RGB_LED_MAX_VAL - calc_green);
PrISM_2_WritePulse0(RGB_LED_MAX_VAL - calc_blue);
When the LED color is set, the GATT database has to be updated for the RGB LED characteristic so that the Client
receives the latest RGB color set when it sends a Read request. The UpdateRGBcharacteristic function
updates the attribute value for RGB LED color control. Add the following function in the project (defined in
BLEProcess.c file of the associated project).
void UpdateRGBcharacteristic(uint8* ledData, uint8 len, uint16 attrHandle)
{
/* 'rgbHandle' stores RGB control data parameters */
CYBLE_GATT_HANDLE_VALUE_PAIR_T
rgbHandle;
/* Update RGB control handle with new values */
rgbHandle.attrHandle = attrHandle;
rgbHandle.value.val = ledData;
rgbHandle.value.len = len;
}
/* Update the RGB LED attribute value. This will allow
* Client device to read the existing color values over
* RGB LED characteristic */
CyBle_GattsWriteAttributeValue(&rgbHandle,
FALSE,
&cyBle_connHandle,
CYBLE_GATT_DB_PEER_INITIATED);
www.cypress.com
Document No. 001-91162 Rev. *C
31
Creating a BLE Custom Profile
5.9.7
Handle BLE Disconnection
When the device is disconnected from the Central device, the RGB LED and GATT database should be reset before
next connection. Place the following code snippet under the CYBLE_EVT_GAP_DEVICE_DISCONNECTED event in
the general event callback function, along with the start advertisement API call:
case CYBLE_EVT_GAP_DEVICE_DISCONNECTED:
/* This event is generated at GAP disconnection. */
/* Reset the color values*/
RGBledData[RED_INDEX] = FALSE;
RGBledData[GREEN_INDEX] = FALSE;
RGBledData[BLUE_INDEX] = FALSE;
RGBledData[INTENSITY_INDEX] = FALSE;
/* Switch off LEDs */
UpdateRGBLED(RGBledData, sizeof(RGBledData));
/* Register the new color in GATT DB*/
UpdateRGBcharacteristic(RGBledData,
sizeof(RGBledData),
CYBLE_RGB_LED_RGB_LED_CONTROL_CHAR_HANDLE);
/* Restart advertisement */
CyBle_GappStartAdvertisement(CYBLE_ADVERTISING_FAST);
break;
5.9.8
Main Function
With the general event callback function complete, we now modify the main function to initialize the Components in
the project and process the BLE events. Modify the existing main function in main.c as provided below:
int main()
{
/* Start the components */
InitializeSystem();
}
for(;;)
{
/* Process BLE Events. This generates events in the callback function */
CyBle_ProcessEvents();
}
CyBle_ProcessEvents() should be called periodically, and at least once between each BLE connection interval, to
process the BLE events successfully.
Refer to the associated project for the complete firmware.
www.cypress.com
Document No. 001-91162 Rev. *C
32
Creating a BLE Custom Profile
5.10
Build and Program
1.
Select Build > Build AN91162 to build and compile the firmware, as shown in Figure 37. The project should build
without warnings or errors.
Figure 37. Build Project
2.
Plug the PSoC 4 BLE module (red module) to the BLE Pioneer baseboard, and then connect the kit to your PC
using the USB Standard-A to Mini-B cable (see Figure 38). Allow the USB enumeration to complete on the PC.
Figure 38. Connect to PC Using a USB Cable
3.
Select Debug > Program (see Figure 39). If there is only one kit connected to the PC, programming will start
automatically. If multiple kits are present, PSoC Creator will prompt you to choose the kit to be programmed.
Figure 39. Program the PSoC 4 BLE Device
After programming is complete, the BLE Pioneer Kit will start advertising.
www.cypress.com
Document No. 001-91162 Rev. *C
33
Creating a BLE Custom Profile
5.11
Testing with CySmart Mobile App
1.
2.
4.
Download the CySmart mobile app on your
BLE-enabled phone. For iOS devices
(iPhone 4S or later), download the app from
App Store. For Android devices (Android 4.3
or later), download the app from Play Store.
Select the CY Custom BLE device. The connection
procedure should be initiated and device connected.
The screen will display profile/service pages that the
connected device supports (see Figure 42).
Figure 42. Service Page
Start the app on your mobile. If Bluetooth on
your mobile is not enabled, the app will
prompt you to enable it, as shown in
Figure 40.
Note The screenshots are for the CySmart
Android app. The look and feel of the
CySmart iOS app may differ slightly.
Figure 40. Enable Bluetooth on Mobile
5.
If RGB LED icon is not displayed, Swipe left or right.
Select the RGB LED icon when it appears.
6.
On the RGB LED GUI screen, the Color Gamut (see
