ATMEL AT90PWM1-16MU

Features
• High Performance, Low Power AVR ® 8-bit Microcontroller
• Advanced RISC Architecture
•
•
•
•
•
•
•
– 131 Powerful Instructions - Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 1 MIPS throughput per MHz
– On-chip 2-cycle Multiplier
Data and Non-Volatile Program Memory
– 8K Bytes Flash of In-System Programmable Program Memory
• Endurance: 10,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– 512 Bytes of In-System Programmable EEPROM
Endurance: 100,000 Write/Erase Cycles
– 512 Bytes Internal SRAM
– Programming Lock for Flash Program and EEPROM Data Security
On Chip Debug Interface (debugWIRE)
Peripheral Features
– Two 12-bit High Speed PSC (Power Stage Controllers) with 4-bit Resolution
Enhancement
• Non Overlapping Inverted PWM Output Pins With Flexible Dead-Time
• Variable PWM duty Cycle and Frequency
• Synchronous Update of all PWM Registers
• Auto Stop Function for Event Driven PFC Implementation
• Less than 25 Hz Step Width at 150 kHz Output Frequency
• PSC2 with four Output Pins and Output Matrix
– One 8-bit General purpose Timer/Counter with Separate Prescaler and Capture
Mode
– One 16-bit General purpose Timer/Counter with Separate Prescaler, Compare
Mode and Capture Mode
– Master/Slave SPI Serial Interface
– 10-bit ADC
• 8 Single Ended Channels and 1 Fully Differential ADC Channel Pair
• Programmable Gain (5x, 10x, 20x, 40x on Differential Channel)
• Internal Reference Voltage
– Two Analog Comparator with Resistor-Array to Adjust Comparison Voltage
– 4 External Interrupts
– Programmable Watchdog Timer with Separate On-Chip Oscillator
Special Microcontroller Features
– Low Power Idle, Noise Reduction, and Power Down Modes
– Power On Reset and Programmable Brown Out Detection
– Flag Array in Bit-programmable I/O Space (4 bytes)
– In-System Programmable via SPI Port
– Internal Calibrated RC Oscillator ( 8 MHz)
– On-chip PLL for fast PWM ( 32 MHz, 64 MHz) and CPU (16 MHz)
8-bit
Microcontroller
with 8K Bytes
In-System
Programmable
Flash
AT90PWM1
Summary
4378CS–AVR–09/08
• Operating Voltage: 2.7V - 5.5V
• Extended Operating Temperature:
– -40°C to +105°
1. History
Product
Revision
AT90PWM1
First revision of parts
2. Disclaimer
Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.
3. Pin Configurations
Figure 3-1.
2
SOIC 24-pin Package
AT90PWM1
4378CS–AVR–09/08
(MOSI/PSCOUT21) PB1
(OC0B/XTAL1) PE1
(ADC0/XTAL2) PE2
(ADC1/ICP1_A/SCK_A) PD4
(ADC2/ACMP2 ) PD5
(ADC3/ACMPM/INT0) PD6
(ACMP0) PD7
(ADC5/INT1) PB2
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
(PSCIN2/OC1A/MISO_A) PD2
(OC0A/SS/MOSI_A) PD3
NC
VCC
GND
NC
NC
(MISO/PSCOUT20) PB0
4378CS–AVR–09/08
AT90PWM1 QFN 32
PB7 (ADC4/PSCOUT01/SCK)
PB6 (ADC7/ICP1B)
PB5 (ADC6/INT2)
NC
PD0 (PSCOUT00/SS_A)
Figure 3-2.
PE0 (RESET/OCD)
NC
PD1(PSCIN0/CLKO)
AT90PWM1
QFN 32 -pin Package
1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
PB4 (AMP0+)
PB3 (AMP0-)
NC
AREF
AGND
AVCC
NC
NC
3
3.1
Pin Descriptions
:
Table 3-1.
Pin out description
QFN32
S024 Pin Number
Mnemonic
Type
Name, Function & Alternate Function
5
7
GND
Power
Ground: 0V reference
20
18
AGND
Power
Analog Ground: 0V reference for analog part
4
6
VCC
power
Power Supply:
19
17
AVCC
Power
Analog Power Supply: This is the power supply voltage for analog
part
For a normal use this pin must be connected.
Analog Reference : reference for analog converter . This is the
reference voltage of the A/D converter. As output, can be used by
external analog
21
19
AREF
Power
8
8
PBO
I/O
9
9
PB1
I/O
16
16
PB2
I/O
23
20
PB3
I/O
AMP0- (Analog Differential Amplifier 0 Input Channel )
24
21
PB4
I/O
AMP0+ (Analog Differential Amplifier 0 Input Channel )
26
22
PB5
I/O
27
23
PB6
I/O
MISO (SPI Master In Slave Out)
PSCOUT20 output
MOSI (SPI Master Out Slave In)
PSCOUT21 output
ADC5 (Analog Input Channel5 )
INT1
ADC6 (Analog Input Channel 6)
INT 2
ADC7 (Analog Input Channel 7)
ICP1B (Timer 1 input capture alternate input)
PSCOUT11 output
PSCOUT01 output
28
24
PB7
I/O
ADC4 (Analog Input Channel 4)
SCK (SPI Clock)
PSCOUT00 output
29
1
PD0
I/O
XCK (UART Transfer Clock)
SS_A (Alternate SPI Slave Select)
32
3
PD1
I/O
1
4
PD2
I/O
PSCIN0 (PSC 0 Digital Input )
CLKO (System Clock Output)
PSCIN2 (PSC 2 Digital Input)
OC1A (Timer 1 Output Compare A)
MISO_A (Programming & alternate SPI Master In Slave Out)
TXD (Dali/UART Tx data)
2
5
PD3
I/O
OC0A (Timer 0 Output Compare A)
SS (SPI Slave Select)
MOSI_A (Programming & alternate Master Out SPI Slave In)
4
AT90PWM1
4378CS–AVR–09/08
AT90PWM1
Table 3-1.
Pin out description (Continued)
QFN32
S024 Pin Number
Mnemonic
Type
Name, Function & Alternate Function
ADC1 (Analog Input Channel 1)
12
12
PD4
I/O
RXD (Dali/UART Rx data)
ICP1A (Timer 1 input capture)
SCK_A (Programming & alternate SPI Clock)
13
13
PD5
I/O
14
14
PD6
I/O
ADC2 (Analog Input Channel 2)
ACMP2 (Analog Comparator 2 Positive Input )
ADC3 (Analog Input Channel 3 )
ACMPM reference for analog comparators
INT0
15
15
PD7
I/O
31
2
PE0
I/O or I
10
10
PE1
I/O
11
11
PE2
I/O
ACMP0 (Analog Comparator 0 Positive Input )
RESET (Reset Input)
OCD (On Chip Debug I/O)
XTAL1: XTAL Input
OC0B (Timer 0 Output Compare B)
XTAL2: XTAL OuTput
ADC0 (Analog Input Channel 0)
4. Overview
The AT90PWM1 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the AT90PWM1 achieves
throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
5
4378CS–AVR–09/08
4.1
Block Diagram
Figure 4-1.
Block Diagram
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
The AT90PWM1 provides the following features: 8K bytes of In-System Programmable Flash
with Read-While-Write capabilities, 512 bytes EEPROM, 512 bytes SRAM, 53 general purpose
I/O lines, 32 general purpose working registers, 2 Power Stage Controllers, two flexible
Timer/Counters with compare modes and PWM, an 8-channel 10-bit ADC with two differential
6
AT90PWM1
4378CS–AVR–09/08
AT90PWM1
input stage with programmable gain, a programmable Watchdog Timer with Internal Oscillator,
an SPI serial port, an On-chip Debug system and four software selectable power saving modes.
The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI ports and interrupt
system to continue functioning. The Power-down mode saves the register contents but freezes
the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. The
ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running
while the rest of the device is sleeping. This allows very fast start-up combined with low power
consumption.
The device is manufactured using Atmel’s high-density nonvolatile memory technology. The Onchip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial
interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program
running on the AVR core. The boot program can use any interface to download the application
program in the application Flash memory. Software in the Boot Flash section will continue to run
while the Application Flash section is updated, providing true Read-While-Write operation. By
combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip,
the Atmel AT90PWM1 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.
The AT90PWM1 AVR is supported with a full suite of program and system development tools
including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators,
and evaluation kits.
4.2
4.2.1
Pin Descriptions
VCC
Digital supply voltage.
4.2.2
GND
Ground.
4.2.3
Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the AT90PWM1 as listed on page
65.
4.2.4
Port D (PD7..PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port D also serves the functions of various special features of the AT90PWM1 as listed on page
68.
7
4378CS–AVR–09/08
4.2.5
Port E (PE2..0) RESET/ XTAL1/
XTAL2
Port E is an 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
If the RSTDISBL Fuse is programmed, PE0 is used as an I/O pin. Note that the electrical characteristics of PE0 differ from those of the other pins of Port C.
If the RSTDISBL Fuse is unprogrammed, PE0 is used as a Reset input. A low level on this pin