Figure 43) controls the value of Red, Green, and Blue
components whereas the linear slider controls the
intensity. Increase the intensity using slider and then
swipe on the Color Gamut to see the same color
being set on the BLE Pioneer Kit RGB LED.
Figure 43. RGB LED Color Control
3.
After enabling Bluetooth, the device screen
will be displayed. Swipe down to list all the
BLE devices present in the vicinity, including
the PSoC 4 BLE Custom Service project “CY
Custom BLE” (see Figure 41).
Figure 41. BLE Devices Listed
7.
www.cypress.com
To disconnect the device, tap the Back button in the
app until you reach the Device Search page.
Document No. 001-91162 Rev. *C
34
Creating a BLE Custom Profile
5.12
Testing with CySmart Central Emulation Tool
The CySmart Central Emulation Tool, along with a BLE Dongle, emulates a BLE GATT client device. This allows you
to connect to any BLE device, discover its attributes, and communicate data over these attributes with a Peripheral
device. Download the latest CySmart Central Emulation Tool from www.cypress.com/cysmart and the latest firmware
HEX file for the BLE Dongle from www.cypress.com/CY8CKIT-042-BLE.
Note The CySmart Central Emulation Tool is currently supported only on Windows PCs.
To test the project with the CySmart Central Emulation Tool, follow these steps:
1.
Connect the BLE Dongle to your PC. Allow the USB enumeration to complete.
2.
Launch the CySmart tool: click Start > All Programs > Cypress > CySmart <version> > CySmart <version>.
3.
On the CySmart Central Emulation Tool, select the Cypress BLE Dongle from the Supported targets list, and
click Connect, as shown in Figure 44.
Note If the BLE Dongle is not listed, press the reset button on the BLE Dongle and then click Refresh.
Figure 44. Select BLE Dongle Target
4.
After the BLE Dongle is selected, click Start Scan at top left to start scanning for BLE Peripheral devices, as
shown in Figure 45.
Figure 45. Start Scan on CySmart Central Emulation Tool
www.cypress.com
Document No. 001-91162 Rev. *C
35
Creating a BLE Custom Profile
5.
Select your device with the name CY Custom BLE and click Connect, as shown in Figure 46.
Figure 46. Connect to BLE_Custom Device
6.
After the device is connected, on the CySmart Central Emulation Tool, a new tab opens beside the Master tab,
with the name of the device it is connected to, as shown in Figure 47.
Select Discover All Attributes to initiate the CySmart tool querying for supported attributes by the CY Custom
BLE device, as shown in Figure 47.
Figure 47. Discover All Attributes
Scroll down the attribute list and click on the RGB LED custom characteristic (UUID 0003CBB1-0000-10008000-00805F9B0131). This characteristic supports both read and write, as indicated by Attribute details on the
right part of CySmart window. Click on Read Value to read the existing color values, as shown in Figure 48.
A 4-byte value will be displayed in the Value field.
Figure 48. RGB LED Custom Characteristic
www.cypress.com
Document No. 001-91162 Rev. *C
36
Creating a BLE Custom Profile
7.
Write non-zero values in the four bytes in the Value field and click Write Value to send the new color values, as
shown in Figure 49. The format of the 4-byte value is Red:Green:Blue:Intensity, with ‘0’ being the lowest value
and ‘FF’ being the highest value.
Figure 49. Write New Color Values to Custom Characteristic
Send any other 4-byte data and observe the corresponding colors.
8.
RGB Data
Color Observed
00:00:00:00
No Color
FF:00:00:FF
Full Red
00:FF:00:FF
Full Green
00:00:FF:FF
Full Blue
FF:00:FF:22
Purple, low intensity
FF:FF:00:55
Yellow, medium intensity
Observe the new color and intensity on the RGB LED of the BLE Pioneer Kit, as shown in Figure 50.
www.cypress.com
Document No. 001-91162 Rev. *C
37
Creating a BLE Custom Profile
Figure 50. RGB LED Control on BLE Pioneer Kit
9.
To disconnect the device, click Disconnect, as shown in Figure 51.
Figure 51. Disconnect Device
www.cypress.com
Document No. 001-91162 Rev. *C
38
Creating a BLE Custom Profile
6
Summary
This application note demonstrated the steps to add custom BLE services in a PSoC 4 BLE project using the BLE
Component, configuring the services, and reading and writing data from and to a BLE GATT client device. The
method described here can be easily extended to any type and any number of BLE custom services in your PSoC 4
BLE project.
7
Related Information