for longer than the minimum pulse length will generate a Reset, even if the clock is not running.
The minimum pulse length is given in Table 9-1 on page 43. Shorter pulses are not guaranteed
to generate a Reset.
Depending on the clock selection fuse settings, PE1 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Depending on the clock selection fuse settings, PE2 can be used as output from the inverting
Oscillator amplifier.
The various special features of Port E are elaborated in “Alternate Functions of Port E” on page
71 and “Clock Systems and their Distribution” on page 27.
4.2.6
AVCC
AVCC is the supply voltage pin for the A/D Converter on Port F. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC
through a low-pass filter.
4.2.7
AREF
This is the analog reference pin for the A/D Converter.
4.3
About Code Examples
This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.
8
AT90PWM1
4378CS–AVR–09/08
AT90PWM1
5. Register Summary
Address
Name
(0xFF)
PICR2H
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Page
page 162
(0xFE)
PICR2L
(0xFD)
PFRC2B
PCAE2B
PISEL2B
PELEV2B
PFLTE2B
PRFM2B3
PRFM2B2
PRFM2B1
PRFM2B0
page 162
page 161
(0xFC)
PFRC2A
PCAE2A
PISEL2A
PELEV2A
PFLTE2A
PRFM2A3
PRFM2A2
PRFM2A1
PRFM2A0
page 161
(0xFB)
PCTL2
PPRE21
PPRE20
PBFM2
PAOC2B
PAOC2A
PARUN2
PCCYC2
PRUN2
page 160
(0xFA)
PCNF2
PFIFTY2
PALOCK2
PLOCK2
PMODE21
PMODE20
POP2
PCLKSEL2
POME2
page 157
(0xF9)
OCR2RBH
page 157
(0xF8)
OCR2RBL
page 157
(0xF7)
OCR2SBH
page 157
(0xF6)
OCR2SBL
page 157
(0xF5)
OCR2RAH
page 156
(0xF4)
OCR2RAL
page 156
(0xF3)
OCR2SAH
page 156
(0xF2)
OCR2SAL
(0xF1)
POM2
POMV2B3
POMV2B2
POMV2B1
POMV2B0
(0xF0)
PSOC2
POS23
POS22
PSYNC21
(0xEF)
PICR1H
page 156
POMV2A2
PSYNC20
POMV2A3
POEN2D
POMV2A0
page 163
POEN2B
POMV2A1
POEN2C
POEN2A
page 155
(0xEE)
PICR1L
(0xED)
PFRC1B
PCAE1B
PISEL1B
PELEV1B
PFLTE1B
PRFM1B3
PRFM1B2
PRFM1B1
PRFM1B0
page 161
(0xEC)
PFRC1A
PCAE1A
PISEL1A
PELEV1A
PFLTE1A
PRFM1A3
PRFM1A2
PRFM1A1
PRFM1A0
page 161
(0xEB)
PCTL1
PRUN1
page 160
(0xEA)
Reserved
–
–
–
–
–
–
–
–
(0xE9)
Reserved
–
–
–
–
–
–
–
–
(0xE8)
Reserved
–
–
–
–
–
–
–
–
(0xE7)
Reserved
–
–
–
–
–
–
–
–
(0xE6)
Reserved
–
–
–
–
–
–
–
–
(0xE5)
Reserved
–
–
–
–
–
–
–
–
(0xE4)
Reserved
–
–
–
–
–
–
–
–
(0xE3)
Reserved
–
–
–
–
–
–
–
–
(0xE2)
Reserved
–
–
–
–
–
–
–
–
(0xE1)
Reserved
–
–
–
–
–
–
–
–
(0xE0)
PSOC1
–
–
PSYNC11
PSYNC10
–
POEN1B
–
POEN1A
(0xDF)
PICR0H
(0xDE)
PICR0L
page 162
(0xDD)
PFRC0B
PCAE0B
PISEL0B
PELEV0B
PFLTE0B
PRFM0B3
PRFM0B2
PRFM0B1
PRFM0B0
page 161
(0xDC)
PFRC0A
PCAE0A
PISEL0A
PELEV0A
PFLTE0A
PRFM0A3
PRFM0A2
PRFM0A1
PRFM0A0
page 161
(0xDB)
PCTL0
PPRE01
PPRE00
PBFM0
PAOC0B
PAOC0A
PARUN0
PCCYC0
PRUN0
page 158
(0xDA)
PCNF0
PFIFTY0
PALOCK0
PLOCK0
PMODE01
PMODE00
POP0
PCLKSEL0
-
page 157
(0xD9)
OCR0RBH
page 157
(0xD8)
OCR0RBL
page 157
(0xD7)
OCR0SBH
page 157
(0xD6)
OCR0SBL
page 157
(0xD5)
OCR0RAH
page 156
(0xD4)
OCR0RAL
page 156
(0xD3)
OCR0SAH
page 156
(0xD2)
OCR0SAL
(0xD1)
Reserved
–
–
–
–
–
–
–
–
(0xD0)
PSOC0
–
–
PSYNC01
PSYNC00
–
POEN0B
–
POEN0A
(0xCF)
Reserved
–
–
–
–
–
–
–
–
page 162
page 156
(0xCE)
Reserved
–
–
–
–
–
–
–
–
(0xCD)
Reserved
–
–
–
–
–
–
–
–
(0xCC)
Reserved
–
–
–
–
–
–
–
–
(0xCB)
Reserved
–
–
–
–
–
–
–
–
(0xCA)
Reserved
–
–
–
–
–
–
–
–
(0xC9)
Reserved
–
–
–
–
–
–
–
–
(0xC8)
Reserved
–
–
–
–
–
–
–
–
(0xC7)
Reserved
–
–
–
–
–
–
–
–
(0xC6)
Reserved
–
–
–
–
–
–
–
–
(0xC5)
Reserved
–
–
–
–
–
–
–
–
(0xC4)
Reserved
–
–
–
–
–
–
–
–
(0xC3)
Reserved
–
–
–
–
–
–
–
–
(0xC2)
Reserved
–
–
–
–
–
–
–
–
(0xC1)
Reserved
–
–
–
–
–
–
–
–
(0xC0)
Reserved
–
–
–
–
–
–
–
–
(0xBF)
Reserved
–
–
–
–
–
–
–
–
page 155
9
4378CS–AVR–09/08
10
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(0xBE)
Reserved
–
–
–
–
–
–
–
–
Page
(0xBD)
Reserved
–
–
–
–
–
–
–
–
(0xBC)
Reserved
–
–
–
–
–
–
–
–
(0xBB)
Reserved
–
–
–
–
–
–
–
–
(0xBA)
Reserved
–
–
–
–
–
–
–
–
(0xB9)
Reserved
–
–
–
–
–
–
–
–
(0xB8)
Reserved
–
–
–
–
–
–
–
–
(0xB7)
Reserved
–
–
–
–
–
–
–
–
(0xB6)
Reserved
–
–
–
–
–
–
–
–
(0xB5)
Reserved
–
–
–
–
–
–
–
–
(0xB4)
Reserved
–
–
–
–
–
–
–
–
(0xB3)
Reserved
–
–
–
–
–
–
–
–
(0xB2)
Reserved
–
–
–
–
–
–
–
–
(0xB1)
Reserved
–
–
–
–
–
–
–
–
(0xB0)
Reserved
–
–
–
–
–
–
–
–
(0xAF)
AC2CON
AC2EN
AC2IE
AC2IS1
AC2IS0
AC2SADE-
AC2M2
AC2M1
AC2M0
page 178
(0xAD)
AC0CON
AC0EN
AC0IE
AC0IS1
AC0IS0
-
AC0M2
AC0M1
AC0M0
page 177
(0xAC)
Reserved
–
–
–
–
–
–
–
–
page 258
(0xAB)
Reserved
–
–
–
–
–
–
–
–
page 258
(0xAA)
Reserved
–
–
–
–
–
–
–
–
page 257
(0xA9)
Reserved
–
–
–
–
–
–
–
–
(0xA8)
Reserved
–
–
–
–
–
–
–
–
(0xA7)
Reserved
–
–
–
–
–
–
–
–
(0xA6)
Reserved
(0xA5)
PIM2
–
-
–
-
–
PSEIE2
–
PEVE2B
–
PEVE2A
–
-
–
-
–
PEOPE2
page 164
(0xA4)
PIFR2
-
-
PSEI2
PEV2B
PEV2A
PRN21
PRN20
PEOP2
page 164
(0xA3)
Reserved
–
–
–
–
–
–
–
–
(0xA2)
Reserved
(0xA1)
PIM0
–
-
–
-
–
PSEIE0
–
PEVE0B
–
PEVE0A
–
-
–
-
–
PEOPE0
page 164
(0xA0)
PIFR0
-
-
PSEI0
PEV0B
PEV0A
PRN01
PRN00
PEOP0
page 164
(0x9F)
Reserved
–
–
–
–
–
–
–
–
(0x9E)
Reserved
–
–
–
–
–
–
–
–
(0x9D)
Reserved
–
–
–
–
–
–
–
–
(0x9C)
Reserved
–
–
–
–
–
–
–
–
(0x9B)
Reserved
–
–
–
–
–
–
–
–
(0x9A)
Reserved
–
–
–
–
–
–
–
–
(0x99)
Reserved
–
–
–
–
–
–
–
–
(0x98)
Reserved
–
–
–
–
–
–
–
–
(0x97)
Reserved
–
–
–
–
–
–
–
–
(0x96)
Reserved
–
–
–
–
–
–
–
–
(0x95)
Reserved
–
–
–
–
–
–
–
–
(0x94)
Reserved
–
–
–
–
–
–
–
–
(0x93)
Reserved
–
–
–
–
–
–
–
–
(0x92)
Reserved
–
–
–
–
–
–
–
–
(0x91)
Reserved
–
–
–
–
–
–
–
–
(0x90)
Reserved
–
–
–
–
–
–
–
–
(0x8F)
Reserved
–
–
–
–
–
–
–
–
(0x8E)
Reserved
–
–
–
–
–
–
–
–
(0x8D)
Reserved
–
–
–
–
–
–
–
–
(0x8C)
Reserved
–
–
–
–
–
–
–
–
(0x8B)
OCR1BH
OCR1B15
OCR1B14
OCR1B13
OCR1B12
OCR1B11
OCR1B10
OCR1B9
OCR1B8
(0x8A)
OCR1BL
OCR1B7
OCR1B6
OCR1B5
OCR1B4
OCR1B3
OCR1B2
OCR1B1
OCR1B0
page 120
(0x89)
OCR1AH
OCR1A15
OCR1A14
OCR1A13
OCR1A12
OCR1A11
OCR1A10
OCR1A9
OCR1A8
page 120
page 120
(0x88)
OCR1AL
OCR1A7
OCR1A6
OCR1A5
OCR1A4
OCR1A3
OCR1A2
OCR1A1
OCR1A0
page 120
(0x87)
ICR1H
ICR115
ICR114
ICR113
ICR112
ICR111
ICR110
ICR19
ICR18
page 121
(0x86)
ICR1L
ICR17
ICR16
ICR15
ICR14
ICR13
ICR12
ICR11
ICR10
page 121
(0x85)
TCNT1H
TCNT115
TCNT114
TCNT113
TCNT112
TCNT111
TCNT110
TCNT19
TCNT18
page 120
(0x84)
TCNT1L
TCNT17
TCNT16
TCNT15
TCNT14
TCNT13
TCNT12
TCNT11
TCNT10
page 120
(0x83)
Reserved
–
–
–
–
–
–
–
–
(0x82)
TCCR1C
FOC1A
FOC1B
–
–
–
–
–
–
page 119
(0x81)
TCCR1B
ICNC1
ICES1
–
WGM13
WGM12
CS12
CS11
CS10
page 118
(0x80)
TCCR1A
COM1A1
COM1A0
COM1B1
COM1B0
–
–
WGM11
WGM10
page 116
(0x7F)
DIDR1
–
–
ACMP0D
AMP0PD
AMP0ND
ADC10D/ACMP1D
ADC9D/AMP1PD
ADC8D/AMP1ND
page 199
(0x7E)
DIDR0
ADC7D
ADC6D
ADC5D
ADC4D
ADC3D/ACMPMD
ADC2D/ACMP2D
ADC1D
ADC0D
page 199
(0x7D)
Reserved
–
–
–
–
–
–
–
–
AT90PWM1
4378CS–AVR–09/08
AT90PWM1
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Page
(0x7C)
ADMUX
REFS1
REFS0
ADLAR
–
MUX3
MUX2
MUX1
MUX0
page 194
(0x7B)
ADCSRB
ADHSM
–
–
ADASCR
ADTS3
ADTS2
ADTS1
ADTS0
page 196
(0x7A)
ADCSRA
ADEN
ADSC
ADATE
ADIF
ADIE
ADPS2
ADPS1
ADPS0
page 195
(0x79)
ADCH
- / ADC9
- / ADC8
- / ADC7
- / ADC6
- / ADC5
- / ADC4