AN91267 - Getting Started with PSoC 4 BLE
AN91184 - PSoC 4 BLE Designing BLE Applications
CY8CKIT-042-BLE Pioneer Kit
BLE Developer Portal
CySmart iOS App
CySmart Android App
About the Author
Name:
Rohit Kumar
Title:
Senior Applications Engineer
www.cypress.com
Document No. 001-91162 Rev. *C
39
Creating a BLE Custom Profile
A
A.1
Appendix
Send Notifications
In addition to reading and writing from a characteristic, another important access that is commonly required is
notifications. Using notifications, a GATT server can send new data to a GATT client without having the GATT client
continuously poll for it.
Every characteristic that supports notifications has an associated descriptor, called Client Characteristic Configuration
Descriptor (CCCD). The GATT client enables and disables notifications on the GATT server by writing to this CCCD.
Until the GATT client has enabled notifications on the GATT server, the GATT server cannot send data through
notifications.
To allow the notification access to a custom characteristic and send the data to GATT client device, follow these
steps in your project. Similar steps are valid for Indicate support:
1.
In the BLE Component configuration window, select the characteristic on which notifications are to be enabled.
Select the checkbox against Notify as shown in Figure 52. The Client Characteristic Configuration Descriptor is
automatically added in the attribute list, below the characteristic. Click OK.
Figure 52. Select Notify Access in Component
2.
To enable notifications on the GATT server, the GATT client will write a value of 0x0001 to the CCCD. When
‘CYBLE_EVT_GATTS_WRITE_REQ’ event occurs, do following things:
a.
Check whether the Write request is for CCCD’s attribute handle
b.
If yes, then check if the value sent only has either of the lowest two bits set and no other bits are set. These
bits are the only allowed values that can be sent as part of write request on CCCD.
c.
If yes, then record the CCCD value in the GATT server.
d.
Send a write response or error response back to client, depending on whether the CCCD write was
successful or not.
www.cypress.com
Document No. 001-91162 Rev. *C
40
Creating a BLE Custom Profile
case CYBLE_EVT_GATTS_WRITE_REQ:
wrReqParam = (CYBLE_GATTS_WRITE_REQ_PARAM_T *) eventParam;
/* Check if the returned handle is matching to CCCD attribute */
if(CYBLE_CUSTOM_CLIENT_CHARACTERISTIC_CONFIGURATION_DESC_HANDLE ==
wrReqParam->handleValPair.attrHandle)
{
/* Only the first and second lowest significant bit can be
* set when writing on CCCD. If any other bit is set, then
* send error code */
if(FALSE ==
(wrReqParam->handleValPair.value.val
[CYBLE_CUSTOM_CLIENT_CHARACTERISTIC_CONFIGURATION_DESC_INDEX] &
(~CCCD_VALID_BIT_MASK)))
{
/* Set flag for application to know status of notifications.
* Only one byte is read as it contains the set value. */
startNotification =
wrReqParam->handleValPair.value.val
[CYBLE_CUSTOM_CLIENT_CHARACTERISTIC_CONFIGURATION_DESC_INDEX];
}
else
{
/* Update GATT DB with latest CCCD value */
CyBle_GattsWriteAttributeValue(&wrReqParam->handleValPair,
FALSE,
&cyBle_connHandle,
CYBLE_GATT_DB_PEER_INITIATED);
/* Send error response for Invalid PDU against Write
* request */
CYBLE_GATTS_ERR_PARAM_T err_param;
err_param.opcode = CYBLE_GATT_WRITE_REQ;
err_param.attrHandle = wrReqParam->handleValPair.attrHandle;
err_param.errorCode = ERR_INVALID_PDU;
/* Send Error Response */
(void)CyBle_GattsErrorRsp(cyBle_connHandle, &err_param);
}
}
/* Return to main loop */
return;
/* Send response to the Write request */
CyBle_GattsWriteRsp(connectionHandle);
break;
The error code ‘ERR_INVALID_PDU’ has a value of 0x04, according to the “BLE Core specification, Vol 3, Part F,
section 3.4.1”.
Define the following in your application code:
/*****************GATT Error code*******************/
#define ERR_INVALID_PDU
0x04
#define CCCD_VALID_BIT_MASK
0x03
#define NOTIFY_BIT_MASK
0x01
www.cypress.com
Document No. 001-91162 Rev. *C
41
Creating a BLE Custom Profile
3.
In the main application, send the data through a notification whenever data is available and notifications have