ADC9 / ADC3
ADC8 / ADC2
page 198
(0x78)
ADCL
ADC7 / ADC1
ADC6 / ADC0
ADC5 / -
ADC4 / -
ADC3 / -
ADC2 / -
ADC1 / -
ADC0 /
page 198
(0x76)
AMP0CSR
AMP0EN
-
AMP0G1
AMP0G0
-
AMP0TS2
AMP0TS1
AMP0TS0
page 202
(0x75)
Reserved
–
–
–
–
–
–
–
–
(0x74)
Reserved
–
–
–
–
–
–
–
–
(0x73)
Reserved
–
–
–
–
–
–
–
–
(0x72)
Reserved
–
–
–
–
–
–
–
–
(0x71)
Reserved
–
–
–
–
–
–
–
–
(0x70)
Reserved
–
–
–
–
–
–
–
–
(0x6F)
TIMSK1
–
–
ICIE1
–
–
OCIE1B
OCIE1A
TOIE1
page 121
(0x6E)
TIMSK0
–
–
–
–
–
OCIE0B
OCIE0A
TOIE0
page 94
(0x6D)
Reserved
–
–
–
–
–
–
–
–
(0x6C)
Reserved
–
–
–
–
–
–
–
–
(0x6B)
Reserved
–
–
–
–
–
–
–
–
(0x6A)
Reserved
–
–
–
–
–
–
–
–
(0x69)
EICRA
ISC31
ISC30
ISC21
ISC20
ISC11
ISC10
ISC01
ISC00
(0x68)
Reserved
–
–
–
–
–
–
–
–
(0x67)
Reserved
–
–
–
–
–
–
–
–
(0x66)
OSCCAL
–
CAL6
CAL5
CAL4
CAL3
CAL2
CAL1
CAL0
(0x65)
Reserved
–
–
–
–
–
–
–
–
(0x64)
PRR
PRPSC2
PRPSC1
PRPSC0
PRTIM1
PRTIM0
PRSPI
–
PRADC
(0x63)
Reserved
–
–
–
–
–
–
–
–
(0x62)
Reserved
–
–
–
–
–
–
–
–
(0x61)
CLKPR
CLKPCE
–
–
–
CLKPS3
CLKPS2
CLKPS1
CLKPS0
page 35
(0x60)
WDTCSR
WDIF
WDIE
WDP3
WDCE
WDE
WDP2
WDP1
WDP0
page 50
0x3F (0x5F)
SREG
I
T
H
S
V
N
Z
C
page 11
0x3E (0x5E)
SPH
SP15
SP14
SP13
SP12
SP11
SP10
SP9
SP8
page 13
0x3D (0x5D)
SPL
SP7
SP6
SP5
SP4
SP3
SP2
SP1
SP0
page 13
0x3C (0x5C)
Reserved
–
–
–
–
–
–
–
–
0x3B (0x5B)
Reserved
–
–
–
–
–
–
–
–
0x3A (0x5A)
Reserved
–
–
–
–
–
–
–
–
0x39 (0x59)
Reserved
–
–
–
–
–
–
–
–
0x38 (0x58)
Reserved
–
–
–
–
–
–
–
–
0x37 (0x57)
SPMCSR
SPMIE
RWWSB
–
RWWSRE
BLBSET
PGWRT
PGERS
SPMEN
0x36 (0x56)
Reserved
–
–
–
–
–
–
–
–
(0x77)
page 74
page 31
page 39
page 211
0x35 (0x55)
MCUCR
SPIPS
–
–
PUD
–
–
IVSEL
IVCE
page 56 & page 65
0x34 (0x54)
MCUSR
–
–
–
–
WDRF
BORF
EXTRF
PORF
page 46
0x33 (0x53)
SMCR
–
–
–
–
SM2
SM1
SM0
SE
0x32 (0x52)
MSMCR
0x31 (0x51)
MONDR
0x30 (0x50)
ACSR
Monitor Stop Mode Control Register
Monitor Data Register
ACCKDIV
AC2IF
–
AC0IF
–
page 37
reserved
reserved
AC2O
–
AC0O
page 179
0x2F (0x4F)
Reserved
–
–
–
–
–
–
–
–
0x2E (0x4E)
SPDR
SPD7
SPD6
SPD5
SPD4
SPD3
SPD2
SPD1
SPD0
page 174
0x2D (0x4D)
SPSR
SPIF
WCOL
–
–
–
–
–
SPI2X
page 173
0x2C (0x4C)
SPCR
SPIE
SPE
DORD
MSTR
CPOL
CPHA
SPR1
SPR0
page 172
0x2B (0x4B)
Reserved
–
–
–
–
–
–
–
–
0x2A (0x4A)
Reserved
–
–
–
–
–
–
–
–
0x29 (0x49)
PLLCSR
-
-
-
-
-
PLLF
PLLE
PLOCK
page 33
0x28 (0x48)
OCR0B
OCR0B7
OCR0B6
OCR0B5
OCR0B4
OCR0B3
OCR0B2
OCR0B1
OCR0B0
page 94
0x27 (0x47)
OCR0A
OCR0A7
OCR0A6
OCR0A5
OCR0A4
OCR0A3
OCR0A2
OCR0A1
OCR0A0
page 93
0x26 (0x46)
TCNT0
TCNT07
TCNT06
TCNT05
TCNT04
TCNT03
TCNT02
TCNT01
TCNT00
page 93
0x25 (0x45)
TCCR0B
FOC0A
FOC0B
–
–
WGM02
CS02
CS01
CS00
page 92
0x24 (0x44)
TCCR0A
COM0A1
COM0A0
COM0B1
COM0B0
–
–
WGM01
WGM00
page 89
0x23 (0x43)
GTCCR
TSM
ICPSEL1
–
–
–
–
–
PSRSYNC
page 77
0x22 (0x42)
EEARH
–
–
–
–
EEAR11
EEAR10
EEAR9
EEAR8
page 19
0x21 (0x41)
EEARL
EEAR7
EEAR6
EEAR5
EEAR4
EEAR3
EEAR2
EEAR1
EEAR0
page 19
0x20 (0x40)
EEDR
EEDR7
EEDR6
EEDR5
EEDR4
EEDR3
EEDR2
EEDR1
EEDR0
page 20
0x1F (0x3F)
EECR
–
–
–
–
EERIE
EEMWE
EEWE
EERE
page 20
0x1E (0x3E)
GPIOR0
GPIOR07
GPIOR06
GPIOR05
GPIOR04
GPIOR03
GPIOR02
GPIOR01
GPIOR00
page 25
0x1D (0x3D)
EIMSK
–
–
–
–
INT3
INT2
INT1
INT0
page 75
0x1C (0x3C)
0x1B (0x3B)
EIFR
–
–
–
–
INTF3
INTF2
INTF1
INTF0
page 75
GPIOR3
GPIOR37
GPIOR36
GPIOR35
GPIOR34
GPIOR33
GPIOR32
GPIOR31
GPIOR30
page 25
11
4378CS–AVR–09/08
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Page
0x1A (0x3A)
GPIOR2
GPIOR27
GPIOR26
GPIOR25
GPIOR24
GPIOR23
GPIOR22
GPIOR21
GPIOR20
page 25
0x19 (0x39)
GPIOR1