been enabled from the GATT client.
/* 'notificationHandle' is handle to store notification data parameters */
CYBLE_GATTS_HANDLE_VALUE_NTF_T
notificationHandle;
/* Check if the notification bit is set or not */
if(startNotification & NOTIFY_BIT_MASK)
{
/* Update Notification handle with new data*/
notificationHandle.attrHandle = CYBLE_CUSTOM_CHAR_HANDLE;
notificationHandle.value.val = &data;
notificationHandle.value.len = dataLength;
}
4.
/* Report data to BLE component for sending data by notifications*/
CyBle_GattsNotification(connectionHandle, ¬ificationHandle);
For an example project implementing BLE notifications over custom profile, refer to CapSense_Proximity or
CapSense_Slider_and_LED projects of CY8CKIT-042-BLE Pioneer Kit.
www.cypress.com
Document No. 001-91162 Rev. *C
42
Creating a BLE Custom Profile
Document History
Document Title: AN91162 – Creating a BLE Custom Profile
Document Number: 001-91162
Revision
**
ECN
4606922
Orig. of
Change
ROIT
Submission
Date
03/20/2015
Description of Change
New Application note
Updated project to PSoC Creator 3.2.
Added support for PSoC 4 BLE 256K parts, CY8C4XX8-BL.
Updated BLE component v2.0 screenshots.
*A
4767190
ROIT
05/20/2015
Updated CySmart Android App screenshots.
Removed HandleStatusLed() function and usage.
Updated UpdateRGBcharacteristic() function definition.
Added GATT DB update and error response code for handling Notification in
Appendix A1.
Renamed UpdateRGBled() function to UpdateRGBLED() function.
*B
4905597
ROIT
09/02/2015
Fixed broken links in the document. Updated template to add numbered headings.
Updated associated project to PSoC Creator 3.3 SP1.
Updated Figure 1 through Figure 3, Figure 10 through Figure 27, Figure 31
through Figure 33, Figure 44 through Figure 49 and Figure 51.
Updated PSoC Creator Project: RGB LED Custom Profile, Macro Definitions.
*C
5094468
ROIT
02/11/2016
Changed the parameter of API in Handle Write Requests.
Removed events CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP and
CYBLE_EVT_GATT_DISCONNECT_IND events from BLEProcess.c.
Added information on various PSoC 4 BLE devices and BLE component
compatibility in Create a PSoC Creator Project.
Added Generate Custom UUIDs.
www.cypress.com
Document No. 001-91162 Rev. *C
43
Creating a BLE Custom Profile
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
Automotive
cypress.com/go/automotive
psoc.cypress.com/solutions
Clocks & Buffers
cypress.com/go/clocks
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Interface
cypress.com/go/interface
Lighting & Power Control
cypress.com/go/powerpsoc
Cypress Developer Community
Memory
cypress.com/go/memory
PSoC
cypress.com/go/psoc
Technical Support
Touch Sensing
cypress.com/go/touch
cypress.com/go/support
USB Controllers
cypress.com/go/usb
Wireless/RF
cypress.com/go/wireless
Community | Forums | Blogs | Video | Training
PSoC is a registered trademark and PSoC Creator is a trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are the property of their respective owners.
Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone
Fax
Website
: 408-943-2600
: 408-943-4730
: www.cypress.com
© Cypress Semiconductor Corporation, 2015-2016. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
www.cypress.com
Document No. 001-91162 Rev. *C
44

				

 Open as PDF

 	Similar pages
	

										AN54181 Getting Started with PSoC® 3.pdf

	

										AN82072 PSoC® 3 and PSoC 5LP USB General Data Transfer with Standard HID Drivers.pdf

	

										AN52701 - PSoC 3 and PSoC 5LP - Getting Started with Controller Area Network.pdf

	

										AN2163 Interfacing to 1-Wire/Two-Wire Digital Temperature Sensors using PSoC 1.pdf

	

										CE210291– PSoC® 4 CapSense® One Button.pdf

	

										Download CE602461.pdf

	

										CE210311 CapSense® ADC Sequential.pdf

	

										Download F-RAM I2C PSoC4 Creator Component User Guide.pdf

	

										dm00114498

	

										CYALKIT-E02 Kit Guide.pdf

	

										ETC MTD516

	

										TI TNETX3151PGV

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