GPIOR17
GPIOR16
GPIOR15
GPIOR14
GPIOR13
GPIOR12
GPIOR11
GPIOR10
page 25
0x18 (0x38)
Reserved
–
–
–
–
–
–
–
–
0x17 (0x37)
Reserved
–
–
–
–
–
–
–
–
0x16 (0x36)
TIFR1
–
–
ICF1
–
–
OCF1B
OCF1A
TOV1
page 122
0x15 (0x35)
TIFR0
–
–
–
–
–
OCF0B
OCF0A
TOV0
page 94
0x14 (0x34)
Reserved
–
–
–
–
–
–
–
–
0x13 (0x33)
Reserved
–
–
–
–
–
–
–
–
0x12 (0x32)
Reserved
–
–
–
–
–
–
–
–
0x11 (0x31)
Reserved
–
–
–
–
–
–
–
–
0x10 (0x30)
Reserved
–
–
–
–
–
–
–
–
0x0F (0x2F)
Reserved
–
–
–
–
–
–
–
–
0x0E (0x2E)
PORTE
–
–
–
–
–
PORTE2
PORTE1
PORTE0
page 73
0x0D (0x2D)
DDRE
–
–
–
–
–
DDE2
DDE1
DDE0
page 73
0x0C (0x2C)
PINE
–
–
–
–
–
PINE2
PINE1
PINE0
page 73
0x0B (0x2B)
PORTD
PORTD7
PORTD6
PORTD5
PORTD4
PORTD3
PORTD2
PORTD1
PORTD0
page 73
0x0A (0x2A)
DDRD
DDD7
DDD6
DDD5
DDD4
DDD3
DDD2
DDD1
DDD0
page 73
0x09 (0x29)
PIND
PIND7
PIND6
PIND5
PIND4
PIND3
PIND2
PIND1
PIND0
page 73
0x08 (0x28)
–
–
–
–
–
–
–
–
–
–
0x07 (0x27)
–
–
–
–
–
–
–
–
–
–
0x06 (0x26)
–
–
–
–
–
–
–
–
–
–
0x05 (0x25)
PORTB
PORTB7
PORTB6
PORTB5
PORTB4
PORTB3
PORTB2
PORTB1
PORTB0
page 72
0x04 (0x24)
DDRB
DDB7
DDB6
DDB5
DDB4
DDB3
DDB2
DDB1
DDB0
page 72
0x03 (0x23)
PINB
PINB7
PINB6
PINB5
PINB4
PINB3
PINB2
PINB1
PINB0
page 73
0x02 (0x22)
Reserved
–
–
–
–
–
–
–
–
0x01 (0x21)
Reserved
–
–
–
–
–
–
–
–
0x00 (0x20)
Reserved
–
–
–
–
–
–
–
–
Note:
1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.
4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The AT90PWM1 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN
and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.
12
AT90PWM1
4378CS–AVR–09/08
AT90PWM1
6. Instruction Set Summary
Mnemonics
Operands
Description
Operation
Flags
#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD
Rd, Rr
Add two Registers
Rd ← Rd + Rr
Z,C,N,V,H
1
ADC
Rd, Rr
Add with Carry two Registers
Rd ← Rd + Rr + C
Z,C,N,V,H
1
ADIW
Rdl,K
Add Immediate to Word
Rdh:Rdl ← Rdh:Rdl + K
Z,C,N,V,S
2
SUB
Rd, Rr
Subtract two Registers
Rd ← Rd - Rr
Z,C,N,V,H
1
SUBI
Rd, K
Subtract Constant from Register
Rd ← Rd - K
Z,C,N,V,H
1
SBC
Rd, Rr
Subtract with Carry two Registers
Rd ← Rd - Rr - C
Z,C,N,V,H
1
SBCI
Rd, K
Subtract with Carry Constant from Reg.
Rd ← Rd - K - C
Z,C,N,V,H
1
SBIW
Rdl,K
Subtract Immediate from Word
Rdh:Rdl ← Rdh:Rdl - K
Z,C,N,V,S
2
AND
Rd, Rr
Logical AND Registers
Rd ← Rd • Rr
Z,N,V
1
ANDI
Rd, K
Logical AND Register and Constant
Rd ← Rd • K
Z,N,V
1
OR
Rd, Rr
Logical OR Registers
Rd ← Rd v Rr
Z,N,V
1
ORI
Rd, K
Logical OR Register and Constant
Rd ← Rd v K
Z,N,V
1
EOR
Rd, Rr
Exclusive OR Registers
Rd ← Rd ⊕ Rr
Z,N,V
1
COM
Rd
One’s Complement
Rd ← 0xFF − Rd
Z,C,N,V
1
NEG
Rd
Two’s Complement
Rd ← 0x00 − Rd
Z,C,N,V,H
1
SBR
Rd,K
Set Bit(s) in Register
Rd ← Rd v K
Z,N,V
1
CBR
Rd,K
Clear Bit(s) in Register
Rd ← Rd • (0xFF - K)
Z,N,V
1
INC
Rd
Increment
Rd ← Rd + 1
Z,N,V
1
1
DEC
Rd
Decrement
Rd ← Rd − 1
Z,N,V
TST
Rd
Test for Zero or Minus
Rd ← Rd • Rd
Z,N,V
1
CLR
Rd
Clear Register
Rd ← Rd ⊕ Rd
Z,N,V
1
SER
Rd
Set Register
Rd ← 0xFF
None
1
MUL
Rd, Rr
Multiply Unsigned
R1:R0 ← Rd x Rr
Z,C
2
MULS
Rd, Rr
Multiply Signed
R1:R0 ← Rd x Rr
Z,C
2
MULSU
Rd, Rr
Multiply Signed with Unsigned
R1:R0 ← Rd x Rr
Z,C
2
FMUL
Rd, Rr
Fractional Multiply Unsigned
R1:R0 ← (Rd x Rr) << 1
Z,C
2
FMULS
Rd, Rr
Fractional Multiply Signed
R1:R0 ← (Rd x Rr) << 1
Z,C
2
FMULSU
Rd, Rr
Fractional Multiply Signed with Unsigned
R1:R0 ← (Rd x Rr) << 1
Z,C
2
BRANCH INSTRUCTIONS
RJMP
k
IJMP
Relative Jump
PC ← PC + k + 1
None
2
Indirect Jump to (Z)
PC ← Z
None
2
Relative Subroutine Call
PC ← PC + k + 1
None
3
ICALL
Indirect Call to (Z)
PC ← Z
None
3
RET
Subroutine Return
PC ← STACK
None
4
RETI
Interrupt Return
PC ← STACK
I
4
Compare, Skip if Equal
if (Rd = Rr) PC ← PC + 2 or 3
None
1/2/3
RCALL
k
CPSE
Rd,Rr
CP
Rd,Rr
Compare
Rd − Rr
Z, N,V,C,H
1
CPC
Rd,Rr
Compare with Carry
Rd − Rr − C
Z, N,V,C,H
1
CPI
Rd,K
Compare Register with Immediate
Rd − K
Z, N,V,C,H
1
SBRC
Rr, b
Skip if Bit in Register Cleared
if (Rr(b)=0) PC ← PC + 2 or 3
None
1/2/3
SBRS
Rr, b
Skip if Bit in Register is Set
if (Rr(b)=1) PC ← PC + 2 or 3
None
1/2/3
SBIC
P, b
Skip if Bit in I/O Register Cleared
if (P(b)=0) PC ← PC + 2 or 3
None
1/2/3
SBIS
P, b
Skip if Bit in I/O Register is Set
if (P(b)=1) PC ← PC + 2 or 3
None
1/2/3
BRBS
s, k
Branch if Status Flag Set
if (SREG(s) = 1) then PC←PC+k + 1
None
1/2
BRBC
s, k
Branch if Status Flag Cleared
if (SREG(s) = 0) then PC←PC+k + 1
None
1/2
BREQ
k
Branch if Equal
if (Z = 1) then PC ← PC + k + 1
None
1/2
BRNE
k
Branch if Not Equal
if (Z = 0) then PC ← PC + k + 1
None
1/2
BRCS
k
Branch if Carry Set
if (C = 1) then PC ← PC + k + 1
None
1/2
BRCC
k
Branch if Carry Cleared
if (C = 0) then PC ← PC + k + 1
None
1/2
BRSH
k
Branch if Same or Higher
if (C = 0) then PC ← PC + k + 1
None
1/2
BRLO
k
Branch if Lower
if (C = 1) then PC ← PC + k + 1
None
1/2
BRMI
k
Branch if Minus
if (N = 1) then PC ← PC + k + 1
None
1/2
BRPL
k
Branch if Plus
if (N = 0) then PC ← PC + k + 1
None
1/2
BRGE
k
Branch if Greater or Equal, Signed
if (N ⊕ V= 0) then PC ← PC + k + 1
None
1/2
BRLT
k
Branch if Less Than Zero, Signed
if (N ⊕ V= 1) then PC ← PC + k + 1
None
1/2
BRHS
k
Branch if Half Carry Flag Set
if (H = 1) then PC ← PC + k + 1
None
1/2
BRHC
k
Branch if Half Carry Flag Cleared
if (H = 0) then PC ← PC + k + 1
None
1/2
BRTS
k
Branch if T Flag Set
if (T = 1) then PC ← PC + k + 1
None
1/2
BRTC
k
Branch if T Flag Cleared
if (T = 0) then PC ← PC + k + 1
None
1/2
BRVS
k
Branch if Overflow Flag is Set
if (V = 1) then PC ← PC + k + 1
None
1/2
BRVC
k
Branch if Overflow Flag is Cleared
if (V = 0) then PC ← PC + k + 1
None
1/2
BRIE
k
Branch if Interrupt Enabled
if ( I = 1) then PC ← PC + k + 1
None
1/2
BRID
k
Branch if Interrupt Disabled
if ( I = 0) then PC ← PC + k + 1
None
1/2
13
4378CS–AVR–09/08
Mnemonics
Operands
Description
Operation
Flags
#Clocks
BIT AND BIT-TEST INSTRUCTIONS
SBI
P,b
Set Bit in I/O Register
I/O(P,b) ← 1
None
2
CBI
P,b
Clear Bit in I/O Register
I/O(P,b) ← 0
None
2
1
LSL
Rd
Logical Shift Left
Rd(n+1) ← Rd(n), Rd(0) ← 0
Z,C,N,V
LSR
Rd
Logical Shift Right
Rd(n) ← Rd(n+1), Rd(7) ← 0
Z,C,N,V
1
ROL
Rd
Rotate Left Through Carry
Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7)
Z,C,N,V
1
ROR
Rd
Rotate Right Through Carry
Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0)
Z,C,N,V
1
ASR
Rd
Arithmetic Shift Right
Rd(n) ← Rd(n+1), n=0..6
Z,C,N,V
1
SWAP
Rd
Swap Nibbles
Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0)
None
1
BSET
s
Flag Set
SREG(s) ← 1
SREG(s)
1
1
BCLR
s
Flag Clear
SREG(s) ← 0
SREG(s)
BST
Rr, b
Bit Store from Register to T
T ← Rr(b)
T
1
BLD
Rd, b
Bit load from T to Register
Rd(b) ← T
None
1
SEC
Set Carry
C←1
C
1
CLC
Clear Carry
C←0
C
1
SEN
Set Negative Flag
N←1
N
1
CLN
Clear Negative Flag
N←0
N
1
SEZ
Set Zero Flag
Z←1
Z
1
CLZ
Clear Zero Flag
Z←0
Z
1
SEI
Global Interrupt Enable
I←1
I
1
CLI
Global Interrupt Disable
I←0
I
1
SES
Set Signed Test Flag
S←1
S
1
CLS
Clear Signed Test Flag
S←0
S
1
SEV
Set Twos Complement Overflow.
V←1
V
1
CLV
Clear Twos Complement Overflow
V←0
V
1
SET
Set T in SREG
T←1
T
1
CLT
Clear T in SREG
T←0
T
1
SEH
CLH
Set Half Carry Flag in SREG
Clear Half Carry Flag in SREG
H←1
H←0
H
H
1
1
Rd ← Rr
Rd+1:Rd ← Rr+1:Rr
None
1
None
1
1
DATA TRANSFER INSTRUCTIONS
MOV
Rd, Rr
Move Between Registers
MOVW
Rd, Rr
Copy Register Word
LDI
Rd, K
Load Immediate
Rd ← K
None
LD
Rd, X
Load Indirect
Rd ← (X)
None
2
LD
Rd, X+
Load Indirect and Post-Inc.
Rd ← (X), X ← X + 1
None
2
LD
Rd, - X
Load Indirect and Pre-Dec.
X ← X - 1, Rd ← (X)
None
2
LD
Rd, Y
Load Indirect
Rd ← (Y)
None
2
LD
Rd, Y+
Load Indirect and Post-Inc.
Rd ← (Y), Y ← Y + 1
None
2
LD
Rd, - Y
Load Indirect and Pre-Dec.
Y ← Y - 1, Rd ← (Y)
None
2
LDD
Rd,Y+q
Load Indirect with Displacement
Rd ← (Y + q)
None
2
LD
Rd, Z
Load Indirect
Rd ← (Z)
None
2
LD
Rd, Z+
Load Indirect and Post-Inc.
Rd ← (Z), Z ← Z+1
None
2
LD
Rd, -Z
Load Indirect and Pre-Dec.
Z ← Z - 1, Rd ← (Z)
None
2
LDD
Rd, Z+q
Load Indirect with Displacement
Rd ← (Z + q)
None
2
LDS
Rd, k
Load Direct from SRAM
Rd ← (k)
None
2
ST
X, Rr
Store Indirect
(X) ← Rr
None
2
ST
X+, Rr
Store Indirect and Post-Inc.
(X) ← Rr, X ← X + 1
None
2
ST
- X, Rr
Store Indirect and Pre-Dec.
X ← X - 1, (X) ← Rr
None
2
ST
Y, Rr
Store Indirect
(Y) ← Rr
None
2
ST
Y+, Rr
Store Indirect and Post-Inc.
(Y) ← Rr, Y ← Y + 1
None
2
ST
- Y, Rr
Store Indirect and Pre-Dec.
Y ← Y - 1, (Y) ← Rr
None
2
STD
Y+q,Rr
Store Indirect with Displacement
(Y + q) ← Rr
None
2
ST
Z, Rr
Store Indirect
(Z) ← Rr
None
2
ST
Z+, Rr
Store Indirect and Post-Inc.
(Z) ← Rr, Z ← Z + 1
None
2
ST
-Z, Rr
Store Indirect and Pre-Dec.
Z ← Z - 1, (Z) ← Rr
None
2
STD
Z+q,Rr
Store Indirect with Displacement
(Z + q) ← Rr
None
2
STS
k, Rr
LPM
Store Direct to SRAM
(k) ← Rr
None
2
Load Program Memory
R0 ← (Z)
None
3
LPM
Rd, Z
Load Program Memory
Rd ← (Z)
None
3
LPM
Rd, Z+
Load Program Memory and Post-Inc
Rd ← (Z), Z ← Z+1
None
3
Store Program Memory
(Z) ← R1:R0
None
-
In Port
Rd ← P
None
1
SPM
IN
Rd, P
OUT
P, Rr
Out Port
P ← Rr
None
1
PUSH
Rr
Push Register on Stack
STACK ← Rr
None
2
POP
Rd
Pop Register from Stack
Rd ← STACK
None
2
MCU CONTROL INSTRUCTIONS
14
AT90PWM1
4378CS–AVR–09/08
AT90PWM1
Mnemonics
Operands
Description
NOP
No Operation
SLEEP
Sleep
WDR
BREAK
Watchdog Reset
Break
Operation
Flags
#Clocks
None
1
(see specific descr. for Sleep function)
None
1
(see specific descr. for WDR/timer)
For On-chip Debug Only
None
None
1
N/A
15
4378CS–AVR–09/08
7. Ordering Information
Speed (MHz)
Power Supply
Ordering Code
Package
16
2.7 - 5.5V
AT90PWM1-16SU
SO24
16
2.7 - 5.5V
AT90PWM1-16MU
QFN32
Operation Range
Extended (-40°C to
105°C)
Extended (-40°C to
105°C)
Note:
All packages are Pb free, fully LHF
Note:
This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and
minimum quantities.
16
AT90PWM1
4378CS–AVR–09/08
AT90PWM1
8. Package Information
Package Type
SO24
24-Lead, 0.300” Body width,
Plastic GullWing Small Outline Package (SOIC)
QFN32
32-Lead, Quad Flat No lead
17
4378CS–AVR–09/08
8.1
18
SO24
AT90PWM1
4378CS–AVR–09/08
AT90PWM1
8.2
QFN32
19
4378CS–AVR–09/08
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-enYvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Technical Support
[email protected]
Sales Contact
www.atmel.com/contacts
Product Contact
Web Site
www.atmel.com
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2008 Atmel Corporation. All rights reserved. Atmel ®, logo and combinations thereof, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
4378CS–AVR–09/08